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The domain-growth kinetics of p ~4-fold degenerate (2&1) ordering in twodimensional Ising
models eath conserved density is studied, as a function of temperature and range of Kawasaki spin

exchange. It is found by computer simulations that the zero-temperature freezing-in behavior for
nearest-neighbor exchange is released when next-nearest-neighbor exchange is included. The
Lifshitz-ABen-Cahn growth lao is obeyed for aH temperatures indicating that the density conser-
vation is irrelevant also for p & 2.

It is now well established' ' that the ordering kinetics
of Ising models with twofold degeneracy (p 2, ferromag-
netic or antiferromagnetic) is described by the Lifshitz-
Allen-Cahn 's's growth law

R(t) -t"
with n &, independent of whether or not quantities oth-
er than the order parameter are conserved. R(t) is the
average linear size of the ordered domains. In the case of
spinodal decomposition and phase separation (ferromag-
netic Isin model) with conserved order parame-
ter, the situation is somewhat controversial al-
though there are now strong indications that the tt

Lifshitz-Slyozov exponent s describes the growth process
rather than a logarithmic growth law. 2s zs

The situation is much less clear for nonconserved order
parameter in the case of higher-order ground-state degen-
eracy, p & d. First, there is no reliable theory and, second,
computer simulations of a variety of two-dimensional Is-
ing models with p 3 and p 4 give confbcting results re-
garding the value of n. In this paper we shall be con-
cerned with the ordering kinetics of (d 2)dimensional
antiferromagnetic Ising models with nonconserved order
parameter and fourfoldMegenerate ground-state ordering.
In particular, we raise the question whether or not the
domain-growth kinetics depends on the conservation of
other quantities such as the density p. For an antifer-
romagnet, the density is the bilk magnetization. The two
situations of nonconserved and conserved density (corre-
sponding to the dynamical models A and C in the
classification by Hohenberg and Halperin 7) may be
modeled in Ising models by Glauber and Kawasaki spin
dynamics, respectively. ' In the case of nonconserved den-
sity, computer-simulation studies of growth kinetics of
(2X 1) ordering (p 4) in Ising models with nearest- and
next-nearest-neighbor interactions ' and modulated
order (p 4) in axial next-nearest-neighbor Ising
(ANNNI) models~ all lead to the Lifshitz-Allen-Cahn
law. 3~ In the case of conserved density (p 2 ), the situa-

tion is tnote unclear. For the p 4 ANNNI model, ex-
ponent values close to —,

' have been reported, but for
nearest- and next-nearest-neighbor Ising antiferromag-
netsts 33 with (2X 1) ordering (p 4) and (3X 1) order-

ing (p 3) much lower exponent values (0.25-0.40) are
found. These results should, however, be treated with

caution since in some cases there are indications of aniso-
tropic growth. ' In other cases, temperature-dependent
exponents and crossover to zero-temperature freezing-in
were encountered.

The most far-reaching conclusions on the growth kinet-
ics of p 4 Ising models with conserved density were
drawn by Sadiq and Binder2s who, on the basis of a very
extensive computer-simulation study, found that the late-
time growth is characterized by tt = 3 . These authors ar-

gued that such Lifshitz-Slyozov-type kinetics is caused by
an excess density in the thermodynamically relevant
domain walls and they predicted other models with
domain-wall excess density also to have n = —,

' (see, how-

ever, Ref. 34). According to Sadiq and Binder2s an excess
density in the domain walls will imply that the wall dy-
namics is controlled by long-range diffusion.

We shall here provide evidence that the domain-growth
kinetics of p 4 Ising models with conserved density is
indeed consistent with the Lifshitz-Allen-Cahn rather
than the Lifshitz-Slyozov growth law and demonstrate
that the results obtained by Sadiq and Binder s are
influenced by their special choice of nearest-neighbor
Kawasaki spinwxchange dynamics which leads to the
peculiar temperature dependence of the effective growth
exponent.

We study the two-dimensional square-lattice antiferro-
magnetic Ising model with isotropic nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interactions of
equal strength (J):

NN NNN

8 J $ 0'go'j+ $ 0'to'j
j&j j&j
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where n~ X 1 and J& 0. The ground state of this model
is (2X 1) ordering which corresponds to p 4. The sym-
metry is the same as that of atomic oxygen chemisorbed
on (110) surfaces of tungsten. 3s The kinetics is governed
by Kawasaki spin~xchange subject to the Metropolis
Monte Carlo criterion. 3s Exchange between NN as well
as NNN sites is allowed. A control parameter
b vNNN/(vNN+vNNN) monitors the relative NNN ex-
change frequency vNNN. The spina are visited randomly.
By this preuss the density is a conserved quantity
whereas the order parameter is not. The initial spin
configuration is chosen at random corresponding to an ini-
tial temperature of Tt-~. Quenches are then performed
to temperatures v Tf/T, below the critical temperature
T, =2.10J/ktt. The time evolution of the spin configura-
tion is then followed on a time scale given in umts of at-
tempted Monte Carlo spin exchanges per site (MCS/S)
Different sizes of lattices with N L spina and periodic
boundary conditions are considered in order to amma
finite-size effects. The main results reported below are de-
rived for L 100 and L 200. Ensemble averages are ob-
tained at each time by averaging over ten independent
quenches.

The ordering kinetics is monitored by calculating the
dynamical structure function S(q,t) averaged over the
two modulated directions, as well as a number of indepen-
dent measures of time&ependent length scale of the grow-
ing domains. These include the inverse excess energy,
AF- '(t) [E(t)-E(TI)j ', where E(Tf) is the equi-
librium energy at Tf, the square root of the intensity,
L(t) lN 'S(qo, t)]'~, of the structure factor averaged
over the two Bragg points, qo (tr, 0) and (O, tr), and the
powers, k ~

'(t) and k2 '/2(t), of the two first moments of
the dynamical structure function. Excget for L(t), these
measures are self-averaging quantities.

Our first observation is, in accordance with the findings
of Sadiq and Binder, + that, when only NN exchanges are
allowed (8 0), quenches to Tf 0 lead to a frozen-in
glassy structure and cease of growth after a short time.
However, by extending the exchange to include NNN as
well, we diller that the system grows persistently with
no tendency to slow down excep when slab configurations
are generated at late times. ' ' The scaling properties of
the growth process are investigated by searching for scal-
ing functions of the type

Fa(x)

15$

log, o Fs(x)
-0

FIG. 1. Zero-temperature dynamical scahng function F2(x),
Eq. (3), in the case of b & . The data are obtained for a system
with 100~ spins. The time is in units of MCS/S. Only data for
t & 60 are included in the plot of Fq(x). The data are shown in

linear as well as double-logarithmic plots.
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value of the decay exponent is consistent with theoretical
expectations, 3 m d+ I, and computer-simulation results
for other Ising models. 2"

Dynamical scaling, Eq. (3), implies that there is only
one relevant length scale of the growth proce&s. This
length scale is expected to obey a power law in time, Eq.
(1),

R(t)-L(t)-« '(t)-kp(t)-k2 ' '(t)-t". (4)

Figure 2 demonstrates that this is indeed the case. All

F (x) k+ S(q,t), ttt-1, 2, +++
+ +
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+

where x [ q ( k~ '/ (t) is a time-dependent scaling vari-
able. In Fig. 1 it is shown, for Tf ~0 and 8~ 2, that the
data for S(q, t ~ 60) are consistent with the existence of
such a function F2(x). A similar statement holds for
F~(x) as well as for other values of b. The scahng func-
tions are found to be only weakly dependent on tempera-
ture. A similar insensitivity to temperature was found by
Sadiq and Binder~ and by other authors for the p 2 Is-
ing model. s 7 Furthermore, we note from Fig. 1 that the
high- I q I tail of the scaling functions, which contains in-
formation about the shortMistance structure of the
domain pattern and is accessible in, e.g., a small-angle
scattering experiment, is well described by a Porod-type
law F2(x)-x for x~ 1, with m=3.0+0.3. The
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FIG. 2. Double-logarithmic plot vs time of length scales (in
arbitrary units) derived from the excess energy hE(t), the
second moment kq(t), of the dynamical structure function, and
the amplitude L(t), of the Bragg peak. The data refer to
quenches in the case of 8~

& for a system ~ith 1002 spins. The
time is in units of MCS/S. i Ty/T, denotes the reduced
quenching temperature.



HANS C. FOGBQSY AND OLE 6. MOURITSEN

length measures are described by the same characteristic
exponent, the growth exponent tt. The crossover to the
asymptotic behavior occurs at difFerent times for different
quantities. The value of n is close to 2 and we thus con-
clude that the zero-temperature growth obeys Lifshitz-
Allen-Cahn kinetics.

The same relations holds for quenches to finite tempera-
tures, 0 & v & 1, as exemplified in Fig. 2 by AR' '(t). The
growth exponent remains at its value close to —, , indepen-
dent of temperature except in the immediate vicinity of
the critical point where the dynamical exponent z has to
be introduced in order to analyze the data. zs Hence, for
NN and NNN exchange the Lifshitz-Allen-Cahn growth
law describes the computer-simulation data for all tem-
peratures in the ordered phase.

In their computer-simulation study of the model in Eq.
(1) with NN exchange only, Sadiq and Binder found
that the effective growth exponent exhibits a distinct tem-
perature dependence raising from tt~0 at r 0 to
n=0.35 at v=0 5 Fr.o.m v=0.5 to 1, tt stays approxi-
mately constant, n ~0.35. In the low-temperature region,
the value of n is strongly dependent on the time interval
from which the efl'ective exponent value is extracted.
These authors then argued that only in the region r & 0.5
has the asymptotic growth behavior established itself in
the available computer simulations. In the light of the re-
sults presented in this paper, and considering the lesson
learned from other studies of crossover effects due to the
influence of freezing-in behavior at low tempera-
tures, zs 37'3s we suggest the following coherent reinterpre-
tation of the computer-simulation results: The exponent
values for NN exchange only are influenced by crossover
to zero-temperature freezing for all temperatures studied,
the influence heing stronger the lower the quench temper-
ature. The asymptotic growth region is not reached in the
available time span. Longer runs should then show a
crossover to the asymptotic behavior characterized by
n —,

' . However, the asymptotic regime may be reached
faster by allowing for NNN exchange. In fact, for equal
mixtures of NN and NNN exchange, b T (Fig. 2), the
asymptotic regime is accessible with modest efforts.
These statements are quantified in Fig. 3 which shows re-
sults from zero-temperature quenches for varying b. The
inset of this figure gives the resulting late-time exponent
as a function of k

We then arrive at the simple picture in which the cross-
over behavior of the Ising model of Eq. (1) is controlled
by the parameter b. For b 0, there is freezing-in at
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FIG. 3. Inverse excess energy hE '(t) vs time for zero-
temperature quenches for different values of 8. The inset shows
the kinetic growth exponent n as a function of b. The time is in
units of MCS/S.
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Tf 0. For 8&0 and Tf &0, the freezing-in behavior be-
comes unstable and there is a crossover to Lifshitz-Allen-
Cahn behavior. The crossover is slower, the lower the
temperature and the lower the value of 8. A somewhat
similar role was found to be played by the ratio of NN
and NNN interactions strengths of the model in Eq. (1)
in the case of nonconserved density.

Finally, we wish to comment on some recent experimen-
tal results from a lowwnergy electronMiffraction study of
the ordering kinetics of 0 on W(110).3s This study is the
only one available of the kinetics of (2X 1) ordering in a
two-dimensional system. In the experiments, the over-
layer was prepared in a glassy frozen-in state at low tem-
peratures and then subjected to up-temperature quenches
to temperatures Tf/T, ~r-0.3. The growth was found to
be described by a power law with tt 0.28+'0.05. For the
present chemisorbed system the interaction constants are
known3s and from these we estimate that b is very small.
Hence, the simulation results of this paper suggest that
the experimentally found low exponent may suffer from
crossover effects due to low-temperature freezing-in be-
havior.
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