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The critical temperature for the tvre4imensional XF model on a square lattice is determined

to within a fear tenths of a percent by combining Monte Carlo simulations with a lattice size scal-

ing relation.

ensiona& (2D) XY model on a square lat-
tice is defined by the Hamiltonian

H~ — cos(8t —ej), (I)
fJ

where the indices i and j numerate the lattice sites on a
two-dimensional square lattice, the sum is over nearest-
neighbor lattice sites, and et(0a et & 2tr) is an angle as-
sociated with each site. The grand partition function Z,
through which the thermodynamic properties of the model
may be obtained, is given by

-H ir
LL

LY

2tr

The 2D Xj'model has been extensivel studied due to
its interesting phase transition properties. It undergoes a
Kosterlitz-Thouless transition at a certain temperature T,
from a low-temperature phase with "quasi"-long-range
order to a disordered high-temperature phase. s~ No ex-
act solution has so far been found. This means that the
qualitative features are by now well understood' but that
details such as the value of the critical temperature are as
yet only approximately known.

An example of an estimate of the critical temperature
T, is the Monte Carlo simulations by Tobochnik and
Chesterl who obtained T, =0.89 with an estimated error
of a few percent. An example of an analytical approxima-
tion for the same quantity is given by Mattiss who, by us-

ing a transfer-matrix approach, obtained T, =0.883 but
with no estimate of the error.

In the present paper we describe a calculation from
which we obtain T, =0.887 with an estimated error of a
few tenths of a percent. The point of our calculation is
twofold. First of all it gives a very accurate value for T,
against which approximation schemes may be tested.
Second, it gives yet another confirmation that the phase
transition is indeed of Kosterlitz-Thouless type.

The quantity we focus on is the helicity modulus y
which may be expressed as y Iim~ yOV) where7
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N is the number of lattice sites, i,i is the vector pointing
from site j to site i, x is a unit vector of a fixed direction in
the lattice plane, and the angle brackets denote thermal
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FIG. 1. Monte Carlo simulations of the helicity modulus y
for the XY model. The open circles are results from a 8 X8 lat-
tice and the solid circles from a 64x63 lattice (the latter data
are from Ref. 13). The dashed curves are guides to the eye.
The di8erence between the values given by the open and solid
circles reflects the lattice size dependence of the helicity
modulus y. The solid line is the line (2/n) T. The crossings be-
tween the dashed hnes and the sobd line give estimates of the
critical temperature T,. This estimate of T, gets more accurate
~ith increasing lattice size because the thermodynamic limit
corresponds to an in6nite lattice.

averages. We calculate the quantity y(N) by a stan-
dard Metropolis Monte Carlo method ' with periodic
boundary conditions on the lattice.

The Kosterlitz renormalization-group equations" lead
to the prediction that y jumps from the value (2/tt) T, to
zero at the critical temperature. 7'2 Figure I shows results
from Monte Carlo simulations of yOV) for two lattice
sirm (the lattice sizes in the figure are 8 &8 and 64 &63).
The straight line in the figure represents (2/tt) T and the
crossing point between this line and y limtv y(N)
gives T,. Viewed in this way, the problem is the deter-
mination of y from knowledge of y(N) for some finite
lattice sizes N. In order to extract this limit we first ob-
serve that the solution of Kosterlitz renormalization-group
equations contains the information that, at T, (or more
precisely as T, is approach from below) and in the limit of
large N, the quantity yOV) is given by's
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where C is an undetermined constant. Consequently, the
validity of Eq. (4) is at least guaranteed for large enough
N, provided that the 2D XY model undergoes a
Kosterlitz-Thouless transition.

Our determination of T, rests on the entpirieul
discovery that Eq. (4) is in fact valid to extremely good
approximation down to small lattice sizes, in fact all the
way down to N 3 lattices which is the smallest lattice
with four different nearest neighbors. For small lattices
y(N) can be determined to high accuracy and this in turn
makes a high-precision determination of T, possible.

In our determination of T, we have used lattice sizes
ranging from N 3 to N 12. Each calculated value of
y(N) was based on approximately 10s-107 sweeps
through the lattice giving an estimated accuracy of within
three or four significant digits depending somewhat on the
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FIG. 2. (a) The root-mean-square error LL as a function of
temperature T. 6 is obtained by Stting the Monte Carlo data
for the helicity modulus y to the lattice size scaling relation
given by Eq. (5). The open circles, pluses, crosses, and solid cir-
cles correspond to the lattice sequences H ~3, 4, 5, and 6; N ~3,
4, 5, 6, and 7; N 3, 4, 5, 6, 7, and 8," N 3, 4, 5, 6, 7, 8, and 12,
respectively. 5 has a dramatic minimum close to T 0.886.
The position of this minimum determines T, of the XF model.
(b) A more detailed plot for the minimum region of the root-
mean-square error h(T). The data and symbols are the same as
in (a). The figure shows that d increases substantially with in-

creasing lattice size for T~ 0.885 and T~ 0.888. For
T 0.886 and T 0.887 the lattice size dependence is much
smaller. For T 0.887 the lattice size dependence of h is in fact
reversed. This suggests thjat the true minimum ln the 11mit of
large lattice size is close to T 0.887.

actual lattice size and temperature.
Our strategy is straightforward and simple: we calcu-

late the y(N) values through Monte Carlo simulations of
a sequence of small N lattices for fixed temperature T.
We then make least-squares fits to Eq. (4) recast into the
form

21 N +C (5)

using the constant C as the only free parameter. By this
procedure our key quantity h(T), the root-mean-square
error of the fit as a function of temperature, is obtained.

The quantity h(T) has a sharp and dramatic minimum
at a certain temperature as shown in Fig. 2(a). The Sgure
shows the h(T) obtained for a series of sequences
N 3,4, . . . ,N with N 6, 7, 8 which in the figure
correspond to circles, pluses, and crosses. The solid circles
in the figure correspond to the sequence N 3, 4, 5, 5, 6,
7, 8, and 12. Figure 2(b) is a blow up of the minimum re-

gion of h(T). Figures 2(a) and 2(b) illustrate two things.
First of all d,(T) in the minimum region (0.885& T
&0.888) is extremely small [h~~(T) =0.0005]. Second,

in the minimum region does apparently vary very lit-
tle with increasing N . This is in contrast to tempera-
tures outside the minimum region, where h(T) increases
substantially with increasing temperature making the
minimum even sharper. Taken together this suggests that
Eq. (4) is extremely well obeyed all the way down to
N 3 lattices (the smallest lattice which has four different
nearest neighbors). Since h(T) increases substantially
with increasing lattice size for T~ 0.885 and T~ 0.888,
we may safely conclude that T, 0.8865+ 0.0015.

One may further note that although the position of the
minimum in Fig. 2(b) is at T 0.886, the lattice size scal-
ing of h(T) is in fact reversed for the temperature
T 0.887. This suggests that the minimum in the limit of
large N is closer to T 0.887 which in turn suggests that
the estimate of T, may be sharpened to T, 0.887
~0.001.

One may get some further insight into the lattice size
scaling by also comparing with the expected size depen-
dence of y for TW T, which in the limit of large N is given

by
l4

y(N) —y -(1/N)" for T&T, ,

y(N)-e " for T) T, ,

where y &0 and a~(T) &0 [az(T) &0] is decreasing
(increasing) with increasing temperature. ' The lattice
size dependence given by Eq. (6) suggests that a y(N)
point for a large enough N falls above (below) a fit to Eq.
(5) when T is smaller (larger) than T,. This prediction is
illustrated in Fig. 3 which shows the N 3,4, . . . , 8 fits to
Eq. (5) for T 0.885 [Fig. 3(a)] and T 0.888 [Fig.
3(b)] plotted as functions of 1/ln(N). The y(N 12)
point for T 0.885 [denoted by a cross in Fig. 3(a)] was
calculated with high accuracy and the positions of this
point relative to the fit to Eq. (5) was checked. For
T 0.885 the y(N 12) point falls a tiny but significant
distance above, suggesting that T 0.885 is just below T,
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FIG. 4. The root-mean-square error I obtained by Stting the

Monte Carlo data to the scaling relation given by Eq. (4) using

both y and, the constant C as free parameters. The crosses cor-
respond to the lattice size sequence N 3, 4, 5, 6, 7, and 8 and

the solid circles to the sequence N 3, 4, 5, 6, 7, 8, and 12. The
dashed curve represents a 6t to the data given by the crosses and

the solid circles. The minimum of 6 occurs within the interva1

0.884 & T & 0.891 giving the corresponding T, estimate
0.884 (T', & 0.891. The asterisks give the values of y /Tcorre-
sponding to the crosses. The horizontal line is the value 2/z
which is the prediction from Kosterlitz renormalization-group

equations for the quantity y /T precisely at the critical temper-

ature. From the data given by the asterisks together with the T,
estimate given by the crosses and the solid circles, one may con-
clude that y /T, 2/x to within roughly a percent error.

F16. 3. (a) The helicity modulus y for T 0.885 plotted as a
function of 1/ln(N) where iV &N is the size of the square lattice.
The six solid circles correspond to the six lattice sizes N ~3, 4, 5,
6, 7, and 8, respct1vely. The sohd curve ls a St, baNA1 on the
data given by the six solid circles, to the lattice size scalmg rela-
tion given by Bq. (5). The cross is the value of y obtained by
Monte Carlo simulations for the lattice size N ~12. The cross
falls a tiny but signNcant distance above the full hne. This sug-
gests that the temperature T 0.885 is just below the critical
temperature. (b) The he1icity modulus y for T 0.888. The six
solid circles correspond to the same lattice sizes as in (a) and the
solid curve is the corresponding St to Eq. (5). The cross is the
value of y obtained for the lattice size N 12. The cross falls a
tiny but signi5cant distance below the full line. This suggests
that the temperature T 0.888 is just above the critical temper-
ature.

[the distance from the fit is a factor 3 larger than the
h(T) of the fit]. For T 0.888 the yOV 12) point
[denoted by a ctaste in Fig. 3(b)] falls a tiny but significant
distance below, suggesting that T 0.888 is just above T,
[the distance from the fit is a factor 2 larger than the
h(T) of the fit. These results are entirely in accord with
the earlier estimate T, 0.8865 %0.0015 based on Figs.
2(a) and 2(b).

One may also note that the fact that Eq. (4) is extreme-
ly well obeyed may, ipso facto, be taken as a verification
that the phase transition is of Kosterlitz-Thouless type.
This is further illustrated in Fig. 4. The figure shows the
root-mean-square error h(T) of the case when both y
and C in Eq. (4) are treated as free parameters. The
crosses in the figure correspond to fits to the sequence

1V 3, 4, 5, 6, 7, and 8 and the solid circles to the se-
quence N 3, 4, 5, 6, 7, 8, and 12. Thedashed line in the
figure is a fit to the Monte Carlo data given by the crosses
and the solid circles. The position of the minimum of
h(T) is by this procedure determined to be within the in-
terval 0.884& T &0.891. The corresponding values of
the quantity y /T obtained by the fits to Eq. (4) (denoted
by asterisks in Fig. 4) are 0.63& y /T&0.64 for
0.884& T &0.891. This means that by this method
y~/T, is determined to be y /T, 2/x+0. 008. Or in
other words, the prohction from Kosterlitz renormal-
ization-group equations7"'2 y /T, 2/x is confirmed to
within roughly a percent error. This way of determining
the actual value of y at the phase transition for XY-type
models we have found to be quite useful in order to deter-
mine whether or not a particular model has a Kosterlitz-
Thouless transition, which will be further described in a
forthcoming publication.

In summary, we have, by combining Monte Carlo simu-
lations with the scaling relations given by Eqs. (4)-(6),
determined T, to T, 0.887 with an estimated error of a
few tenths of a percent. We observe that this estimate of
T, is consistent with, but much more narrow than, the es-
timate given by Tobochnik and Chester. We also con-
clude that the transfer-matrix approximation by Mattis6
which gave T, 0.883 is indeed a very good approxima-
tion.
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