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Superconductivity and structure in sputtered Nb-Ta multilayers
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The structure and superconducting properties of sputtered Nb-Ta multilayers are studied as a
function of the bilayer period A. The Slms are mosaic structures with single-crystal dN'raction

profiles. The elastic mean free paths in both the niobium and tantalum layers are larger than the
layer thicknesses. The measured transition temperatures and perpendicular critical Seld slopes are
compared to the predictions of proximity theory. The parallel critical Selds and angular depen-
dences are examined for the occurrence of a three-dimensional to two-dimensional crossover.

INTRODUCTION

The study of the upper critical magnetic field H, 2 in
metallic multilayers is still a very promising Geld, as
shown in the recent work on Mo-V. ' In this paper, we
extend the measurements on Nb-Ta multilayers given in
our earlier work. Here we examine the dependence of
the critical temperature and upper critical field for both
perpendicular and parallel orientations as a function of
the bilayer period, A.

PREPARATION AND ROUTINE CHARACTERIZATION

Preparation of the multilayers is described in Ref. 2
with differences noted here. The samples were deposited
at 750'C onto (li02) and (1120) orientations of sap-
phire, with the bilayer period, A, varying from 3.4 A (al-
loy sample) to 452 A. X-ray measurements were made
on both orientations, with critical-fIeld measurements
made only on the (1102) samples. The ratio of the
niobium to tantalum layer thickness is 1.3 with tantalum
forming the top and bottom layers. The routine charac-
terization is the same as in Ref. 2.

The layered nature of the samples is shown in Figs. 1

and 2, which show difFractometer scans along the growth
direction for A=19.5, 33.0, 54.4, and 94.1 A on (1120)
sapphire. The low-angle rejections are shown in Fig. 1

and the satellites around the (110) reflection are shown
in Fig. 2. Analysis of the x-ray intensities of the satel-
lites (after accounting for I.orentz-polarization, absorp-
tion, and Debye-Wailer sects) using the model of Kwo
et al. gives an interfacial width (defined as the distance
~here the tantalum concentration changes from 10k to
90%) of 6—7 A for these samples.

The sample growth is identical to that in Ref. 2, with
epitaxial registry to the sapphire and a single-crystal-like
difFraction profile, veri6ed by examining the in-plane or-
der of the samples. For example, Fig. 3 shows a P scan
taken on the A=158 A sample on a (1120) sapphire.
This sample has the (110) reflection for Nb(Ta) parallel
to the sample normal, and if it is a single crystal, by

symmetry there will be two (200) reflections 45' away
from the normal and 180' apart in P. In Fig. 3, the
Bragg-scattering condition is set for the (200) reflection
of Nb(Ta), ri is set to 45', and then P is scanned. We see
two clear reflections 180' apart with no evidence for any
other reflections. The difFerence in intensities is due to
changes in the illuminated sample area. The inset in
Fig. 3 shows the details of the scattering geometry. The
full width at half maximum (FWHM) is approximately
1' of P, whereas the instrumental resolution is =0.5'.
Therefore, if the sample is not a true single crystal, then
the existing grains have only low-angle grain boundaries.
Rocking-curve widths for the sample rejections are be-
tween 0.3 and 0.9', with little difFerence for peaks both
along and ofF the growth direction.

In Fig. 4 we show the low-temperature electrical resis-
tivity (po) and the residual resistivity ratio (RRR) mea-
sured between room temperature and at 10 K. The satu-
ration of po for small values of A indicates the efFect of
the interfacial alloy becoming predominant. However,
even in this limit, the elastic electron mean free path (the
mean free path at low temperatures) is still longer than
the bilayer period. As in Ref. 2, and from other works,
we use for the pl product (where p is the electrical resis-
tivity in IMQcm and I is the electron mean free path in
A) a value of 375 p, Q cm A for both niobium and tan-
talum. The to/ product is dependent on the Fermi-
surface area, and so will be essentially the same for Nb,
Ta, and Nb-Ta alloys which are isoelectronic and have
nearly identical crystal structures. Consider the simple
model that the mean free path at low temperatures, Io, is
equal to the bilayer period, so that the resistivity of each
layer will be 375/A in IMQcm. By a parallel resistor
model, the resistivity of the multilayer will then be

A A oI—=—(d Nb+dT. ) « i o=
po pl A

The line in Fig. 4 sho~s the result of this model. Clearly
this overestimates the data, especially at small values of
A.
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We can apply the model of Gurvitch to extract the
individual layer resistivities, and then using our value of
the p/ products, the layer mean &ee paths. There are
several problems with this approach. 94.1 A,

(a) Mean free paths larger than the layer thickness
may invalidate the assumption of parallel resistors.

(b) We have not taken into account the variation of pl
with po, but since po~ 10 pQ cm, this is unlikely to be a
problem.

(c) We have not taken the interface into account, so
for small A the values of the mean free path may be
meaningless.

0—
as

6—

Nonetheless, this approach still gives us some useful re-
sults. The results for the low-temperature mean free
paths in each layer are shown in Fig. 5. We see that un-
der these assumptions, the mean free path is larger than
the layer thickness, and that the mean free path is much
larger in niobium than tantalum. We have noted earlier
that our pure tantalum films have a smaller mean free
path than for niobium films under the same deposition
conditions, so this is consistent, if not yet explained.
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FIG. 2. X-ray scans along the growth direction for the sam-

ples in Fig. 1 near the (110) reflection for Nb and Ta. Arrows
indicate the re6ection due to the substrate.
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FIG. 1. X-ray scans along the growth direction for dilerent
bilayer periods gro~n on (1120) sapphire showing the low-

angle satelhtes.

F&G. 3. X-ray intensity vs tii, the angle of rotation about the
sample normal, for the A=158 A sample on (1120) sapphire
The inset shows the scattering geometry. The sample normal
is 45 away from the scattering plane, and the Bragg condition
is set for the (200) reAection of Nb and Ta.
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FIG. 4. The low-temperature resistivity po {circles) and
RRR (triangles) vs A for samples on (1102) sapphire. The line
is the calculated resistivity for a mean free path equal to the bi-

layer period.

FIG. 6. T, vs A for the samples on (1102) sapphire (circles).
The curves marked d, =8 and 10 A are trilayer fits [Eq. {5)]
with the interfacial alloy thickness set to 8 and 10 A, respec-
tively. The bilayer prediction uses the mean free path of Fig.
5, and Eqs. (2)-(4).

SUPERCONDUCTING CRITICAL TEMPERATURE

T, was measured by a resistive technique, and the re-
sults are shown in Fig. 6. The decrease in T, at small A
is indicative of the formation of an interfacial aHoy,
which has a lower T, than the niobium layers. We can
examine the data in light of proximity-efFect theory, if
we remember that the theories for bilayer systems have
typically dealt with metals in the dirty limit, defined by
~transport » lr where ~transport is given by

~transport =0' g g 2ko ~l o

Here (o is the Bardeen-Cooper-Schrie8'er (BCS) coher-
ence length, and lo is the elastic mean free path. From
the calculated mean free paths above, the A=452 A
sample will have A,t„,„, „(Nb)=0.4 and A,„,„,p„t(Ta)=6,
so while the dirty-limit approximation may be valid for
the tantalum layers, it will not be in the niobium layers.

For samples with large A, we start with the de
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FIG. 5. Calculated elastic mean free paths in the tantalum
layers (circles) and niobium layers (squares) vs the layer thick-
ness. The lines are where the mean free path is equal to the
layer thickness. Notice that most of the points fall above their
respective lines.

Gennes- Werthamer ' proximity-e6ect equations. Since
our samples are not in the dirty limit, a more exact ex-
pression for the equation relating the relevant length
scales in each material to the temperature is needed. We
use the approach as in Logan's work, which gives for
the exact expression,

Tc
ln

2mkq T T
f«s, pro ~P)2r-

o ro ksxlo f (ksxlolP)

arctan(x) for T ~ T, ,

arctanh(x) for T & Tr, r

kz ~ is the inverse length seal~ for each material„
p = 1+2' r, fm =m ks T ( 2n + 1 ) ( n =0, 1,2, . . . ), r = 1o I
UF, T, is the transition temperature, and UF is the Fermi
velocity for each material. In the dirty limit, this
reduces to the difFusion equation of de
Gennes-Werthamer. We use the bulk transition tem-
peratures for each material, and for the Fermi velocity
of niobium, we use the calculated value found by
Kerchner et al. , (UF )' =2.7)&10 cm/s. For tan-
talum, we use the equations listed by Orlando et al. and
again assume that the Fermi surfaces of niobium and
tantalum are similar, which gives ( uF ) ' = 3.6 X 10
cm/s.

The choice of boundary conditions, of course, is much
more diScult. We have chosen to use the standard de
Gennes-%'erthamer boundary conditions, although they
have been derived under certain assumptions. We have
modi6ed them, however, since they call for the use of a
dirty-limit value of the coherence length g,

1 /2
AUF/0

6mkq T

and as mentioned, this will not be correct for our sam-
ples. Silvert' has studied the proximity-efFect question
and boundary conditions. He found that the more exact
formulation followed a scaling as in the dirty limit, if
one replaced the above coherence length with
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1 t 3 3
r =T/T, .

=o -"o lo 2&ka Tc
(3)

TABLE I. Trilayer St parameters.

Ta Nbo 5Ta„

kz tankzds = rlkiv tanhkstdiv,

where dz+dz ——A„and

2
) ( Y4 )normal/(3 0 )superconducting '

We use published values for the electronic coefficient of
specific heat y (7195 ergs/cm K2 for niobium, and 5413
ergs/em' Ki for tantalum) and the values of the elastic
mean free path obtained in the earlier section. The re-
sults of this calculation are shown in Fig. 6 as the curve
labeled bilayer prediction. Notice that the curve tends
to underestimate the T, for the largest value of A, and
that the use of the infinite-multilayer model would have
made this even worse.

In the region of A &200 A, we must obviously include
the eff'ect of the alloy interface. We can use an extension
of the Cooper limit in the same way as Lowe'3 did for
Nb-Zr multilayers, if the relevant sample dimensions are
less than a coherence length. The critical-field data for
A=158 A give a value for (oi(0)=153 A (GL denotes
Ginzburg-Landau), so this condition is satisfied. Sil-
vert' has pointed out that for the case of strong cou-
pling, the Moorman sum rules' for the Cooper limit will

give for the T, of the system,

&zine, )
lnT, = (5)

I
, —ln1. 45,

Obviously as IO~O, or ktransport becomes much larger
than 1, this definition approaches the dirty-Hmit value.
For multilayers the fuBy periodic boundary condition is
typically used, where one can map an infinite multilayer
with layer thicknesses of dz and dN onto a bilayer with

—, the original layer thicknesses. However, preliminary
experiments and calculations" and work done by Arnold
at Notre Dame' indicate that for a finite multilayer the
proximity-effect T, is not dependent on the number of
periods. Therefore, we use the standard bilayer equa-
tion,

OD (K)
N (states jeV atom spin)

T, (K)

277
1.65
0.821
9.2

258
1.27
0.644
4.4

266
1.40
0.702
5.9

UPPER CRITICAL FIELD

The upper critical field, H, z, was measured in the
same manner as in Ref. 2. We first turn to the results
for the perpendicular critical-field measurements. Figure
7 shows the measured critical-field slopes versus A. At
small A, we see a saturation close to that measured in
bulk Nb-Ta aHoys. ' As A increases, there is a rapid
drop in the slope, which we will discuss later. For com-

thickness d, with a T, of 5.9 K. The reason for this
choice is that although the entire film has a global aver-
age of some composition, at the interface the local aver-
age will be that of an equal-composition alloy. The pa-
ranMters used in this case are listed in Table I, and the
fits to the small-A data are shown in Fig. 6, showing the
reduction in T, due to the proportional increase of the
interfacial alloy. In the two fits the interface width is
chosen to be 8 and 10 A.. The results from the x-ray
analysis earlier indicated that the interface width would
be &7 A, but the T, data below A=100 A fit best to a
10-L interface width. This discrepancy may be due to
the use of a discrete layer system, when the actual multi-
layer has a smooth variation in composition. The use of
a more realistic composition profile, along with accurate
values for SD, A, , and N as a function of concentration
may give better agreement with the x-ray results for the
interfacial width.

where the averages are evaluated as

A, N;d;

(6)

layers

with N; and d; being the density of states and layer
thickness of layer i, respectively. Here A. is the electron-
phonon mass enhancement for each material, as found
using McMillan's' equation,

'SD e, A, —p,
' —0.62)ts'A,

T, = exp( —1/A, '), A,
' =

a EXPERIMENT
~ THEORV

s s s s ssssl s s s ssssl

9
a4

st ss siss

~here p' is ihe Coulomb repulsion term, set to the
canonical value 0.13 for transition metals, and 0& is the
Debye temperature for each material. In Eq. (5), A,

e is
defined by replacing A, in Eq. (7) by (A, ). We represent
the interface as a layer of 50 at. %-50 at. % aHoy of

FIG. 7. Measured perpendicular critical-Seld slopes
(squares) and calculated values (triangles) from Eqs. (2), (3), and
(8) vs A.
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parison, a pure niobium Nm made under similar condi-
tions has a T, of 9.22 K, a RRR of 160, and an upper-
critical-field slope of S10 Oe/K.

In Fig. 8 we examine the trend of the positive curva-
ture in our samples. Figure 8(a) shows the value of the
reduced field at a reduced temperature of 0.4 as a func-
tion of bilayer period, A. %e see a clear increase up to
A of 94.1 A, a local maximum, snd then another in-
crease at A of 4S2 A. Figure 8(b) looks at the
deviation-function plots (as in Ref. 8) for A=33.0, 94.1,
and 452 A. For A & 33 A, the curves are identical to the
clean-limit curve of HeAand and %erthamer. ' Notice

that the behavior of the A =94.1 A curve differs at low r

from the A=452 A curve. The importance of this
difference will be discussed later.

%'e can examine both the trend in the critical-field
slope and the positive curvature using the theory of Bi-
agi, Kogan, snd Clemm' with some modifications. The
results of this theory are basically those of the
proximity-effect theory using s modification of the
boundary condition, Eq. (4) to

qztanqzdz ——gqztanhqzdz,

2mH, ~
Ps% ksN

00

0.7-

0.6-

0.6
'f 0)

I t l t I I i I l

~ ~ ~ ~ ~ ~A=452 A
0

aa a a aa a 0

As we have pointed out in Ref. 2, their theory is a
dirty-limit calculation, snd the neglect of the magnetic
field dependence of k means that the temperature depen-
dence cannot be fully obtained. However, we can ap-
proach this in another way. Near the T, of the multi-

layer, the magnetic Seld dependence of kzz is not im-

portant, so we can neglect it for obtaining the critical-
field slope of the multilayer. To eliminate the dirty-limit
approximation, we use the exact expression for kz~(T),
Eq. (2), and use the elastic mean free paths found earlier.
In the work of Bisgi et al. , they allowed g to vary. As
in the T, calculation, we have fixed it at the value for
the de Gennes-Werthamer boundary condition. Obvi-
ously this approach gives for the T, the value calculated
for a bilayer as in Fig. 6. The values of the calculated
slope, shown in Fig, 7, however, agree remarkably well
with the experimental data. Therefore, although the
theory cannot describe the behavior of T, without in-

cluding an interface contribution, it can predict the be-
havior of the critical-field slope, and indicates that the
reduction in mean free path is the major factor.

The behavior of the positive curvature seen in these
samples cannot, however, be explained by the model of
Biagi et ol Calculatio. ns of the positive curvature in the
reduced field as a function of A for our parameters show
a monotonic trend, decreasing as A increases and always
negative. In our case, however, we see a maximum in
the positive curvature near A=94. 1 A, and then another
increase at A=452 A. The second increase we attribute
to Fermi-surface anisotropy as seen in Ref. 8. There is a
strong similarity between the shape of the deviation-
function plots for the A=452 A sample and those for
niobium in Ref. 8. As noted earlier, there is a difference
in the shape of the deviation plot between the 4 =94.1 A
sample and the A=452 A sample, implying that the pos-
itive curvature here is not due primarily to Fermi-
surface effects. The maximum at A=94. 1 A in the posi-
tive curvature is as yet unexplained, but we believe that
the proximity effect is the cause.

0.9-
0.2

CP

0.4
I

0.6
I

0.8 1.0

t= T/T

FIG. 8. {a) Reduced perpendicular upper critical field vs A
at a reduced temperature of 0.4. A value greater than 0.6 indi-
cates positive curvature. The line is a guide to the eye. {bj De-
viation plots for A=33.0, 94.1, and 452 A.

PARALLEL CRITICAL FIELD
AND ANGULAR DEPENDENCE

For samples in the strongly coupled regime, the tem-
perature dependence of the parallel upper critical field
should be similar to that for the perpendicular, and the
angular dependence will be three-dimensional- (3D) hke,
obeying



SUPERCONDUCTIVITY AND STRUCTURE IN SPUT TERED Nb-. . .

H, 2( T, 8)cos8

H, ii( T)
H, 2( T, 8)sin8

+
H, 2t( T)

Notice that as A increases, the behavior at 8=90' for
our samples goes from cusplike to a plateau, indicative
of 3D behavior. Behavior similar to this has been seen
by Ruggiero and Banerjee, and surface-state super-
conductivity has been proposed as an explanation, al-
though it is not clear that this a satisfactory answer.
For our Nms, the initial and final layers are tantalum, so
one expects surface-state superconductivity to be
suppressed.

At A=452 A. , we see a change in the behavior of the
parallel critical field. Figure 10 shows the ratio of paral-

H, ii(T)
H, ~( T,8)=

[(m /M)sin 8+cos 8t'~

H„i(T)
m H, ti(T)

where 0 is the angle between the field direction and the
sample normal. For samples with A&250 A, we find
that although the temperature dependence of the parallel
critical field indicates that the samples are in the 3D re-
gime, the angular dependence shows a trend from 2D
behavior for small A to 3D behavior at larger A, as
shown in Fig. 9. The angular dependence for the 2D
case is given implicitly by2'

lel to perpendicular critical field versus A at a reduced
temperature of 0.6. The jump at A=452 A is similar to
that seem in Nb-Cu (Ref. 23) and prediced to occur in
proximity systems by Takahashi and Tachiki in the
case of 3D-to-2D crossover. %e can also see the change
in behavior by looking at the critical fields for the
A=452 A sample, as in Fig. 11(a). While the tempera-
ture dependence of H, 2~ shows no evidence for negative
curvature, in H,

2~~
there is negative curvature as well as a

kink at T=6 K. If this is a signature of 3D-to-2D
crossover, we would expect that the angular dependence
of the critical Seld below the transition would follow a
2D behavior. What we find for this sample, as shown in
Fig. 12, is more complicated. For 8&50', the data fol-
low a 3D curve, while above this the data fall below and
at 8=90' there is a cusp. We point out that it may be
plausible for the vortex structure in a multilayer sample
to behave as 3D for fields near perpendicular, and to
spontaneously change as the field approaches parallel.
The current theories of the proximity efFect have not as
yet calculated the angular dependencies for samples in
the crossover region.

Although the 2D nature of the sample is not con-
clusively shown, we can obtain some insight into this be-
havior by examining the data in a simple manner. Ac-
cording to Tinkham, ' the upper critical field for a 2D
film will be given by

&12/0 &12$o

2irf i( T)ds 2ngt(0)ds

where the last equality will hold in the GL limit. (Ko-
gan has shown that the above equation is valid only in
the dirty limit, and for cleaner samples must be
modified. For our simple approach, we will use the

3.0

2.&- a=94, ~ A

2.0-

i t t t tttl

FIG. 9. Angular dependence of the upper critical 5eld at a
reduced temperature of 0.9 for A=33.0, 94.1„and 158 A.
Curves marked 2D are fitted to Eq. (10), and 3D to Eq. (9).

FIG, 10. Ratio of parallel to perpendicular critical field vs

A at a reduced temperature of 0.6. Dimensional crossover is
indicated by an enhancement of this ratio. The line is a guide
to the eye.
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above equation. ) Here dz and T, are the thickness and
transition temperature for the thin 61m. In our case, the
occurrence of 20 behavior occurs far below the T, of
the sample and so the GL requirement may not be met.
However, for SX proximity systems, calculations have
shown that (H, zi) 0: T behavior can exist far below T, .
%hat we can attempt to do is to 6t the data in the 2D
regime to a modi6ed 20 equation,

'|.8 ™

x 1.6-

1.4-

A=452 A
T=3.6 K

H, ~i(T)
12/0

2m/ i(0)d,~
1—T

where d,z and T' are the effective thickness and 2D
transition temperature for the thin niobium layers. The
resulting fit for A=452 A is shown in Fig. 11(b}. The fit

1.0- o—-
——

0 10 20 30 40 50 60 70 80 90

8 {degrees)

10000 FIG. 12. Angular dependence of the upper critical field for
A=452 A. The curves are fits to the 3D and 20 equations.

8000-

6000-

4000-

0

80

T {K)

4

I

7

parameters are d,a=400 A and T'=6.3 K. A similar
analysis can be performed on the daia of Sample 9 in
Ref. 2, with the result of d,s ——260 A and T'=3. l K.
From the known niobium layer thicknesses, we obtain
excess thicknesses (d+ ) of 144 and 162 A for these sam-
ples. If we assume that the excess thickness is due to the
order parameter "leaking" into the tantalum layers, we
see that the penetration into each tantalum layer is
about 70-80 A. In addition, if we use the standard
definition of the perpendicular coherence length,

' 1/2
4(Pc2i
2

STD 2JJ

we find that we obtain values for g ( iT)/ Aof 0.51 and
0.43 for these samples. From Joseph son-coupling
theories of multilayers, 2 the 3D-to-2D crossover point
is given by gj(T')/A= 1/&2. Our values seem to point
to a difFerent relation, such as gi(T')/A= —,'. We point
out that results on V-Ag multilayers indicate that the
crossover occurs at

g ( T' /}A=[(n v3)' ] '=0 43

or when the vortex periodicity matches the inultilayer
period. The above agrees reasonably well with our re-
sults. Kanoda et al. also noticed another transition at
gi(T )/2A=0. 43 which they interpreted as due to a
doubly commensurate structure between the vortex lat-
tice and the multilayer. As of yet, we have not observed
such a transition in our samples.

0-
2

k

7 8

T {K)

FIG. 11. (a) Temperature dependence of the parallel and
perpendicular critical field for the A=452 A sample. {1)Plot
of {H,2~~) vs T for the data in the 20 region.

CONCLUSIONS

%e have shown that our Nb-Ta multilayers have a
mosaic structure with a single-crystal di8'raction profile.
The electrical resistivity at sma11 A is limited by scatter-
ing due to Nb-Ta alloy at the interfaces, while at large A
resistivity drops rapidly. Analysis of the resistivity
shows that the longitudinal mean free path (at low tem-
peratures) for each layer is longer than the layer thick-



37 SUPERCONDUCTIVITY AND STRUCTURE IN SPUI-i ERED Nb-. . .

ness, with the niobium mean free path substantially
longer than that for tantalum. The effect of the interface
is very strong in determining the transition temperature
for the small-A limit, while the critical-field slope is
mare dependent on the mean free path. The theory of
Bragi, Lagan, and Clemm cannot explain the positive
curvature observed for the perpendicular critical field,
which we feel is due to the proximity effect for small A
and Fermi-surface efects for large A. The parallel criti-
cal field for A below 450 A shows 30 temperature
dependence, but the angular dependence goes from 2D-
like to 3D as A increases. For A=452 A, we observe a
transition in the parallel critical 6eld which we interpret
as a 3D-to-2D crossover. The angular dependence is
3D-like near perpendicular, but goes over to 2D near
parallel. Analysis of the parallel critical field agrees with
an earlier definition of 3D-to-2D crossover, and the

effective superconducting thickness is given by the niobi-
um layer thickness plus an amount due to penetration of
the order parameter into the tantalum layers.
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