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We present the results of measurements on proximity-effect arrays with deliberate positional
disorder, characterized by a parameter A*. This system provides an experimental realization of
an XY magnet with random Dzyaloshinskii-Moriya interactions. In measurements of resistance
versus perpendicular magnetic field, R(fo), we find strong evidence for a critical field f.«1/A*
beyond which phase coherence is destroyed. Our Monte Carlo simulations show evidence for
reentrant behavior in the helicity modulus ¥, but with Y always finite at the lowest temperatures.
Such a critical field and reentrance were predicted by Granato and Kosterlitz.

A single Josephson junction is isomorphic to a pair of
classical XY spins, and an array of junctions is therefore a
realization of an XY spin system. This equivalence has
prompted the use of two-dimensional junction arrays, in
zero magnetic field, as model statistical mechanical sys-
tems for studying ?roblems such as the Kosterlitz-
Thouless transition. "* A uniform array in a perpendicular
magnetic field provides a realization of the uniformly frus-
trated XY magnet, with tunable frustration parametrized
by f, the magnetic flux per plaquette in units of the flux
quantum. The particular case of full frustration, where
f=n+% (n an integer), has received a great deal of at-
tention as a realization of Villain’s “odd model,”? al-
though theory* and experiment? are still far from com-
plete in this area.

The XY model with nonuniform frustration® is of par-
ticular interest as a more realistic model for random mag-
netic systems. Again, the Josephson junction array pro-
vides a convenient model system—a junction array with
positional disorder in a perpendicular magnetic field.

Granato and Kosterlitz (GK) recently considered® the
effect of positional disorder, that is, displacing the super-
conducting sites from their average position r by an
amount wu,, with probability distribution P(u;)
xexp(— |u,| 2/2A%). This introduces correlated disorder
in the plaquette areas and hence in f. In the Coulomb gas
analogy, where vortices become charges, this leads to a
quenched random distribution of dipoles of strength
pre<u,. GK restrict their attention to the case where the
average flux per cell f is an integer, in which case the sys-
tem is equivalent to an XY magnet with random
Dzyaloshinskii-Moriya interactions.”  Invoking a
renormalization-group analysis used in earlier work by
Rubinstein, Shraiman, and Nelson,® GK predicted the
qualitative phase diagram shown in Fig. 1. This phase di-
agram shows two striking effects. First, for fields fo
greater than a critical value f, long-range phase coher-
ence?® is destroyed. The value of f is given by
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Second, for fields fo less than f., one should find two
vortex-unbinding transitions. For temperatures below the
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lower transition temperature [T.” (fo) in Fig. 1], the
quenched dipoles weaken the interaction between the
mobile vortices so that some of the vortices are unbound,
and there is no long-range phase coherence. For
T.”(fo) < T < T (fo) the increased density of mobile
vortices is sufficient to screen the quenched dipoles, so that
all of the vortices are bound. Finally, for 7> T (fy),
the vortices are thermally unbound, as in a uniform array.

In this Rapid Communication, we report the first mea-
surements of the critical field f. and the first evidence
based on Monte Carlo simulations for the reentrance.

We have fabricated arrays (typically 50%50) of
proximity-effect junctions, with controlled amounts of po-
sitional disorder. Figure 2(a) shows a section of a litho-
graphic mask for a uniform array. The black crosses be-
come superconducting PbggsBigos islands in the actual
samples, and the interisland coupling is provided by a con-
tinuous underlayer of Cu. Figure 2(b) shows a mask for a
sample with positional disorder. Our procedure is to dis-
place the centers of the crosses by a random amount,
while keeping the junctions (the tips of the crosses) fixed
on a regular lattice. Thus we introduce no deliberate dis-
order in the interisland coupling energies. For practical
reasons, the site displacements have a uniform distribu-
tion, with a half-width A* in x and y directions. We have
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FIG. 1. Schematic phase diagram for a 2D array with posi-
tional disorder. Vortex-unbinding transitions occur at 7.~ (fo)
and T.*(fo). In the region marked S (for “superconducting”)
the system shows long-range phase coherence. In the region la-
beled N (for “normal”) this phase coherence is destroyed (Ref.
6).
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FIG. 2. Sections of lithographic masks used to prepare arrays
with (a) A* =0 and (b) A* =0.10. Crosses become supercon-
ducting islands in actual samples.

fabricated samples with A* =0.05, 0.10, 0.15, and 0.20
(in units of the lattice parameter a), as well as nominally
uniform samples (A* = 0). The masks were produced us-
ing electron-beam lithography on our scanning electron
microscope (SEM), and samples were produced using
photolithography and ion-beam etching.

In order to compare our results with theory we need a
conversion factor relating A and A*. We believe that the
important quantity to consider is the strength of the di-
poles p;=u,. Comparing the rms value of u, for the two
cases, we obtain an approximate equivalence A=—A*//3.

The uniform arrays show rich structure in resistance
versus magnetic field, R(fp), with strong oscillatory be-
havior of period Afo=1 out to fields as high as f,=44,
and secondary minima at fo= %, +, %, &, and %, as ob-
served in previous measurements.? Structure at such
large fields is unusual for proximity-effect arrays, and in-
dicates the high quality of our samples.

In contrast with the uniform case, the R(f,) data for
our disordered samples show oscillations only at low fields.
The oscillation amplitude decreases with increasing field,
with more disordered samples showing a more rapid de-
crease.

Figure 3 shows R(f) for two samples, with A* =~ 0 and
A*=0.10. The complex background which modulates the
resistance oscillations is due to the magnetic field modu-
lating the coupling energy of the individual junctions.
From the lower trace in Fig. 3, one can see that this actu-
ally suppresses resistance oscillations completely at the
first maximum in the background, R pnax, at fo= 12, corre-
sponding to the first minimum of the single-junction criti-
cal current. This suggests an empirical way to compen-
sate for single-junction effects: We determine the oscilla-
tion amplitude AR(f) as illustrated in the inset in Fig. 3,
and introduce a rescaled oscillation amplitude AR'(fo)
=AR(f0)/[Rmax — R(f0)].
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FIG. 3. Resistance vs magnetic field R(fo) for A* =0.10
(upper trace) and A* =0 (lower trace), showing oscillations
due to collective behavior, modulated by single-junction effects.
Inset shows definition of oscillation amplitude AR (fo).

Figure 4(a) shows AR'(fo) for samples with various
amounts of disorder. The oscillation amplitudes decreases
linearly with fo, samples with greater disorder showing a
steeper slope. Our experimental critical field ™ is the
field where a least-squares fit intercepts the line AR’ =0.
Figure 4(b) shows f*™ as a function of 1/A*, and demon-
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FIG. 4. (a) Amplitude of resistance oscillations vs fo for vari-
ous values of A*. Lines are least-squares fits, whose extrapola-
tions to zero define experimental critical fields f.. (b) Values of
fe from (a), plotted vs 1/A*. Line is least-squares fit con-
strained to have zero intercept.
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strates the linear dependence predicted by (1), with

SXPA* = 0.95. This result is independent of temperature
for data taken in the tail of the resistive transition, where
structure is most pronounced.

Using the approximate conversion A=A*/~/3 discussed
earlier, our data thus give a result for the critical field,
[EP = 0.95/A* = 0.55/A. The experimental critical field
as defined here is much larger than predicted by (1). As
noted above, however, the theoretical f. corresponds to
the destruction of long-range phase coherence. By con-
trast, f5* measures the destruction of phase coherence on
a length scale L ~a. This short-range coherence is much
less easily destroyed and therefore gives a larger critical
field, although with the same dependence on disorder, A*.
This can be quantified further by looking at the destruc-
tion of structure in R(fy) at rational values fo=p/q,
which is due to coherence on a length scale L ~ga. Al-
though the present theory is only valid for fo an integer,
data at fo=n= 3 and n+ } suggest that one can define
experimental critical fields f£*"'(g) for these higher-order
effects. Empirically we find fF*P(g)A=c, +(c2/g?), with
¢1 and c; constants, and that extrapolating to g = oo gives
a result [ (c0)A=c,;=0.06, in quite good agreement
with (1).

To further our understanding of this system we have
also performed Monte Carlo simulations of XY spin sys-
tems with positional disorder. Our starting point is the
Hamiltonian for the frustrated XY spin system, H
b "‘JZ(;J)COS(B; - Oj - Wij)- Here vij ™ (2Z/¢o)fA d’,
is the line integral of the magnetic vector potential, A, be-
tween the centers of nearest-neighbor superconducting
sites i and j, and ¢p=hc/2e the superconducting flux
quantum. Positional disorder is introduced by imagining
each site of the lattice to be displaced by a random
amount, given by a Gaussian distribution of width A. This
leads to randomness in the y;;’s.

Using the Metropolis rule’ on small (typically 16 16)
lattices, with periodic boundary conditions, we calculated
the helicity modulus Y using Eq. (3.6) of Ref. 10 as a
function of temperature, magnetic field, and disorder A.!!
The helicity modulus gives the rise in the system free en-
ergy in response to a long-wavelength twist imposed on
the phases 6, and is proportional to the effective superfluid
density for an array. Whereas in the pure system Y in-
creases monotonically as temperature decreases, we ex-
pect that in the disordered case Y will decrease and actu-
ally go to zero again at low temperatures.

Our most extensive simulations are for a value of
A=9.9736%10 "4, so that the theoretical critical field (1)
is 100. This enables us to consider integer values of fo
very close to f,. Figure 5 shows some of our results for the
helicity modulus of a 1616 array. The upper curve is for
fo=0, where the positional disorder has no effect. As
temperature decreases there is a monotonic increase in Y,
with the usual finite-size-broadened rise at T.=J. The
lower curve shows results for fo=98, and represents an
average over 37 disorder realizations. At such a field we
should be at the tip of the theoretical phase boundary,
where the reentrant transition temperature 7. (fo)
should be a maximum. The results show complex behav-
ior, with Y increasing, then decreasing over a narrow tem-
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FIG. 5. Simulation results for the helicity modulus, Y, of a

16X 16 disordered array. The value of A is such that f. =100.
The upper curve is for fo=0 and the lower for fo=98.

perature range around 7/J =0.5, and then finally increas-
ing again as temperature decreases. The largest fluctua-
tions in Y also occur near T/J =0.5, where Y is reentrant,
as is typical of thermodynamic quantities near a phase
transition. This reentrant behavior is confined to a narrow
range of fields close to f.. For example, our results for
fo=80 and f =120 show no evidence for reentrance but
exhibit the same overall background shape as for fo=98,
with Y increasing monotonically as temperature de-
creases. Results at fo=96 are inconclusive, showing only
a slight dip in Y at T/J=0.3, with a maximum in the
fluctuations at the same temperature.

There appears, then, to be some mechanism which is
counteracting the expected reentrance, leading to a finite
value of Y as T goes to zero, even for fo> f.. The rise at
low temperature may result from the finite size of our
simulated spin system. According to GK, order should be
destroyed at low temperatures due to the presence of free
vortices. Since the vortices are thermally activated, how-
ever, there will be fewer present at low temperatures. In
fact, in a small sample there is a strong probability that
there are actually no vortices present, so that the helicity
modulus does not go to zero. Further simulations of
larger arrays might clarify the role of finite sample size
but are currently impractical for our computer facilities
given the need for extensive disorder averaging. Alterna-
tively, the finite value of Y at low temperatures might be
due to the pinning of vortices by the disorder, since pinned
vortices will not destroy phase coherence. In this regard,
Nelson has pointed out to us that this system is formally
identical to a two-dimensional (2D) random binary mix-
ture of hard spheres, where the disorder is due to the pres-
ence of a random admixture of /arge spheres, which dis-
rupt translational order. Experiments on such a system
showed a finite shear modulus (analogous to the helicity
modulus) despite the absence of translational order, be-
cause the dislocations (analogous to vortices) were pinned
by the large spheres over laboratory time scales. '

We are currently looking for evidence of reentrant be-
havior in our experiments, as well as extending our simu-
lations to clarify the nature of the reentrant behavior in
finite samples.
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FIG. 1. Schematic phase diagram for a 2D array with posi-
tional disorder. Vortex-unbinding transitions occur at T.” (fo)
and T.*(fo). In the region marked S (for “‘superconducting”)
the system shows long-range phase coherence. In the region la-
beled NV (for “normal”) this phase coherence is destroyed (Ref.
6).



