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We explore the superconducting transition in the RVB (resonant valence bond) model, assum-

ing that the superconductivity is due to a Bose-Einstein condensation of charged bosons in the
RVB vacuum. It appears that the charged bosons behave like a weakly interacting 2+a dimen-
sional boson gas and that the RVB superconductors exhibit many two&imensional properties.
Among others are a linear temperature dependence of the critical 6elds, which has already been
observed in experiments, and a linear doping dependence of the transition temperature.

Among various theoretical explanations of the high-T,
superconductors, the resonant valence bond (RVB) model
proposed by Anderson and co-workers'z is quite success-
ful and there is no known experimental data contradicting
this theory. 3 5 In this paper we are going to explore a pos-
sible mechanism of superconductivity in the RVB vacu-
um, i.e. , Bose-Einstein condensation of charged parti-
cles. 3 s While pair breaking may play a role in many cir-
cumstances, it is worthwhile to explore the suggestion that
Bose-Einstein condensation is dominant at least for low
doping. There are three kinds of important excitations in
the RVB vacuum, an unbonded spin (spinon), an empty
site (hole), and a charged electron. It is a crucial property
of the RVB vacuum that the spinons are neutral fermions
and the holes are charged bosons. 3 s In real RVB super-
conductors there is a net number of the holes, and the to-
tal number of the holes is conserved. Therefore, under
certain conditions, the holes should be able to condense
and give rise to the observed superconductivity of the
high-T, superconductor. In this paper, we calculate the
transition temperature, the critical fields, and the specific
heat of RVB superconductors. We also estimate the
range of the critical rey on We'fin.d that the holes exhibit
many two-dimensional properties. Some of these proper-
ties have already been observed in experiments. s'~

In the RVB vacuum, the motion of the holes is con-
strained to Cu layers and the holes essentially behave like
a two-dimensional boson gas. It is well known that a
twoMimensional boson gas does not condense; therefore,
interlayer couplings play an important role in the boson
condensation. It is not known whether the interlayer cou-
pliny are due to single-hole hopping pipja or double-hole
hopping pi pj, where p; is the wave function of the holes
in the ith Cu layer. But present RVB theory favors dou-
ble hole hopping. In any case, the interlayer couplings are
weak. This is because the wave functions of the valence
electrons in different layers do not overlap. The interlayer
hoping for valence electrons (and the holes) is extremely
small. We expect that many properties of the supercon-
ducting state, including the properties discussed in this pa-
per, do not depend on details of the interlayer couphngs
(although the structure of the order parameter and mac-
roscopic quantum effects depend on whether the couplin~s
are due to single-hole hopping or double-hole hopping. )
These properties depend on the couphngs only through a

parameter characterizing the coupling strength; therefore,
they can be studied by assuming that the interlayer cou-
plings are due to single-hole hopping. This is equivalent
to giving the holes a large effective mass in the z direction
(we choose the z axis to be perpendicular to the Cu layer).
In addition to the assumption about interlayer couplings,
we also assume that the interaction between the holes is
weak, because of the strong screening effect of charged
boson gas. The free-boson picture is at least qualitatively
sufficient to describe the superconducting transition in the
RVB vacuum. The two-body interaction between the
holes is important only to generate a nonzero thermal crit-
ical field H, and a jump of specific heat at the transition.

Because the holes are almost localized in the z direc-
tion, we expect that there is a large energy gap between
different energy bands in the k, direction. Therefore, only
the first band is important. The single-particle energy
spectrum may be written as

s - (p„'+py')+, [1 -cos(p, d)],

where d is the distance between Cu layers. We would like
to emphasize that under temperatures of interest, the
bandwidth in the k, direction M 'd &&kgT. (Because
there is no valence bond between layers, the hole cannot
hop between layers itself in the RVB theory, it has to hop
together with a spinon, and, therefore, the efFective mass
M is very large. ) The spectrum in (1) describes quasi-
twodimensional particles. To study Bose-Einstein con-
densation of such a quasi-two-dimensional gas, let us first
ignore the interaction between the holes. The thermopo-
tential for free bosons with energy spectrum (1) can be
written as

Qo —V
z

l l e"k T
kd i i kaTMd

where k-(2x/mksT) '~z and

l(s) -„exp[—s[l cos(2rrr)) jdh —.

Noticing that l(s&(1)=1 and l(s&) 1)=(2ns), we
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may express the density of the holes in excited states as

n —n, -2. 'd-'-g I -'I ' e""""
kg TMd

which is equivalent to

nM (io)

(3)

Note that T, is very insensitive to the effective mass in the
z direction when nMd3/m is large. With a reasonable
choice of M, In(kaT, Mdzv)-10. In the large nMd3/m
limit, the density of the condensed holes reads

1 Tg T
n, n — in(kllTMd2v) =n

k d

The free energy of the noninteracting holes Fo 00+/2N
can be obtained by solving the chemical potential p from
(3).

The free energy obtained above is very complicated; for
later convenience we would like to show that the above
free energy can be approximated by the free energy of a
2+m dimensional free boson gas. By definition, such a
2+ e dimensional boson gas is described by the following
thermopotential:

B ~ I
—2 —I/2e p/kgT

f

VkgT „/k, T
g~+.gz &

where g, (s ) g/ i I 's'. The chemical potential is
determined by

n n, X'd—'.gi+,/2(e" ' ) .

The 2+ e dimensional free boson gas undergoes a conden-
sation at a temperature

2Ãnd

/ligi P,/2(1)

We see that (&) will agree with (4) if we set

gl+,/2(1) -ln(k/l T,Md 2v),

(&)

where n N/V is the density of the holes, n, is the density
of the condensed holes, t I/k//TMd2, and v(r ) is a func-
tion of order O(1) which approaches a non-zero constant
as r 0. From (3) we see that there is boson condensa-
tion below a certain transition temperature T,. Assuming
t is small, we find that

2 Slid

rn ln(ka T,Mvd 2)

for small e. Above the transition temperature, one can
easily see that 00= 0, and 800/8/i =80J8iu, for
—p/k/lT&&e and e(&1. At the transition temperature
800/8p 80,/8p by (9). Below the transition tempera-
ture, the thermopotentiaIs for both systems are approxi-
mately equal to a constant, and so are the free energies

ka TV
F0=F.= — g2+./2(1)

d
(»)

So the free energy of the noninteracting holes and the free
energy of 2+m dimensional free boson gas are approxi-
mately the same for all temperatures, if the effective mass
M is large and e is small.

With the help of the above approximation, we may
write the free energy of the holes as

(12)

i/
g kgTm—&&1, a &&1, an'~ &&1 .
d '

2ir

We will find later that a-0.05 A and m-1.5m„hence,
the above condition is indeed valid. Noticing that of all
the nil's none except nz-0 is expected to be inacroscopical-
ly large, thus, we may write

r

E gn g+ n ——n,
4+a V ~ 1

m 2
' (is)

Observing that the total energy is shifted only by a con-
stant, the free energy for the interacting holes may be
written as

kBT p/ATg2+,/2(e
' )+Pn, if T&T, ;

F~ Xd
V kgT

X2d, g2+./2(1). if T&T.

where p is determined by (7). From (12) we may easily
calculate the specific heat of the holes and find that he 0
at the transition point. This implies that (dH, /dT)T, 0
for the noninteracting holes. It is well known that the in-
teraction between bosons can generate nonzero hc, there-
fore, the nonzero dH, /dT observed in experiments is total-
ly due to the interaction between the holes. Including a
two-body interaction characterized by scattering length a,
the total energy of the holes for low-lying states reads

E-gn, @+ ' 'W2 —
—,
' W —

—,
' gn,', (i3)

where g is the single-particle kinetic energy and n~ is the
occupation number of the p state. Equation (13) is valid
in low-temperature and low-density limits, i.e.,

t

k8 T pg/kg T 4K'
X21 '

m 2
g2g,g(e ' )+P(n —n, )+ n ——n,' -,

k8 T p/k~T
g2+,/2(e ' )+Pn+ n, if T& T,

4@a
X2d PPl

4K' p Tc T
p k8 T

Ilq/2 n llq+/I
2 g2+P/2(1), if T + Tg,

iri T,



where p is determined by (7) and n, by minimizing F. It
is not hard to see that the transition temperature and den-
sity of the condensed holes are the same as before [see (8)
and (5)). The specific heat may be easily calculated as

c k gz+,g2(1)+ ka T, (17)
mkaT, 2

for T & T„and is the same as that of the noninteracting
holes for T & T,. The jump of the specific heat at the
trans t'on temperatur 's

k
4nan2

h,c k
mka T,

In presence of magnetic field, the system has two possi-
ble states, a normal state (n, 0) and a superconducting
state (n, a0). In the normal state, the magnetic field
penetrates the system. There is no condensation because
of the appearance of Landau levels, hence none of the n&'s

in (18) is macroscopically large. Noticing that the mag-
netic susceptibility of the system is always small, the free
energy of the normal state can be written as

Fiv (H &0) F,+

Comparing with the free energy for superconducting state
I

Fg F+H V/8x, we obtain the thermal critical field
1/2

8, 4zn (20)
rn Tc

From (5), we obtain the temperature dependence of the
penetration length of the superconductor

mc 2 T
4~~2m Tc

as well as the lower critical field

@p T, —T
2nz$(0)
egi+,i2(I)

ka(T, —T)lnx .

Since we have used the mass of the holes in (21), the
above two formulas are only valid when magnetic field is
perpendicular to the Cu layers. We will discuss other situ-
ations later.

In order to write down the Ginsberg-Landau (GL)
equation, we choose the order parameter to be the wave
function of the condensed holes pi, where i refers to the
ith Cu layer. Allowing a spatial dependence of the order
parameter and including kinetic terms, the total free ener-

gy liow reads

ad Tc T 1F~FN+g dxdp 4K ncl2 n Bs + (I 8xki I + I r)yki I
P2

~ + 1
~ (23)

where n, ~p;( /d. The above free energy and the de-
rived GL equation have been proposed to describe weakly
coupled superconducting layers and have been studied by
many people. s From the free energy (23) one may easily
obtain the penetration and correlation lengths in any
directions, e.g.,

(T) mc c

Tc

Mc2
~) (T) Mc Tc

4& ~ Tc
(24)

field perpendicular to the Cu layer is given by

H, 2, (T)-Jz~,H, (T) . (26)

Nf
Hc1ll

-0

Since g, &d for almost all temperatures below T, in this
model, the lower and upper critical fields parallel to Cu
layers are given by9

' 1/2 ' ' 1/2
2i,pj

2%X)J X d

(8nna )
C

(8xna) -™Tc

' 1/2 r d' @o1—
2(, 2'

(27)

where g y is the correlation length in the x-y plane and g,
is in the z direction. The ratios of the penetration and
correlation lengths are

f i 1/2
~PJ 2QPPf CK~=
(„y a

where a is the fine-structure constant. The upper critical

~ for (, &d/J2 .

Since M))m, (27) implies that H, zi ~ for almost all
temperatures below T,. The results in (27) are obtained
from a mean-field theory; however, we expect that the
fiuctuations are important in calculating H, zi. The finite
upper critical field observed in experiment is probably a
critical phenomenon. At lour temperatures, 0,2~~ may be
limited by other physical mechanisms, for example, the
Pauli limit.

In the above calculations, the GL equation is treated as
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a mean-field theory. The mean-field approximation is in-
correct near the transition temperature where the effects
of fiuctuations are large. To estimate the importance of
the fiuctuation, we may compare the specific heat cti„„
arising from the fiuctuations with the jump of the specifi~c

heat bc obtained from the mean-field theory. Using the
Gaussian approximation, we obtain

&acct

Ac

Tg

Tc
(28)

near the transition, where

1+ T
4 2trnad2 M T~ —T

(2 )

The fluctuations are important when cs„«&h,„or
~

T- T, ~ 5 (T,. Since e is small for RVB superconduc-
tors, our previous results are valid for almost all tempera-
tures except for temperatures in the critical region
(T-T, ( &gT,. The critical region shrinks to zero as
a 0. This is expected since our results are exact for free
bosons. We should emphasize that the critical region for
RVB superconductors, which is of order of several tenths
of a degree wide, is huge compared to that of BCS super-
conductors, which can be as narrow as 10 '5T, . The crit-
ical phenomena for RVB superconductors can be easily
observed and probably have already been observed in
Refs. 10 and 7. In Ref. 10, H, 2s is found to behave as
(T, —T) 3 near T,.

Now let us compare our results with experiments.
Choosing proper values for e, m, and a to fit the experi-
mental data, we obtain the following for La-Sr-Cu-0
samples with 0.15 doping "

37, m 1.4m„a 0.05k, T, 40K,
(30)

tr~ 70, H, 4500 6, H, zi 44 T, H, i~ 200 6 ,

where we have assumed that some of the holes are local-
ized and effective doping is 0.1. For Y-Ba-Cu-0 samples
with 0.4 holes per unit cell, we obtain 'z

-31, m 1.6m„a 0.023 A, T, 90K,
(31)

x~ 50, H, 1.3T, H, 2~ 88T, H, t~ 7006 .

We find that the effective masses of the holes are about
the same for the two samples. This is a nontrivial check of
our theory. Because the Cu layers are almost identical for
the two samples and interlayer interactions are weak, it is
expected that the effective masses of the holes are the
same. We would like to point out that the results in (30)
and (31) are obtained by comparing with the available ex-
perimental data on polycrystal samples (except H, 2~ for
Y-Ba-Cu-0 samples). Thus, the values that we obtain for
e, m, and a are not quite reliable. The strongest support
of our theory comes from an experiment by Batlogg et al. s

They find a linear temperature dependence of H, i from 5
K to T, -40 K, with the slopes being independent of dop-
ing concentration. This agrees with our results in (22).
Such linear temperature dependence is also observed in

H, 2 by Uchida etal 70. ur theory also predicts a linear
dependence of transition temperature on concentration of
the holes. This agrees with a experiment by Shafer
et al. '3 But their results are not accurate enough to ex-
clude other possibilities, e.g., T, ~n arising from three-
dimensional Bose-Einstein condensation.

From the above comparisons, we find that the proper-
ties of the superconducting state of high-T, superconduc-
tors can be consistently described by a weakly interacting
2+e dimensional charged boson gas. We believe that
such a weak-interaction picture is correct for the holes in

the RVB vacuum, at least for low doping. Experimental
measurements of thermopowerts also support such a pic-
ture. '5

We would like to remark that the boson model dis-
cussed in this paper may also apply to the theories of su-
perconductivity with very tide binding Cooper pairs, i.e.,
the size of the Cooper pairs is much smaller than the
mean distance between the pairs. In this case, the bosons
responsible for superconductivity carrying charge 2e (in-
stead of e). We may still obtain an equally good fit to the
experimental data. In RVB model, such tide binding pairs
may arise from the RVB bonds. 3 4
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