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Restricted solid-on-solid model for t~~imensional ~etting transition, arit the substrate poten-
tial decaying as clr, is solved exactly. The wetting transition, which is second order for c 0, be-
comes smeared for c & 0. For e & 0, a new type of fIIrstwrder transition is found, ~ith divergent
correlation lengths, with vg 2v& 1 (as opposed to vl 2v~ 2 for c 0).

One of the central issues in the theory of wetting phe-
nomena'2 is the effect of long-range forces on the nature
and order of the wetting transitions. For three-dimen-
sional (3D) systems with van der Waals potentials, a large
number of studies have been reported. ' The existing
theories are mostly mean field and incorporate both
substrate- and adatom-adatom interactions. For 2D sys-
tems, the theoretical efforts have focused on the asymptot-
ically power-law substrate-adatom potentials. Typically,
the fiuctuations are stronger in lower dimensions so that
many mean-field conclusions are not valid in 2D. Some
general scaling considerations are known. s However,
most of the specific results have been derived within the
Schrodinger equation approach, g corresponding to the
zeroMimensional field theory and inspired by the continu-
ous limit of the solidwn-solid models. z'g~ We will term
the appropriate resultsg quantum mechanical (QM); see
below.

In this work we present an analytic solution for the re-
stricted solid-on-solid model with potential decaying
like c/r for large distances r from the substrate. We con-
sider weak potentials (small ( c (). For c &0 potentials,
causing attraction of the interface to the substrate, we find
that the wetting transition is no longer sharp. The asymp-
totic scaling from desctibing this rounding is derived. A
rich structure is discovered, with a nonscaling shift in the
transition point„and logarithmic factors in some regimes.
Much of this structure has been missed in the QM model
calculations. For c &0 potentials, which repel the inter-
face from the substrate the wetting transition remains
sharp. However, it becomes first order but with divergent
correlation lengths. We find vg 2v~ 1 for c & 0, which
should be compared with vg 2v~ 2 for c O. z Nonscal-
ing critical-point shift and logarithnuc factors are also
found for the c & 0 case.

The model is defined on the square lattice of unit spac-
ing, in the half space 0 ~ x & oo, I y I & oo. The solid~n-
solid configurations are specified by the number nr» 1 of
-spins near the wall at x~0, 1, . . . , n~

—1 for each
fixed-y row. All the spins to the right at x nr, nr+1,
. . . , are +. For the restricted model, only configurations
with ( n„nr i [ 0 o-r 1 a—re allowed. The interfacial en-
ergy is modeled by

H/kT-XiUI; —;-iI —~bi.,+«;»,

E(n) ln 1+—,n»1,
n

(5)

which behaves as c/n for small c/n
For the scaling analysis, we will regard c as a small pa-

rameter. Indeed, we wish to investigate the e6'ect of the
long-range tail in the potential on the wetting transition.
The short-range structure of E(n) must be a weak pertur-
bation or else it may lead to additional effects depending
on the precise form of E(n). For the scaling analysis, the
variables t and e defined by

%V

~c f, u, =
w —1

' ' 2-w

Amnx ~(2u+ 1)+2ue

will also be assumed small. Here k,„is the largest eigen-
value of T. For the c 0 systems and provided we fix w in
the range 1(w(-, , there is a wetting transition at
0 & u, & 1. For t & 0 [u & u, (w) j there exists a "nonwet"
solution with the finite layer of —spina at the substrate.
The eigenvector is given by

g„~y", y—=1+e—de(2+a),

with y& 1 for e& 0. For the eigenvalue we list only the

for allowed configurations. Here U & 0 represents the
surface tension contribution. Short-range interactions at-
tracting the interface to the wall at x 0 are represented
by the "contact" term with 8'& 0. The long-range sub-
strate potential must satisfy E(r) =c/r for r~ oo. We
use the notation

0&u =e -~&1, w=-e~&1,

and denote by n and m the n„values in two consecutive
rows. Then the transfer matrix T can be defined to have
nonzero elements T u I" ~Iw '"e s~") for In-ml

0, 1. The eigenequations g T g Xg„ take the form

g„+u(g„+f+g„)) 2g„-e ' forn»2, (3)

w(gf+ugz) )tgle

Here g„are the eigenvector elements, and E(n) remains
to be speeified. We choose
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scaling (small
~
t () result

s(t,e 0) = 2
t2 or 0 (9)

for t«0 and t~0, respectively. Generally, there is a
continuum of delocalized states for the k range

1 —2u «Q, »~i»INC» «1+2u . (io)

InSX

1+2u

(~—=(-lny) ' = (2s)

2(w-1)
(i2)

Relation (9) then corresponds to the exponents v» 2 and
v~ 1 for e 0. Our calculations for eWO outlined below
indicate that relations (11) and {12)can be used for eWO

as well. s The form of a(t,e) is, however, modified yielding
new critical properties.

We now turn to the solution of the eigenproblem
(3)-(5). We do t»ot assume small s, t, and e here [ebs —1

The "nonwet" solution corresponds to the discrete state
with A, &1+2u. It disappears by merging with the
continuum (10) as u~ u, . In the scaling regime, the
singular part of the free energy f, and the longitudinal
and transverse correlation lengths g» and g~ can be repre-
sented as

f, -(—lnX ),---2(w-1)
g s

is needed to avoid singularity in (5)l. The final result, the
eigenvalue Eq. (20) below, is exact. Consider first the re-
lation (3) with (5) without the boundary condition (4).
We define the generating function

G(z)- gg„z" ',
n~l

then multiply (3) by»»z" ', and sum over t» 2, 3, . . . .
After some algebra, the result can be represented as

[z s -2(1+s)z+11G'+ [2(z —1-s) —
A,e/u lG

Gp —[2(l +s) +Re/u] Gp, (14)

where G-=G(z), G'=dG(z)/dz, Gp=G(0) gi, and Gp
=—G'(0) gz. The Gp, Gp terms on the right side of (14)
make it homogeneous in G, as is (3) in g„. Let J(z)
denote the solution of the differential equation obtained
by replacing the right side of (14) by zero. Up to an arbi-
trary coeScient, we have

J(z)-(i-zy) "~(i-zy ') ' ',
where y was defined in (8) and

Ac % cP=
2u qs(2+ s) 2(w - 1) ~2

For later use, we indicated the critical region asymptotic
form for p. Equation (14) can then be integrated to yield

I»» I dv
G(z) J(z) Gp+ [Gp —[2(1+a)+Le/u)Gd 4P v -2 1+»» v+1 J u

(i7)

where we used J(0) 1. One can verify the consistency
conditions G(0) Gp and G'(0)~Gp. Thus, Gp a»»d Gp
are arbitrary at this stage. The overall coeff»cient in G(s)
is not important since (3) and (4) are homogeneous»n g, .
However, the relative magnitude of the two linearly in-

dependent terms in (17) may be restricted in some re-
gimes to yield solutions g„which do not diverge exponen-
tially for large t» One can. show that for the A, range (10)
there is a continuous spectrum of delocalized solutions.
[In this regime y is complex, with

~ y( 1 and y
'

y .
The point a 0 requires special care, as {15)-(17)do not

apply there. We omit these mathematical technicalities. ]
We focus our consideration on the X& 1+2u solutions
corresponding to e & 0 and real 0 & y & 1. Both terms in

(17) have singularities at z y-'. In order to have the
"nonwet" solution with exponentially vanishing g„ for
large»», we must select the relative coefiicient to cancel the
singularity at z y, to let the z y &1 singularity
dominate the convergence of the series {13). One can

I

show that for the calculation of k~~, p & —1 can be as-
sumed. The appropriate choice yields, after some algebra,

G(z) ~ (1-zy) '+i'(1-zy ')

du 1-uy (is)

That (18) is regular at z y, can be most easily seen from
the representation (up to a z-independent coefficient),

G(z),F, 2, i,2+p, y-y '. (i9)

in terms of the standard hypergeometric function which

has a singularity in the complex plane of the fourth argu-
ment at 1, i.e., for z y ', but is analytic at the origin
corresponding here to z y. Finally, we impose the
boundary condition (4); recall that g2/gi Gp/Gp. After
some algebra, one gets

'P
l —vy

du
aJ 0 $ —py Z{w —1)(1+e) '

This is an equation for»»(t, e;w). Note that X, y, and p depend on a and w, via (6)-(8) and (16). We seek the largest
solution satisfying a & 0 (with p & —1).

We now proceed to analyze (20) for small e, t, and a We decompose the integrand on the left side in the form
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—1

1-vy
1 —vy '

1+pin " +1-vy
I-uy ' 1-Uy '—1 —pin

1 —vy 1 —vy
(21)

The first two terms can be integrated explicitly while in
the third term we change the integration variable so that
the left side of (20) takes the form

y+p(y ' —y)»(i —y')

+p y(1 —
y ) dr . (22)

~Io p2(1 2 )2

For small s, we have y= 1 —J2a The ~ecend term in
(22) can be replaced by [we/(w —1)llnMSs, where we
used (16). The cosy'cisttt of the integral can be similarly
approximated by wze2/(w- I)2MSs. In the y~ 1 limit
the integral in (22) approaches a function f(p) which is
bounded for all —1&p & ~„and in fact is given by
f(p) —=p '[y(p)+K+p 'l. Here y(p) is the logarith-
mic derivative of the gamma function, le(p) dlnI'(p)/
dp, while K 0 5752.156649. . . is Euler's constant. The
right side of (20), when expanded, reduces to
1+t -e+. . . . In summary, the eigenvalue equation in
the critical region is

-v2s+ inc%+ se t-e, (23)
WC w2ez (p)

w-1 (w -1)'MSs

with p given by (16). Note that we consistently kept the
leading terms in Xs and t How.ever, we kept terms of
O(c) in addition to O(elns) or, equivalently, O(elne).
The reason for this will become apparent later. Since
f(p) is bounded, the c 0 limit of (23) is straightfor-
ward. We get simply -v%= t, reproducing the known
results that the s&0 solution exists only for t &0 with
s= t 2/2. For esto, let us replace all the Xs dependence in
(23) by e/p via (16). After some algebra, we get

Thus, for saeh t/c, there is a unique value of —1 &p & 0,
determined by (24). There is no sharp wetting transition.
The results of the QM model calculations by Kroll and
Lipowsky for the c & 0 case can be summarized by the
following: s scales cee, and since for e 0 we have s-t 2,

t must scale with e. This is generally consistent with (26).
However, the conclusion scec2 is oversimplified. The
function P is shown in Fig. 1. For t/c taking positive
values of -1 or any negative values including the limit
t/c~ —ee, P remains finite, suggesting that indeed
see c2. This regime corresponds, via (25), to

t & clnle I -O(le I) &O,w-1

i.e., to the "wet" side of the c 0 critical region. Thus, the
e & 0 potential "pins" the otherwise unbound interface at
the distance g —Ie I

', and cuts the longitudinal fiuc-
tuations at gs-e . However, for large positive t/c,
P( )= f(t/c)2and thus s= —,

' t2. This result is reminis-
cent of the t & 0, c 0 relation (9), but with the shifted t.
To have t/e large and positive, we must have [w/(w—l)leln lc I -t»O(le I ). Thus, t can be negative or
positive but not exceeding [w/(w —1)le ln I c I

-0(
I c I ).

This regime covers the "nonwet" side of the c 0 critical
region and also includes the e 0 critical point t 0.
Specifically,

Ws(t~0, c &0)= e'ln'IeI . (27)2(w-1)'
We now turn to the c&0 case. The appropriate p

values must be positive. The function L(p) defined in
(24) is monotonically increasing for all p & 0. As
p 0+, L(p) -~ according to L(p)= -(2p)

L(p) =—y(p)+ -ln
I p I

=
2p w

with

(24)

t-=t — clnIe I
— 1+ K+ln

1 W-1 W —1

(25)

By solving (24) for p as a function of t/c and using (16),
we will obtain a universal scaling form

s= c'P' —'(t/c), c—=we/(w —1) (26)

where there will be two functions P(+ (Sp ) ', corre-
sponding to e & 0 and c & 0 (see Fig. 1). All the paramet-
ric dependence on w has been absorbed in the scale of c
and in the shifted variable t.

Let us consider first in detail the e & 0 case. By (16),p
must be negative. The function L(p) defined in (24), is
monotonically increasing for all —1 &p & 0. As—1+, L (p) —~ according to L(p) = —(1+p)
For p 0, L, (p) +~ according to L(p)= —(2p)

2

F16. 1. The scaling functions P + and P' ', defined m (26),
obtained by numerical solution of Eq. (25) (Ref. 9). Note thatpt-'(--) --'
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However, for
p

+~, L(p) 0 according to L(p)
= —(12p ) . Thus, there is a unique value of p&0
only for t/c & 0. At t 0, there is a sharp wetting transi-
tion. The critical-point shift with respect to the c 0 case,
is given by the value of t corres Mnding to t 0, which by
(25) is —fw/(w 1)~c I ln lc I +O(c). For small nega-
tive t, ere 6nd

s= -'c( —t)

while for t ~ 0 there is no "nonwet" solution and a-=0.
The derivative da/dt is discontinuous at t 0, reminiscent
of the bulk first-order transitions. However, the correla-
tion lengths diverge, by (12), with vs 1 and v& 2 on
the "nonwet"' side (t &0). They remain infinite in the
"wet" phase (t~0). For negative t/c- —1, we find
a=c P(+)(t/c), with P + -3 (see Fig. 1). However,
for large negative t/c, we find a= 2 t, similarly to one of
the asymptotic limits in the c & 0 case. To have such be-
havior, t must be negative and satisfy ~

t )
—[w/(w- I))

"cI ln lc I I )&O(c) which corresponds to the "nonwet"

side of the c 0 critical region.
In summary, we found a new type of wetting transition

(for c & 0) with kinklike free energy (i.e., surface tension)
singularity, but with divergent correlation lengths g& and

gt. The experimental verification of the wetting theories
in three dimensions is still rather limited' and for the
firstwrder wetting only the surface tension (capillary rise)
measurements seem to confirm sonse mean-field-type pre-
dictions. It is therefore important to find and classify new

wetting mechanisms which may then be looked for in

more realistic (but not exactly solvable) three-
dimensional models.
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