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Motivated by the possible conncion bet%en superconductlvlty ln the newly discovered oxide
superconductors and the magnetic behavior of thee materials, ~e have carried out numerical
simulations to determine the sublattice magnetization e~ in the ground state of the spin- & anti-

ferromagnet on the square lattice with nearest-neighbor interactions. Lattices with N LxL
spins, where L 12, were used. Extrapolating our results for rotationally invariant correlation
functions to the thermodynamic limit, we obtain a much sma11er value than obtained previously

by exact chagonalization on lattices ~ith sizes up to N ~16. For the staggered magnetization, we

find ntt 0.3020.02 in units where the saturation value is &. This agrees with the result of
spin-wave theory and a recent reanalysis of the perturbation expansion away from the Ising limit.

There has been a lot of interest in twoMimensional
spin-$ magnetic systems following the disa&very of the
oxide superconductors and the ensuing suggestion that
superconductivity in these materials might be related to
their magnetic properties. Hence„not only the supercon-
ducting compounds, but also the related insulating materi-
als, such as LasCuOe, have recently been studied. It is
therefore an appropriate time to gain an improved under-
standing of spin- $ magnetic insulators in two dimensions.
Of particular interest is the ground-state staggered mag-
netization ttt t of the Heisenberg antiferromagnet, which is
reduced from its Neel, or classical, value because of zero-
point fiuctuations. Previous calculations of ttt t have used
spin-wave theory, e and perturbation theory away from the
Ising hmit. s In addition, Oitmaa and Betts (referred to
as 08) have carried out exact diagonalization on small
finite lattices of up to 16 spins.

In the note we compute the staggered magnetization in
the ground state of the spin-~2 antiferromagnet on a
square lattice by quantum Monte Carlo simulations.
With this technique, we can study lattices with N L x L
spins, where L ~ 12, much larger than was possible in the
earlier finite-size calculations of OB. This is important
because the extrapolation to N eo in OB was incorrect,
but to verify this one needs to study a larger range of
sizes. We find nt t 0.30%0.02, which is consistent with
the result of spin-wave calculations and a recent re-
analysis of the. perturbation expansions by Huse. 7 We
comment further on the relation between our results and
those of OB at the end of the paper.

The Hamiltonian that we study is

Zi j . ' (l)
&i,j)

where the ts; are Pauli spin operators on the sites of a
square lattice with N LxL spins. Periodic bo~~d~ry
conditions are applied. The interactions run over near-
est-neighbor pairs only and we have set the exchange con-
stant to unity. We use the "world-line" Monte Carlo al-
gorithm in which one divides the Hamiltonian into two
pieces H ~ and H2, where Ht and H2 each incorporate the
Hamiltonian of every fourth square, as shown in Fig. 1, in

exp[-P(Hi+Her)1

pH2
lim exp

Nf

Inserting complete sets of states between the different fac-
tors, one scca that the partition function becomes that of a
classical model in one higher dimension, with 2ttt "time
slices" in the "time" direction. Periodic boundary condi-
tions must be applied in this direction to represent the fact
that a trace is being taken. At each site there is an Ising-

-PHi
exp

FIG. 1. The checkerboard breakup of the square lattice,
shing hoer the Hamiltonian is divided into toro pieces, Hl and
Hg, such that every bond lies in either Hl or 02.

such a way that each bond on the lattice is included in ei-
ther Ht or H2. It is easy to compute matrix elements of
either H ~ or Hs separately because they each split into the
Hamiltonians of noninteracting squares. Unfortunately,
Hl and Hs do not commute„so, to determine the partition
function and expectation values, one uses the Trotter for-
mula
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like variable which takes values + 1 and describes wheth-
er the spin is up or down. The statistical weight of a given
spin configuration is simply the product of matrix ele-
ments of exp(-hsH») for each of the shaded cubes in
Fig. 2, where hr p/III and H» is the Hamiltonian of a
single square. More precisely, if the two planes perpen-
dicular to the time direction in a shaded cube have their
four spins in states described by labels a and b, where
1 ~ a,b ~ 2", then the contribution of that shaded cube to
the statistical weight is &a [ exp(-hrH») ( b&. Note that
the Hamiltonian conserves the total magnetization M',
which is therefore the same at each time slice.

It is also straightforward to see that the expectation

value of any operator A, which conserves the total z com-
ponent of spin between the two time slices of a single cube,
is given by

&~& -g~.~(c), (3)

where c denotes a configuration of the spins at all time
slices, A, is the value of A in this configuration at any one
time slice, so for the first time slice this would be

[ 1& denotes the configuration at the first time slice, and P,
is the probability of a particular configuration, namely,

1,2, . . . ,2m
&I/

"
'/2&&2/

" '/3& ~ ~ &2 —I
/

" '/2 &&2
/

' '/1&

where [ i& denotes the configuration at the ith time slice.
In the Monte Carlo technique, one takes a statistical

sample of the spin oonfigurations using standard tech-
niques which generate configurations with probability P,.
Clearly any local move conserves M'. The ground state,
which is our principle interest, has M' 0 so the simula-
tion is restricted to this subspace. As discussed else-
where, 'o the elementary move is to take a cube in Fig. 2
which is unshaded but has shaded cubes above and below
it and which has identical configurations on the top and
bottom squares, and to replace these squares with a new
configuration (keeping the top and bottom squares the
same as each other). The move is accepted with probabil-
ity R/(1+R) where R is the ratio of the product of ma-
trix elements for the new configuration divided by the
product of matrix elements for the old configuration. The
matrix elements only differ for those shaded cubes which
are neighbors of the unshaded one, so this is fairly
straightforward to implement.

With just this move, however, the algorithm does not
sample all configurations with M' 0, so two other moves

have been included. The first of these causes the "world
lines" for two up spins, say, to twist around each other.
This is accomplished by searching for a "plaquette, "
which is in a Neel state, in a "tower" above one of the
empty squares in Fig. 1. The spins of this plaquette are
then inverted with the same probability as in the elemen-
tary move above. Finally, a nonlocal move is included to
generate states of different "winding number. "'o This is
carried out by looking for a line of spins, in either the x or
y space direction at a given time slice, which is in a Neel
state, and inverting these spins with the usual probability.
For small sizes, inclusion of the nonlocal moves makes a
substantial difference to the results. For the larger sizes,
the difference appears to be smaller and the acceptance
rate becomes very low. Nonetheless, we have preferred to
use the same program, including nonlocal moves for Itll
sizes, and we perform one sweep of each type of move in
turn.

We wish to compute the staggered magnetization. This
can be deduced from the mean-square staggered magneti-
zation, defined by

S(q ),( XS*(x,y) ), (6)

where q, is the wave vector of the staggered magnetiza-
tion, x and y are the coordinates of a site on the lattice,
and

S*(x,y) —,
' e, ,ya'(x, y), (7)

FIG. 2. The thrce&imensional lattice on which one simulates
an effective classical problem At each point on the lattice there
is a variable talcing values + 1, which indicates whether the spin
is up or down. The statistical weight of a given cen5guration is
the product of matrix elements of exp(-hvH»&, where H» is
the Hamiltonian of a single square, between the states of the top
and bottom squares of the skuld cubes.

where (.„,~ is +1 or -1 depending on which sublattice the
site (x,y) lies. The staggered magnetization can also be
obtained from the correlation between spins as far apart
as possible on the lattice, i.e.,

C,»-—g &S'(x,y)S'(x+L. /2, y+L, /2) & . (8)N ~,y

For 1. oo, where contributions from short-range order
can be neglected, both $(q, ) and CL,» reduce to (m t) /3,
the factor of 3 appearing because the ground state of the
Heisenberg model is rotationally invariant, whereas
values quoted for III t assume that the symmetry has been
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broken in the s direction. Hence, we have

mt-&S;& lim +3S(q,)- lim J3CI.g2 . (9)
L~ co

It is important to check that the simulations are in equi-
librium. To verify this we started the simulation both
from an ordered. (Neel) state and a completely random in-
itial state (the same at each time slice). For each size we
did this for a (roughly) logarithmicaiiy increasing set of
values of the number of sweeps (increasing both the equi-
librium sweeps and the subsequent sweeps where mea-
surement takes place). To obtain reasonable statistics, we
did each of these runs several, generally five, times. For
each size, we verified that the results from the Neel start
and the random start were independent of the simulation
time for the longer runs and, furthermore, that they
agreed with each other within the statistical errors. For
L 12, which demanded the most computer time, and for

0.1, we did 5 runs with 30000 sweeps (of each of the
3 types of moves) for equilibration followed by 20000
steps for the averaging and 1 run equilibrating for 100000
sweeps and averaging for another 300000. These were
carried out both for a random and a Ncel start. In addi-
tion, many shorter runs were performed. Except for
L 12, we performed similar sets of runs for several
difFerent values of d r, as discussed below.

Three extrapolations have to be made to compute the
value of m in the ground state. First, one has to let the
temperature T tend to zero. This is accomplished by
checking that T is sufiiciently low that the results are in-
dependent of T. For the data presented here we used
/J T ' 10 except for the largest size L 12, where

P 15 was taken. Second, one has to take the limit
0, otherwise errors are made in the use of the

Trotter formula, Eq. (2). The error in calculating expec-
tation values' is proportional to hv so we plot in Fig. 3
the values obtained for CL,gz for L 4 and P 10 against
hv . The results seem to be consistent with a linear varia-

tion and, furthermore, the intercept at hr 0 gives a value
of 0.0608~0.0010, which agrees with the result 4CL, (2

0.240 obtained by OB from exact diagonalization. This
provides a very useful check on the program. Except for
L 12, we did a full set of runs, as described above, for at
least four values of hz. However, to reduce computer
time, we only did hr 0.1 for L 12. We found that the
slope of the plots against hvz did not vary very strongly
with L, so we estimated the slope for L 12 from that of
the smaller sizes.

The final extrapolation is, of course, to infinite system
size. OB assumed that the leading finite-size corrections
to S(q, ) and Cr, ~z vary as N '. However, as also noticed
by Huse, spin-wave Suctuations give rise to a spin-spin
correlation function which varies as the inverse of the dis-
tance, i.e.,

&S;S;& (10)
r~~

so the leading Snite-size corrections vary as 1/L rather
than 1/N. This is clearly apparent in Fig. 4, in which we
display our main results, and a quadratic fit to the data.
The extrapolated values of S(q, ) and Cz, ~z which should
be equal, are indeed very close, the fit giving 0.0295 and
0.0309, respectively. This should be compared with the
saturation value of,'& . Our extrapolation is much smaller
than the value of 0.059 for S(q, ) obtained by OB assum-
ing a 1/N extrapolation and using only data on small sizes
up to N 16. Interestingly though, plotting OB's data
versus 1/MN rather than 1/N, and performing a linear
least-squares fit we find a value for N ee quite similar to
ours. From Eq. (9) we find

m t 0.30+' 0.02,
or in other words, 60% of the saturation value. The error
was estimated from the range of quadratic Sts which gave
a reasonable description of the data. A cubic fit gives a
very similar value for mt. Our value for mt agrees,
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FIG. 3. A plot of the correlation function CIJg against 6~2 for
L 4 with P 10. As discussed in the text, a linear variation is
expected thcoreticaBy, and the data seem to be consistent mth
this. The line is least-squares 6t. Extrapolation of the 6t to
6~~0 gwes the value 00608+'00010 which agrees well meth
the result 4CL,Ii ~0.240 obtained by Oitmaa and Betts (Ref. 6)
from exact diagonalixation.

0.0 0.4 0.6

FIG. 4. Data for $(q, ) and CL,li, defined in Eqs. (6) and (8),
are plotted against L, as discussed in the text. The lines are
quadratic least-squares 6ts. The intercepts on the vertical axis,
which should be equal, are indeed very close and ~e 6nd the
values 0.0295 and 0.0309, respectively.
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within the error bars, with the spin-wave estimate of
0.303, and the recent analysis of the perturbation expan-
sion away from the Ising limit by Huse, who finds
mt 0.313. It is surprising that spin-wave theory seems
to be so accurate even for spin 2 . The leading correction
to the spin-wave result is of order 1/(zS), where z is the
coordination number, and is known to vanish, as discussed
by Stinchcombe. However, it appears that the coeIIlcient
of the next term in the expansion must either vanish or be
very small to account for the accuracy of the spin-wave
prediction. It would therefore be interesting to under-
stand corrections to spin-wave theory in greater detail.
OB missed the factor of 3 in Eq. (9) which, to a large ex-
tent, cancels the error in their extrapolation to N ~, so
their quoted result, trt t 0.24, differs by only 20% from
ours. However, including the factor of 3, OB's value
would be increased to ttt t 0.42.

To conclude, we have shown, fairly convincingly, that
the staggered magnetization in the spin--,' antiferromag-
net on a square lattice is finite and is, furthermore, very

close to the spin-wave value. It would be interesting to use
similar techniques to investigate the ground-state proper-
ties of this model on other two-dimensional lattices.

Note added in proof: We have recently also computed
the ground-state energy. Extrapolating our results to
L ~ by assuming an I. dependence, as in spin-wave
theory, we find E/EN, ,1 1.340+ 0.004, where EN 1 is
the energy of the Neel state.
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