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Asymmetric x-ray difFraction by strained crystal wafers: 8 X S-matrix dynatnical theory
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%e have extended the matrix representation of the dynamical theory of x-ray difFraction to in-

clude Bragg planes that are oblique with respect to the surface of a crystal wafer. In place of the
two independent 2X 2 matrices of the Abeles method for planes parallel to the surface, we use a sin-

gle Sx 8 matrix. %'ith such a matrix, rays may be skew with respect to the oblique Bragg planes
and the wafer surface. Despite minor difkrences in approximations, computations by this method

give results nearly identical to those from the Laue method in cases where either may be used. The
new approach brings out the close analogy between the diffraction of visible hght by blazed gratings
and the diffraction of x rays by edges of oblique Bragg planes near the crystal surface. Matrix
methods present no special problem in cases where the layers near the surface do not have the same

spacing normal to the surface as those deeper down, resulting in curved oblique planes. Thus, epi-
taxial layers of varying composition, crystals strained by ion implantation, and other orderly surface
distortions can be treated as easily as uniform wafers, as long as distorted three-dimensional order
remains. Another advantage of matrix methods is that refraction and external and internal surface
re6ections are included in the computation automatically. An additional set of difFracting Bragg
planes parallel to the surfaces can be included with httle comphcation, thus allowing investigation
of double-di8'raction el'ects at the intersection of two di8'raction cones.

E. INTRODUCTION

Most current descriptions of the dynamical theory of
x-ray difFraction for perfect crystals in which the Bragg
planes are not parallel to the surface are based on work
culminated by von Laue in the 1930s.' The main em-
phasis is on the normal modes of propagation inside an
ideal crystal, with the electromagnetic field outside
matched to the normal modes. A different approximate
analysis of difFraction by unstrained crystals with periodi-
city along the surface, in the limit of small grazing angles,
was recently developed to help in the interpretation of
grazing-incidence experimental data. Dynamical theory
for distorted crystals, based on the reciprocal-lattice
point of view of von Laue, has been developed by Takagi
and Taupln.

A difkrent SX8 matrix approach to dynamical theory,
in which direct space rather than reciprocal space is in
the forefront, will be described here. The method is par-
ticularly suited to numerical solution with a computer.
The matrix method can be used to solve problems in
ideal, undistorted crystals mith high precision for any an-
gle of incidence, including near-grazing incidence. In ad-
dition, the method is easy to apply to problems where
periodicity of oblique Bragg planes varies in the direction
normal to the surface because of strain induced, for ex-
ample, by variation of composition with depth. The
description of the distortion in direct space is easy to un-
derstand and to put into a data file.

We treat the crystal wafer as if it mere composed of a
stack of weakly diffracting gratings with equal grating
spacing, g, and with parallel "rulings, '* but the other opti-
cal parameters of each grating in the stack need not be
related. Each grating layer is parallel to the surface. One
such layer, with various orders of diN'raction, is illustrat-

ed in Fig. 1. If successive gratings are parallel and have
equal spacing, but are displaced by a varying amount, we
have our model of a strained ideal oblique-cut crystal, as
shown in Fig. 2. Figure 3 is a projected three-
dimensional illustration of a blazed grating showing coor-
dinates out of the (xy} plane. The blazes may be thought
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FIG. 1. Geometry of thin partially rejecting grating in the
(xy) plane with re8ection in the (xz) plane, showing coordinate
system. Incident, +erst-order, and zeroth-order diffracted
beams, both transmitted and reflected, are also shown. Az-
imuth P and y axes are toward the reader and not shown. A, is
the x-ray wavelength and g is the grating spacing.
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FIG. 2. Cross section of crystal wafer in relation to (xz) coor-
dinate system in Fig. 1, showing curved Bragg planes and
"blazed" surface. Varying tilt angle, o, and Bragg spacings, 8
and 8~, are also sho~n, together with gliding horizontal coordi-
nate, g, and other variables. Strain-induced curvature of Bragg
planes is exaggerated. Structure is assumed to be periodic or
continuous in the y direction.

of as the edges of obhque Bragg-plane surfaces.
As a concrete example, consider a wafer of indium

phosphide, which is a cubic crystal with sphalerite
(diamond-like) structure having a unit-cell dimension
a =5.86928 A in its unstrained state. Consider a wafer
cut parallel to the (111)planes. Let the y direction coin-
cide with the edges of the emerging (200) planes, which
slope at a tilt angle o =54.7356' with respect to the sur-
face, as defined in Fig. 3. The Bragg spacing of the (200)

planes is 8 =a j2=2.98464 A. The grating spacing
along the x direction on the surface is
g=8 /sino. =3.59419 A. The crystal acts as a blazed
grating foi x rays with this grating spacing and with a
diffraction envelope that is peaked toward the Bragg-
reflection direction; the mirror direction for the tilted
Bragg planes. For completeness, we mention here that
the (111) planes have a Bragg spacing
8 =a/&3=3. 38863 A. Subsequent numerical results
will be based on this example.

The 4&(4 matrix method for treating lamellar struc-
tures ' ' is exact. For isotropic lamellar structures the
Abeles 2&2 matrix method is equivalent and also exact.
The 8X8 matrix method to be described is an extension
of the 4&4 method, with dynamical perturbation by
periodic lateral variations in the x direction. Any ap-
proximation errors in the method are attributable to the
assumption that the lateraI periodic variation of refrac-
tive index is much less than unity.

The 8&(8 matrix approach to dynamical theory for un-
symmetrical Bragg or Laue diffraction may also be re-
garded as a specialization and adaptation for x rays, of
work by Rokushima and Yamakita that was intended
for visible-light optics. The 2X2 dynamical theory of
symmetrical Bragg diffraction of x rays, based on the
Abeles method, ' might be thought of as a similar spe-
cialization of the exact 4~4 matrix optics for general
lamellar anisotropic structures.

Although not restricted to dielectric properties that
vary sinusoidally in the direction normal to the surfaces,
the computation can be made very eScient when such
periodicity exists, even over limited distances.

II. OPTICS OF A THIN
PARTIALLY REFLECTING GRATING

Consider a thin partially reffecting sheet in the (xy)
plane with periodic variation of optical properties in the
x direction having a grating spacing g. If a source of ra-
diation of wavelength A, is at a distant point above the
sheet, then specular reffection by the sheet creates a vir-
tual source at the same angle below the sheet. If the in-
cident beam is in the (xz) plane and the angle between
the z axis and the incident beam is 8, as shown in Fig. 1,
then diffracted beams will occur at polar angles O'„above
and below the plane given by the grating equation

n A, =g(sin8'„—sin8),

FIG. 3. Three-dimensional view of blazed grating showing
negative 6rst-order skerv dilraction together vrith angles 8 and
P, the (xyz} coordinate system, and the difFraction cone.

where n is the diffraction order (0, +1,+2, . . . ). As a
special case, if the dots on the grating shown in Fig. 1 are
at the intersection of the x axis with crystalline Bragg
planes in the (yz) plane, then Eq. (1), with 0'„=—9 and g
equal to the Bragg spacing, is Bragg's law, nk=2g sinO,
for nth-order symmetrical Laue (transmissive) diff'raction.

%'e are interested in cases where the incident beam
may be skew with respect to the (xz) plane. Let the grat-
ing lines be in they direction, off the page in Figs. 1 and
2, and consider a polar-coordinate system wherein O is
measured from the z axis at any azimuth, and the az-
imuth (t is measured out from the x axis toward the +y
direction. The beams in Fig. 1 are then all at zero az-
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ky =k sii18 sing =ky —k sin8 sing (3)

define the directions of the diff'racted rays. Another way
of looking at the latter two equations is to consider that
nothing changes the y inomentum, k„,of the beam, but
reffection can reverse the sign on k, . At the same time,
the grating can add momentum q„to the beam and k, is
altered to preserve total momentum, k.

A little-known fact about diSraction gratings is that as
a monochromatic source is moved in a circle about a
fixed bisector of the angle between the incident beam and
any difFracted beam, then the diff'racted ray will always
pass through the opposite point on the circle, as shown in
Fig. 3. The cone formed in this process is the same as the
better-known difFraction cone in the x-ray optics of crys-
tals, ' but ordinary gratings do not impose the Bragg re-
striction on the angle of incidence for difFraction of the
monochromatic beam. A blazed grating distracts light
most efficiently near the direction of specular reffection of
the blazes, which corresponds to the Bragg reffection
direction for x-ray diffraction. In the limit of very broad
shallow blazes, the band of appreciable diN'raction be-
comes very narrow and the Bragg equation describes the
center of the difFraction envelope. $imilarly, when Bragg
planes are tilted with respect to the surface of a crystal,
they act as a diffraction grating for x rays. If the penetra-
tion of the beam is small because of high absorption or
grazing incidence angle, only narrow edges of the Bragg
planes inffuence the diffraction. Then the range of wave-
lengths or angles over which appreciable diffraction
occurs may be much broader than the usual Darwin
bandwidth or rocking-curve width. The spectral resolu-
tion of the grating in either x-ray diff'raction or grating
difFraction depends on the number of coherent grating
Hnes, not on the narrowness of the Darwin or dilraction
band.

III. VECTOR REPRESENTATION OF FIELDS

imuth. A generalization of Eq. (1) is

nq„=k (sin 8„'cosP„' —sin 8 cosP )=k ' —k„,
where q„=—2m/g is the "momentum" imparted to the
difFracted beam by the grating, k =2m/A, is the magni-
tude of the x-ray propagation vector, and k and k„are
components of the vector. This, together with the auxih-
ary equation

where E and H are electric and magnetic Geld com-
ponents.

We shall suppose that the (xy) plane is parallel to the
two parallel surfaces of a crystal wafer, with gas or vacu-
um at the first surface and any homogeneous isotropic
dielectric material at the other. %e shall also suppose
that one set of Bragg planes intersects the interfaces
along lines parallel to the y direction and that, among the
oblique planes, only one set is close to obeying the Bragg
condition for the incident beam. However, the possibility
that planes parallel to the surface may simultaneously
difFract either the incident beam or the beam diffracted
from the obhque planes will not be excluded. Thus, in-
vestigation of double-diffraction effects at the intersection
of two di8'raction cones, ' an effect equivalent to the inter-
section of two Kossel lines except that the x rays origi-
nate outside the crystal, is possible. (A study of double
dil'raction with a second set of planes not parallel to the
surface by matrix methods would require 12X12 ma-
trices and would be considerably more complicated. )

Considering the crystal surface as a difFraction grating,
it is easy to show that the diffracted beams of ffrst order
may be represented by the four-element diff'racted wave

i ((k„+q„)x+k„y—a)t)
vector 0'&e ' " ' where q, =+2m /g, and

Hyg

Ey~

It is convenient to begin the development of the 8~8 ma-
trix method by defining the eight-element vector,

Hy

—H„
lq

E„&e"

lq x
yae

iq„x
yze

iq„x—H„ge "

The electromagnetic field components in the (xy)
plane, of a plane wave intersecting that plane at a partic-
ular angle, can be de5ned by 4'oe' ""+y, where +0
is the four-dimensional vector

All of the electromagnetic field components of apprecia-
ble amplitude on any plane parallel to the surface of the

l(k x+A: y —Mf)
crystal are then de6ned by %'e

IV. MAXWKI. I.'S EQUATIONS

Two of Maxwell's equations in an isotropic dielectric
medium may be written in Gaussian units thus:
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T

MF

QP6 Bx

aJy.
By

(8)
Bz Bx c

where e is the (spatially varying) dielectric constant and c
I

is the velocity of light, and where

4'„=(F.„+E„ze' )e

% =(Hy+H ~e )e

etc. Equations (7) and (8) may be combined in the follow-

ing form, in which 8, is eliminated and only elements
that are in 4 appear:

lC B&y MF»+-
i)y E Bx Bx By c

ci i) 1 8 1 i)1+ +
Bx EBx'

i

2

'v+ z

(1 + ( —%„)
Bx E' @' 6 Bx By

(10)

Three more somewhat simpler second-order partial-
differential equations for the electromagnetic field com-
ponents in qi, that is, the components in the (xy) plane,
may be obtained in a similar way. They are

I

Bkfy

az
c 8 c

E+ g
Qyi ~ Bx By

lcd 1 C

c e ~'Ox'
1 C+ 1+—

q z ( —5(„)
& co By

(12)

2
Q

2 c

Cd BXz ~ q
@.+ &+, , @y

(13)

V. SPATIALLY PERIODIC MKLKCTRIC CONSTANT

Next we shall simplify these equations for the special
case where, at least for an infinitesimal distance in the z
direction,

e(z)=(1+u)[1+v, cos(q„x)+v,sin(q„x)]

=(1+u)(1+ac " +Pe '
) . (14)

Note that in absorbing media, u, U„and U, may aH be
complex numbers, with the imaginary parts describing
the absorption. Although u, v„and U, may depend on z,
we shaH suppose that q is invariant. Periodic z depen-
dence is discussed in Sec. VI. The terms U, and U, are
proportional to the complex structure-factor components
for a set of Bragg planes that are oblique with respect to
the wafer surface, and that are close to the angle for
Bragg diffraction of the incident beam. If 6=1—n is the
average complex refractive index decrement at this level

I

I

in the wafer, then u = —25.
Upon inserting the exponential form of Eq. (14) into

Eqs. (10)—(13), the factor e " appears with some of the

%0 terms of Eq. (4), and the factor e " appears with
some of the %z terms of Eq. (5). These terms account for
transfer of energy from the undiff'racted beams to the
difFracted beams and back. There are also %o terms with—iq„x fq X
the factor e ", and +d terms with the factor e ", in

+2iq„x
addition to e " and higher Fourier components with
both. The effect of these terms is entirely negligible for
nearly all x-ray diffraction problems. This is because only
diffraction close to a particular Bragg reAection direction
characterized by momentum change q„ever achieves ap-
preciable amplitude. The field components with the fac-

X
tor e " and those without are orthogonal. Thus there
are eight equations among the eight elements of %' from
Eqs. {10)—(13), which may be written in the matrix form

BP EQ)D@
Bz c

D is an 8X8 differential transfer matrix that defines the
change in the field 4 over an infinitesimal displacement
in the z direction. The elements of D may be found by ex-
panding Eqs. (10)—(13) for %o and for %~ with Eq. (14).
For compactness, we define «„=k„c/ru, where k„is the x
component of the x-ray propagation vector in free space.
Note that ii.„=sin8cosg. Similar substitutions are made
for other components of k. We also define

Kz —Kx + ac /id.
We shaH break the 8 X 8 matrix D into four quadrants,

—00 —OdD D
D= (16)—dO ~d

where subscript d refers to obliquely diffracted beams and
0 to specular or undiffracted beams.

To first order in a and P, the upper left-handed qua-
drant of D is

1+9 —Ky
2

i~ ~ /(1+u)

~,a /(1+u)

1 —~„/{1+u) (16a)
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The lower left-hand quadrant, which accounts for transfer of energy from the incident and specularly reflected rays to
the diSracted rays, is

0
x„a„/(1+u )

0

0 ~„'~„/(1+ u) 0 ~„'x~/( 1+u )

0
v~/(1+u)

0

(16b)

The upper right-hand quadrant, which accounts for transfer of energy back from the obliquely di8'racted rays to the in-
cident and specular rays, is

0 a„'a„/(1+u)
0

~„'a /(1+u)
-iq„x 1+~

Doe =Pe
0

0 z„x'~/(1+ u )

0 0
0 a /(1+u) (16c)

The lower right-hand quadrant, which has the same effect on the dilfracted beams as the upper left-hand quadrant has
on the undiffracted beams, is

1 —ir„' /(1+ u) ir„'ir /(1+u)

Kx Ky

ir„'ir /(1+u)
1+Q —Kx

1 —~ /(1+u) (16d)

lN
%'i ——exp rD q, =iP(~)q

C
4

where r is the thickness of the thin layer and

lN

ldll

i Cd T
exp rD =1+ wD+ —D D+

2t
(18)

L

The latter series is continued until the factor before the
D's is on the order of 10 '. The transfer matrix between
the top of a wafer of thickness A and the bottom can al-
ways be found from the matrix equation

P(A) =P(r„)P(~„i ) P(r2)P(ri ),
where P(r ) is the transfer matrix for thin layer j.

(19)

To integrate Eq. (15), think of the crystal wafer as a
series of thin, parallel layers, through each of which the
terms in e [Eq. (14)] are practically invariant with z. If
this is the case, then the wave function„+2, at the second
surface of the thin layer is related to that at the first, ql, ,
by the equation

VI. T%0 SETS 0F SRAGG PLANKS,
OBI,IQUK A.XII TRANSFORMATION

In principle, Eq. (19) could be used directly to find the
transfer matrix for any wafer that can be described as a
stack of gratings of equal lattice spacing. The casual
reader may wish to skip Secs. VI and VII, which deal
with methods of enhancing the speed of computation
when there are regions where the layering is also period-
ic, as in a ciystal.

Suppose that at most two sets of Bragg planes are in-
volved in the diffraction of the incident or difFracted
beam to a significant extent. In the vicinity of one depth,
z, in a crystal, one of these sets will be tilted at an angle cr

with respect to the surface and will have a Bragg spacing
8 . The grating spacing, g =8 /sino, is independent of
depth, as shown in Fig. 2. The only other set of Bragg
planes that will be considered here are those parallel to
the surface, with variable Bragg spacing 8&. Then the
dielectric constant near this depth can be represented by

e=[1+u„+u,cos(pz)+u, sin(pz)](i+ac " ' +pe " '
)

=[I+us+u, cos(pz)+u, sin(pz)][1+v, cos(q x+q,z)+u, sin(q„x+q,z)],

where @=2'/8 and q, =2m(coso )/8 =q„cote[cf. Eq.
(14)]. Note that, in general, aH of the parameters in Eq.
(20) except q„may vary with z, but they do not vary
within an unstrained crystal.

The oblique Brag g planes have a periodicity
A(z) =8 (z)/cos[o (z)] along the z axis that is not neces-
sarily rationally related to the periodicity 8 (z) of the

planes parallel to the surface, as shown in Fig. 2. If
di8'raction of one incident beam by both sets of planes is
appreciabl, it is convenient to change from the x coordi-
nate to a coordinate g measured from an oblique, possibly
curved line that intersects the intersections of the two
sets of Bragg planes diagonally as shown in Fig. 2. This
curved line is defined by the equation x —/=i'(z), where
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r

p(z) q, (z)
t)(z) =

0x ~x
dz

o 8&(z) A'(z)

For a straight section of the path rl{z), the stair-step con-
tour may be made up of a series of elements,

(21) Q(r)=R — P {r)R()'g 'T ()'g

2 ()z 2 Bz
(23)

Through this transformation Eq. (20) becomes

e = [1+Qb +Q~cos(pz) + Qx sin(pz)]
l ( l7 g+ px ) —t ( lj f+p2 )

)( I+ae " +pe (20')

Equations (22) and (23) allow us to treat an oblique set of
Bragg planes and a set parallel to the surface as if they
had the same periodicity normal to the surfaces, using
Eq. (24) in the next section.

so that a full cycle across both sets of planes occurs at the
same value of z along the path x =rl(z). A realistic model
of surface strain in many cases is one in which 8 and 8
change by the same small factor, corresponding to a
small expansion or contraction in the z direction only.

Let us define P„(~)over short vertical intervals r at
points along the path rl(z) in the same way that P(r) was
de6ned in terms of D along the z axis. Also define a ma-
trix R to shift horizontally, parallel to the surfaces. Then
the "integration" defined by Eq. (19) can be replaced by
an equivalent stair-step contour along the line x =rl(z),
followed by a single transfer back to the z axis, as shown
in Fig. 4. The matrix A(xz —x, ) is diagonal with ele-
ments

Ik (x2 —x& )
JR ] ] y ~ ~ ~ y R 44 'e

and

i(k +q„)(x2—x) )

55i i 88

sp)

Vn. FAST COMPUTATION FOR PKRIOMC REGIONS

Even in distorted crystals the wafer will ordinarily be
divisible into sublayers that are almost exactly periodic
over many cycles. If a wafer of thickness g can be
represented to good approximation by m cycles of thick-
ness A), followed by n cycles of a difFerent thickness Az,
then much computer time can be saved by using

P(g) =g ( —il(g) )Q(&z)"Q(&) ) (24)

If planes parallel to the surface are not important, the cy-
cle thickness is set to A(z)=8 (z)/cos[o(z)], R is unity,
and Q is replaced by P in Eq. (24). As explained in other
papers on matrix optics of periodic media, a high power
of a matrix may be obtained quickly by repeatedly squar-
ing the matrix for one cycle, and multiplying the accumu-
lated product by the latest square if the corresponding di-
git in the binary representation of the high power is uni-

ty, or not doing so if it is zero.
If neither the incident nor the difFracted beam is near

the Bragg angle for planes parallel to the surface, then
the cycle length A may be chosen arbitrarily. The ex-
ponential series (18) converges rapidly and accurately so
long as no/c is less than unity. The computation for a
thick layer goes fastest using a moderately short interval
such as rn)/c =1/8.

If the Bragg planes parallel to the surface are impor-
tant, the appropriate cycle length is the Bragg spacing
8 . The transfer matrix for one cycle, P(8 ) or Q(8 ),
can be computed with considerable accuracy using only
four equal subintervals, with an average value of e in each
subinterval, and using Eq. (19) or its Q equivalent over
one cycle. (Figure 4 is drawn with seven subintervals per
cycle. )

Spz VIII. MATCHING BOUNDARY FIKI.DS

FIG. 4. Two paths of "integration" to obtain the total
transfer matrix P(g); one straight down and the other in a
stair-step along the cell diagonal, q(z), followed by a transfer
back to x =0. Vertical transfers away from the origin are desig-
nated Q, and horizontal ones g. Only two cycles, one of thick-
ness 8» and one of thickness 8~2, are represented, each divided
into seven sobintel vals of thickness 'Pl or T2.

If the whole wafer is uniformly periodic, as in an un-
strained crystal, a normal-mode analysis of the matrix for
a single cycle, Q(A) or P(A), can give insight into the
propagating modes. This procedure becomes tedious in
a strained crystal and is unnecessary when the object of
the computation is to evaluate %' at one or more particu-
lar levels, given the incident-beam direction and polariza-
tion. Instead we generate the matrix P for the whole
wafer and solve the boundary-matching equations for
rejected, rejected-diftracted, transmitted, and
transmitted-diFracted beams.

If there is reason to want to examine the electromag-
netic field components at some level z between the sur-
faces of the crystal wafer, it can be done after solving the
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boundary-value pfoblclll by savlllg thc I11Rtflx P(z) Rs thc
fllll matrix P(g) ls bclng conlputcd, of by fccvaluaflng
P(z), and then multiplying the field %(0) by that matrix.

In cases where the transmitted beam is extremely
weak, because of either absorption or extinction, the ma-
trix Q or P has some extremely large elements and the
method may begin to lose accuracy because of numerical
truncation errors. We monitor Q»Q22+Q, IQ2, and

Q55Q66+QI6Q6q w»ch are the combinations of ele-
ments that grow largest in such situations. If the sum of
the absolute values of these combinations exceeds about
10, we halt the matrix multiplications in Eq. (24). (We
are doing computations with about 16-octal-digit pre-
cision. %ith more precision this factor could be in-
creased )T.his truncation has negligible effect on the
computed wave function in any region where it is of ap-
preciable amplitude.

The energy flux normal to the wafer surface can be
found by evaluating Poynting's vector in the upward- or
dowmvard-wave contributions to the wave functions 4.
Two orthogonal basis vectors for the incident wave func-
tions at the first surface in vacuum, the s- and P-polarized
%'aves, are

14
( )J/2

1
~"P

(K )1/2

—sing
—K, sing

cosg

K, COS(t

0
0
0
0

cos(t

KzCOSP

sing

K, sing

0
0
0
0

1

(K )1/2

sing
—Kz Sing

-cos((t

K, COS(t

The two undid'racted transmitted unit vectors are

sing
—K,'sing

1
Wtz

(
g

)
I/2

—COSQ

K,'COSP

1

( )
I /2

cosg
—K, sing

and

1/2
&s

—(K,'/e, )cos(()

cosg
—(K,'/e, )sing

sin(()

0
0

Kz =kzC/Cil=(1 —Kz —K&) = COSH .

This and subsequent basis vectors are normalized to give
the same constant value of the z component of Poynting's
vector or E„H—E„H„.The two corresponding basis
vectors for waves rejected from Hragg planes parallel to
the surfaces or specularly reAected are

K,'= 'Ck/ I0(e, —K„—K~)'

is the vertical component of z in the substrate, for which
the dielectric constant, which may be complex, is e, .

The upward-diffracted waves are
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Cosgd

K~COSStSd

gg) and

1

(
I

)
I /2

Kgd
Slnpd

—K,'d sin(('id

—COSPd

Ksd Cosfd

(29)

0 ik dg

( K )
I I2 Ksd COSStld

COSPd

Ksd S1Iipd

Sill/ d

1/2

—( Ksd /Es)c os/'d

Cosfd

—(Ksd /es )SInpd

singd

where

Ksd
——k,dc/I0=(1 —K„' —Kp )' =cos8d

and pd is the azimuth of the difFracted beam. Finally, the
downward-diffracted waves are

where K,'„=k,'dc/co=(e, —K„' —K )'

In order to Snd the rejected, transimtted, and upward-
and downward-difracted wave functions from an in-
cident s-polarized wave, the set of eight simultaneous
equations

P» ~» +Psp~rp+P»d ~»d +P&pd Itsipd = ps(k) L(4)(It'(s+Pn 4»+Prp harp +P~d frsd +Prpd Prpd ) =L(0)+s (0) (30)

are solved for the eight complex amplitude eoe%cients p'.
A similar set of equations, wherein the vector sum at the
first surface starts with tts, +Pp p +, gives the am-

plitudes pP of the corresponding waves when the incident
wave is p polarized.

As suggested previously, once 4(0) has been evaluated,
the electromagnetic Seld at any level z can be determined
by obtaining the transfer matrix between the first surface
and the surface at that level, and solving the equation
lP(&) =L(z)ils(0).

be determined from the Fourier expression

ol
"s M

(32)

IX. MSPKRSIQN, STRUCTURE FACTORS,
AND AMPLITUDES IN e

4m pj.

(kj k)/r, +2ik /3—
(31)

The classical nonrelativistic dispersion formula for a
local dielectric constant in Gaussian units (see Ref. 11,
Eq. (4.35) is

where V is the unit-cell volume, x,y, z are the unit-ce11
coordinates, a, b, c are the unit-cell dimensions, and h, k, I
may be the Miller indices of either the oblique or the
parallel Bragg planes.

Although good models of electronic shell densities are
available, it may be easier to obtain equivalent informa-
tion using tables of atomic structure factors with disper-
sion corrections,

f=fo[(sin8&/A]+Af '(A, )+Ihf "(g),

where Ack is the incident-x-ray photon energy, p is the
local number of' electrons per unit volume having binding
energy Ask, and r, is the classical electron radius, with

q, /m, c in Gaussian units. The coeScients U and u can

where A, =2m/k is the x-ray wavelength and 8~ is the
Bragg angle. If k &~k~ for all j, then f=f0.

The amplitudes of the sinusoidally varying parameters
in e can be written as
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or

cos
=G g e 'f, ' . '[2ir(hx, +ky;+is;)], (33)

I

where x;,y;, z, is the mean location of the nucleus of atom

i and e ' is a Debye-&aller factor to take account of
the thermal motion of that atom (see Ref. 11, Eq. 6.100).
The numerical factor

where V is the unit-cell volume, relates structure factors
to variations of dielectric constant. (See Ref. 11, Eq.
4.46, and recall that e —1=—25.) To understand the
physical significance of 6, compare Eqs. (31)-(33) and
note that the structure factor f; is a sort of modified
count of electrons whose maximum value is the atomic
number of the atom. Then the sum of f; /V is a modified
total electron density, p, within the unit cell.

X. NUMERICAL EXAMPLES

%e shall use the example mentioned in the Introduc-
tion, InP cut parallel to the (111) planes with dilfraction
from the (200) planes„ in the following illustrations. We
shall also suppose that the incident radiation is the Cu
It'o, , line with wavelength 1.5405 A, and shall ignore its
spectral linewidth. The nominal Bragg angle for the
(111) planes is 13.1384' and that for the (200) planes is
14.9557'. The diffraction cones for these two sets of
planes are illustrated in Fig. 5. The direction of the edges
of the tilted (200) planes at the edge of the wafer is also il-

% ~

FIG. 5. Computer-aided perspective sketch of diffraction
cones for the tilted (200) planes and the (111)planes parallel to
the surface. Dashed beam at grazing incidence gives spectrum
in Fig. 6. Solid beam incident on cone intersection is diffracted
onto both cones, and residual transmittance is shown in Fig. 8.

lustrated. In each example, the tilt of the (200) planes is
in such a direction with respect to the incident beam that

is a negative quantity.
The cones are not infinitely thin, but represent narrow

envelopes over which appreciable radiation of this wave-
length will be diffracted. A11 spectral bands will be com-
puted for fixed incident azimuth and will be expressed
over a range of polar angles, 8, of the incident beam. It
should be remembered, however, that if the incident
wavelength, azimuth and polar angle are all fixed, then
the directions of the (200) and the (111) diffraction are
also fixed. If any one of the incident parameters is al-
lowed to vary, then the diffracted beam parameters wiB
vary in accordance with the grating equations (2) and (3).
Thus both 8 and P of the incident beam could have been
fixed and the wavelength varied. Only results for o-
polarized radiation (E field parallel to the crystal surface)
are shown. The results for n-polarized radiation are not
very different in any of the cases considered because the
Bragg angle is far from 45'. Optical parameters assumed
in the computations [cf. Eqs. (14) and (20)] are

ub =( —2.702+i0.2953) X10

u, =( —3.590+i0 4555.) X 10

u, =( —1.010+i0. 1350}g 10

for the (111}planes parallel to the surface, and

u, =( —2.517+i0 3205) &. & 10

and U, =O for the tilted (200) planes. The phases are
based on placement of the origin at an indium atom on
the surface, ignoring possible displacement from the reg-
ular lattice.

Our Srst example is to show how diffraction from ob-
lique planes is afFected when the incident beam is near
grazing incidence. Suppose the incident radiation is at a
fixed azimuth /=72'. Then the peak of the beam that is

Bragg diIFracted from the (200) planes will be incident at
a polar angle of 88.87', as shown on the left in Fig. 6.
The penetration of the beam will be relatively small be-
cause the incident beam is the near-grazing incidence for
Bragg diffraction, and because of the large absorption by
InP at this wavelength. Consequently, the diffracted
band will be relatively broad, with radiation at different
angles of incidence being diffracted in different directions
determined uniquely by the equations for optical
diffraction gratings, assuming that the area of the crystal
surface is large. Diffraction bands for three slightly
smaller azimuths of incidence are also shown. These az-
imuths are such that the polar angles for the Bragg peaks
are even nearer to grazing incidence. The beam penetra-
tion is even less and the diffraction band becomes weaker
and broader.

The dashed line in Fig. 6 shows the adjacent onset of
specular "total external reAection. " This curve is invari-
ant as long as the diffraction band is outside it. The
diffraction band for incident azimuth P =71.25, for
which the polar angle of incidence for peak intensity is
about 8=89.7, distorts the "total re6ection*' curve so
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FIG. 6. DifFracted intensity relative to incident intensity vs
polar angle of incidence, 8, near grazing incidence (dashed
beams in Fig. 5), computed for Cu Ea& x rays dil'racted from
the (200) planes of a thick Inp wafer cut parallel to the (111)
planes. Sohd curves are for various azimuthal angles,
Dashed curve shows the onset of "total external reAection. " A11

results are for o-polarized incident radiation.

FIG. 8. Transmission by an Inp wafer 33 886 A [10000 (111)
layers] thick. Dotted and dashed curves are for azimuth near
conjunction of asymmetric Laue di8'raction by (200) planes and

symmetric Bragg diffraction by (111)planes (solid beams in Fig.
5). Solid curve is for azimuth far from this conjunction. Dip
due to (200) reAection moves from polar angle 8=76.85' at az-
imuth /=80. 505' through the (111) band to 8=76.865' at

II = 80.495'.

slightly that we do not show the distortion. The rough-
ness of the low, broad diffraction peak for the last ease is
caused by numerical roundofF error associated with the
extremely small intensity of the transmitted beam.

Spectral broadening of the diffraction peak at 6xed an-
gle or, in the cases to follow, angular broadening st Sxed
wavelength, may also be achieved by causing the crystal
layers near the surface to curve or to have a difkrent

I I [ I I I I [ I I I I [ I I I I [ I I I I
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FIG. 7. Bragg di8'raction spectrum as in Fig. 6, but far from
grazing incidence; 8'=180 —8. Dashed line: spectrum from
uniform unstrained thick wafer. Solid line: di8'raction by InP
with upper 3389 A [1000 (111) layers] expanded by a factor of
1.001 in the z direction.

spacing, by using ion implantation, by growing an epitax-
ial layer of varying stoichiometry, or by other means. As
an example, we show the relative difFraction intensity for
the case where the incident and difFracted beams are
about equally high above the crystal surface. %e suppose
that the crystal wafer is thick but that the upper
thousand planes have been expanded slightly in the z
direction, so that 8 and the (111) spacing, 8, are 1.001
times as large as in the underlying material. The results
are shown in Fig. 7. The dashed curve is the oblique
Darwin band for the unstrained substrate alone. Not
only two bands characteristic of the two slightly different
Bragg spacings appear in the spectrum for the distorted
crystal, but small subsidiary peaks also appear on either
side. Such extra features are very sensitive to details of
the model of the strain distribution, and are very useful in
determination of structure near the surface. '

Interference effects near the intersection of the (111)
and the (200) diffraction cones, or Kossel lines, are illus-
trated in Fig. 8. In this ease, we consider transmission
through a wafer only 10000 times the (111) spacing in
thickness. The solid curve there is the transmission when
the azimuth is zero, so that the effect of the (200) planes
is remote and the depression in transmission is due solely
to the (111) diffraction. In the present examples, beams
diffracted by the (200) planes go into the wafer (Laue
case), while those from the (111) planes reemerge from
the upper side (Bragg case). The transmitted beams are
attenuated by Bragg diffraction from either set of
difFracting planes. The structure is complicated by the
interference effects around the intersection of the two
diS'raction bands. An additional complication comes
from Pendellosung fringes, since the wafer hss finite
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thickness and the angle of incidence is variable. %e ~ere
interested to note that the Borrrnann anomalous
transmission effect, ' which is the rise on the right-band
side of each transmission minimum, is enhanced consid-

erably, particularly when the (111) and the (200) peaks
coincide at /=80. 499. Most of these features would re-

quire special procedures to simulate vnthout the 8&8
matrix method.
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