VOLUME 37, NUMBER 10

1 APRIL 1988

Superfluid density tensor in unconventional superconductors

C. H. Choi and Paul Muzikar

Department of Physics, Purdue University, West Lafayette, Indiana 47907 (Received 21 December 1987)

We consider the superfluid density tensor ρ_s for two unconventional spin-triplet gaps: an A phase and a polar phase. We pay particular attention to the effect of impurity scattering and how such scattering influences the anisotropy of ρ_s .

I. INTRODUCTION

The current-carrying state in unconventional superconductors has recently been the subject of experimental^{1,2} and theoretical¹⁻⁵ investigation. One particularly important quantity for theoreticians to calculate is the superfluid density tensor, ρ_s , since it is directly related to the measurable magnetic penetration depth.¹⁻³

The theory of ρ_s is discussed in Refs.1, 2, and 3. In this work we discuss ρ_s using the quasiclassical⁶ theory of superconductivity, paying particular attention to the effect of nonmagnetic impurities. As already noted,² for a spherical Fermi surface impurities have the interesting effect of enhancing the anisotropy of ρ_s . A simple way to understand this enhancement is to realize that impurities dramatically increase the number of low-energy quasiparticle states in the vicinity of gap nodes on the Fermi surface.⁷ This serves to decrease ρ_s proportionately more in the direction of such nodes than in the direction perpendicular to the nodes.

We consider, as does Ref. 2, two types of gap: an A phase type with two point nodes, and a polar phase gap with a line of nodes. We consider a metal with a spherical Fermi surface in the normal state, with a concentration c of impurities.

In Sec. II we use the quasiclassical theory to drive some general expressions for ρ_s . In Secs. III and IV we examine in more detail two limits: the T=0 limit and the Ginzburg-Landau regime near T_c .

II. GENERAL RESULTS

To do our calculations we use the same quasiclassical formalism⁶ used in our previous work.^{4,5} We include scattering from randomly placed impurities of concentration c; for simplicity we take the scattering potential to be purely s wave and of strength v. We solve for the gauge transformed propagator $\overline{g}(\hat{k},\epsilon)$, which is a 2×2 matrix in the particle-hole space. To compute the current J we need the $\hat{\tau}_3$ component of the propagator, g_3 . For the *A*-phase gap,

$$\Delta_{\alpha\beta}(\hat{\mathbf{k}}) = \delta_{\alpha\beta}\Delta_0(\hat{\mathbf{x}} + i\hat{\mathbf{y}}) \cdot \hat{\mathbf{k}} , \qquad (1)$$

we find

$$g_3 = \frac{-\pi i (\epsilon + iq + ia_3)}{[(\epsilon + iq + ia_3)^2 + (\Delta_0 \hat{\mathbf{k}} \cdot \hat{\mathbf{y}} - ia_1)^2 + (\Delta_0 \hat{\mathbf{k}} \cdot \hat{\mathbf{x}} - ia_2)^2]^{1/2}}.$$

For a polar gap,

$$\Delta_{\alpha\beta}(\hat{\mathbf{k}}) = \delta_{\alpha\beta} \Delta_0 \hat{\mathbf{k}} \cdot \hat{\mathbf{z}} , \qquad (3)$$

we find

$$g_{3} = \frac{-\pi i (\epsilon + iq + ib_{3})}{[(\epsilon + iq + ib_{3})^{2} + (\Delta_{0} \hat{\mathbf{k}} \cdot \hat{\mathbf{z}} - ib_{2})^{2}]^{1/2}} .$$
(4)

In these equations, $q = p_f \hat{k} \cdot v_s$, and Δ_0 is the gap amplitude with impurity scattering fully taken into account. To first order in v_s , the amplitude and structure of the gap are unaffected by the superflow, and to compute ρ_s we need g_3 only to first order in v_s .

The quantities $a_i(\epsilon)$ (A phase) and $b_i(\epsilon)$ (polar phase) are given by ct_i , where t_i is the $\hat{\tau}_i$ component of the impurity t matrix. The t matrix is computed from

$$\overline{t}(\epsilon) = v + N_0 v \int \frac{d\widehat{\mathbf{k}}}{4\pi} \overline{g}(\widehat{\mathbf{k}}, \epsilon) \overline{t}(\epsilon) , \qquad (5)$$

as in our previous work,^{4,5} we used the full impurity averaged \overline{g} in (5), so that our results are not limited to the dilute regime. The functions $a_3(\epsilon)$ and $b_3(\epsilon)$ may be evaluated at $\mathbf{v}_s = 0$, while $a_1(\epsilon)$, $a_2(\epsilon)$, and $b_2(\epsilon)$, being odd function of \mathbf{v}_s , are evaluated to first order in \mathbf{v}_s . Hence we write $a_1(\epsilon) = \alpha_1(\epsilon)\mathbf{v}_s \cdot \mathbf{\hat{y}}$, $a_2(\epsilon) = \alpha_2(\epsilon)\mathbf{v}_s \cdot \mathbf{\hat{x}}$, and $b_2(\epsilon) = \beta_2(\epsilon)\mathbf{v}_s \cdot \mathbf{\hat{z}}$; it is straightforward to check that a_1 , a_2 , and b_2 are proportional, respectively, to $\mathbf{v}_s \cdot \mathbf{\hat{y}}$, $\mathbf{v}_s \cdot \mathbf{\hat{x}}$, and $\mathbf{v}_s \cdot \mathbf{\hat{z}}$.

We now expand g_3 to first order in v_s , and use the result to compute J. We then obtain, for the A phase,

$$\rho_{ij}^{s} = 2N_{0}v_{f}\Delta_{0}\pi T \sum_{\epsilon} \int \frac{d\hat{\mathbf{k}}}{4\pi} \frac{\Delta_{0}p_{f}\hat{\mathbf{k}}_{i}\hat{\mathbf{k}}_{j}[1-(\hat{\mathbf{k}}\cdot\hat{\mathbf{z}})^{2}]+(\epsilon+ia_{3})[\alpha_{1}(\hat{\mathbf{k}}\cdot\hat{\mathbf{y}})^{2}\hat{\mathbf{y}}_{i}\hat{\mathbf{y}}_{j}+\alpha_{2}(\hat{\mathbf{k}}\cdot\hat{\mathbf{x}})^{2}\hat{\mathbf{x}}_{i}\hat{\mathbf{x}}_{j}]}{\{(\epsilon+ia_{3})^{2}+\Delta_{0}^{2}[1-(\hat{\mathbf{k}}\cdot\hat{\mathbf{z}})^{2}]\}^{3/2}}$$
(6)

and, for the polar phase,

37

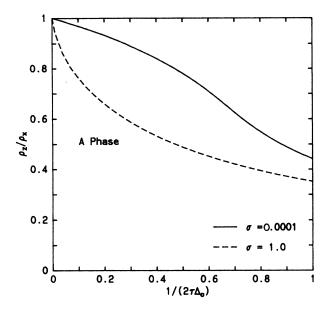


FIG. 1. Plot of $\rho_{zz}^s / \rho_{xx}^s$ versus $1/(2\tau\Delta_0)$ for the *A* phase at T=0. The solid line is for the Born limit ($\sigma = 0.0001$), while the dashed line is for the unitarity limit ($\sigma = 1.0$).

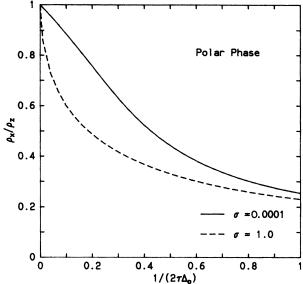


FIG. 2. Plot of $\rho_{xx}^{i} / \rho_{zz}^{j}$ versus $1/(2\tau\Delta_{0})$ for the polar phase at T=0. Born and unitarity limits are shown, as in Fig.1.

$$\rho_{ij}^{s} = 2N_{0}v_{f}\Delta_{0}\pi T \sum_{\epsilon} \int \frac{d\hat{\mathbf{k}}}{4\pi} \frac{\Delta_{0}p_{f}(\hat{\mathbf{k}}\cdot\hat{\mathbf{z}})^{2}\hat{\mathbf{k}}_{i}\hat{\mathbf{k}}_{j} + \beta_{2}(\epsilon + ib_{3})(\hat{\mathbf{k}}\cdot\hat{\mathbf{z}})^{2}\hat{\mathbf{z}}_{i}\hat{\mathbf{z}}_{j}}{[(\epsilon + ib_{3})^{2} + \Delta_{0}^{2}(\hat{\mathbf{k}}\cdot\hat{\mathbf{z}})^{2}]^{3/2}}$$

$$(7)$$

Results (6) and (7) are valid for any temperature T. We now discuss two limiting cases.

III. T=0 CASE

Firstly, we consider T = 0. We must then numerically solve for the functions $\alpha_1(\epsilon)$, $\alpha_2(\epsilon)$, $a_3(\epsilon)$, $\beta_2(\epsilon)$, and $b_3(\epsilon)$. In Figs.1 and 2 we show results which illustrate the anisotropic behavior of ρ_s at T=0. For the A phase we plot $\rho_{zz}^s / \rho_{xx}^s$ as a function of $1/(2\tau\Delta_0)$, while for the polar phase we plot $\rho_{xx}^s / \rho_{zz}^s$. Here, $1/\tau$ is the normal state impurity scattering rate, and Δ_0 is the order parameter magnitude with impurity scattering taken into account. Hence, the parameter $1/(2\tau\Delta_0)$ ranges from zero to infinity as the impurity concentration increases.

The parameter σ is defined as

$$\sigma = \frac{(N_0 v \pi)^2}{1 + (N_0 v \pi)^2}$$

We show results for $\sigma = 0.0001$ (Born limit) and $\sigma = 0.9999$ (unitarity limit). In the Born limit, the A phase becomes gapless when $1/(2\tau\Delta_0)=2/\pi$, whereas in the unitarity limit the A phase is gapless for any nonzero value of $1/(2\tau\Delta_0)$.⁷ The polar phase is gapless whenever $1/\tau$ is nonzero, regardless of the value of σ .⁷

Figures 3 and 4 show how the ratios ρ_{xx}^s/ρ , ρ_{zz}^s/ρ decrease from unity as impurities are added.

IV. GINZBURG-LANDAU LIMIT

In this limit, we work to lowest order in Δ_0^2 , and more analytic progress is possible. We expand (6) and (7) to first order in Δ_0^2 ; we note that $a_3(\epsilon)$ and $b_3(\epsilon)$ can then be evaluated in the normal state, where we have

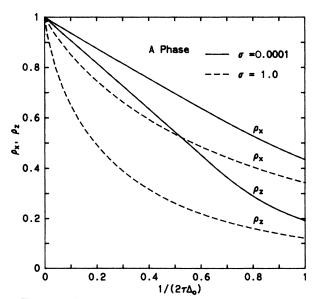


FIG. 3. Plot of ρ_{xx}^s / ρ and ρ_{xz}^s / ρ versus $1/(2\tau\Delta_0)$ for the A phase at T=0. Born ($\sigma=0.0001$) and unitarity ($\sigma=1.0$) limits are shown.

SUPERFLUID DENSITY TENSOR IN UNCONVENTIONAL . . .

5949

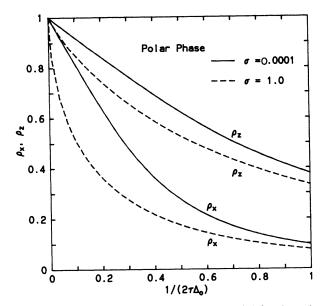


FIG. 4. Plot of ρ_{xx}^{i}/ρ and ρ_{xz}^{i}/ρ versus $1/(2\tau\Delta_{0})$ for the polar phase at T=0. Born ($\sigma=0.0001$) and unitarity ($\sigma=1.0$) limits are shown.

$$ia_3 = ib_3 = \frac{N_0 v^2 \pi c \operatorname{sgn}(\epsilon)}{1 + (N_0 v \pi)^2} \equiv \frac{1}{2\tau} \operatorname{sgn}(\epsilon) .$$
(8)

The functions α_1 , α_2 , and β_2 are evaluated to lowest order in Δ_0 . The final results for ρ_s are as follows. *A* phase:

$$\rho_{ij}^{s} = \frac{N_0 v_f p_f \Delta_0^2}{15 \pi^2 T_c^2} [\hat{\mathbf{z}}_i \hat{\mathbf{z}}_j S_3 + (\hat{\mathbf{x}}_i \hat{\mathbf{x}}_j + \hat{\mathbf{y}}_i \hat{\mathbf{y}}_j) (2S_3 + \frac{5}{6} wS_5)]$$

Polar phase:

$$\rho_{ij}^{s} = \frac{N_{0} v_{f} p_{f} \Delta_{0}^{2}}{2\pi^{2} T_{c}^{2}} [\hat{\mathbf{z}}_{i} \hat{\mathbf{z}}_{j} (\frac{1}{5} S_{3} + \frac{1}{3} w S_{5}) + \frac{1}{15} (\hat{\mathbf{x}}_{i} \hat{\mathbf{x}}_{j} + \hat{\mathbf{y}}_{i} \hat{\mathbf{y}}_{j}) S_{3}].$$
(10)

Here, we define $w \equiv 1/(4\pi\tau T_c)$, and the two functions S_3 and S_5 are defined as

$$S_3 = \sum_{n \ge 0} \frac{1}{(n + \frac{1}{2} + w)^3} , \qquad (11)$$

$$S_5 = \sum_{n \ge 0} \frac{1}{(n + \frac{1}{2})(n + \frac{1}{2} + w)^3} .$$
 (12)

For small w, we have

$$S_3 \approx 7\zeta(3) - \frac{\pi^4}{2}w + \cdots,$$
 (13)

$$S_5 \approx \frac{\pi^4}{6} + \cdots , \qquad (14)$$

while for large w, we have

$$S_3 \approx \frac{1}{2w^2} - \frac{1}{8w^4} + \cdots,$$
 (15)

$$S_5 \approx \frac{\ln(w)}{w^3} - \frac{1}{w^3} [\psi(\frac{1}{2}) + \frac{3}{2}] + \frac{1}{4w^5} + \cdots$$
 (16)

Here $\psi(x)$ is the digamma function. So, if we examine the anisotropy ratios, we find, for the A phase,

$$\rho_{xx}^{s} / \rho_{zz}^{s} \approx 2 + 1.608w + \cdots, w \ll 1$$
 (17)

$$\rho_{xx}^{s} / \rho_{zz}^{s} \approx \frac{5}{3} \ln(w) - \frac{1}{2} - \frac{5}{3} \psi(\frac{1}{2}) + \cdots, \quad w \gg 1 \quad (18)$$

and, for the polar phase,

(9)

$$\rho_{zz}^{s} / \rho_{xx}^{s} \approx 3 + 3.215w + \cdots, w \ll 1$$
 (19)

$$\rho_{zz}^{s} / \rho_{xx}^{s} \approx \frac{10}{3} \ln(w) - 2 - \frac{10}{3} \psi(\frac{1}{2}) + \cdots, \quad w \gg 1$$
 (20)

We note that the anisotropy ratio can be made as large as we want, by increasing w. The quantity w varies from zero to infinity as c increase from zero to the critical concentration which makes T_c vanish.

V. DISCUSSION

Our work, following that of Gross *et al.*,² illustrates how, for a superconductor with an anisotropic gap and a spherical Fermi surface, the presence of impurities can enhance the anisotropy of ρ_s . It is of interest to include the effect of a more realistic Fermi surface, and we hope to turn to this problem in the future. If ρ_s is anisotropic even in the pure limit, because of an anisotropic Fermi surface, the effect of impurities could well be more complicated.

- ¹D. Einzel, P.J. Hirschfeld, F. Gross, B.S. Chandrasekhar, K. Andres, H.R. Ott, J. Beuers, Z. Fisk, and J.L. Smith, Phys. Rev. Lett. 56, 2513 (1986).
- ²F.Gross, B.S.Chandrasekhar, D.Einzel, K.Andres, P.J. Hirschfeld, H.R. Ott, J. Beuers, Z. Fisk, and J.L. Smith, Z. Phys. B 64, 175 (1986).
- ³A.J. Millis, Phys. Rev. B 35, 151 (1987).

- ⁴C.H. Choi and P. Muzikar, Phys. Rev. B 36, 54 (1987).
- ⁵C.H. Choi and P. Muzikar, Jpn. J. Appl. Phys. 26, 1229 (1987).
- ⁶J.A.X. Alexander, T.P. Orlando, D. Rainer, and P.M. Tedrow, Phys. Rev. B **31**, 5811 (1985).
- ⁷P.J. Hirschfeld, P. Wölfle, and D. Einzel, Phys. Rev. B 37, 83 (1988).