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%e consider the super6uid density tensor p, for two unconventional spin-triplet gaps: an A

phase and a polar phase. %'e pay particular attention to the elect of impurity scattering and how

such scattering in8uences the anisotropy ofp, .

beak)=5~ho(x+iy) k,

The current-carrying state in unconventional supercon-
ductors has recently been the subject of experimental'
and theoretical' investigation. One particularly impor-
tant quantity for theoreticians to calculate is the
superfiuid density tensor, p„since it is directly related to
the measurable magnetic penetration depth. '

The theory of p, is discussed in Refs. l, 2, and 3. In
this work we discuss p, using the quasiclassicals theory of
superconductivity, paying particular attention to the
e8'ect of nonmagnetic impurities. As already noted, for a
spherical Fermi surface impurities have the interesting
effect of enhancing the anisotropy of p, . A simple way to
understand this enhancement is to realize that impurities
dramatically increase the number of low-energy quasipar-
ticle states in the vicinity of gap nodes on the Fermi sur-
face. This serves to decrease p, proportionately more in
the direction of such nodes than in the direction perpen-
dicular to the nodes.

We consider, as does Ref. 2, two types of gap: an A

phase type with two point nodes, and a polar phase gap
with a line of nodes. We consider a metal with a spherical
Fermi surface in the normal state, with a concentration c
of impurities.

In Sec. II we use the quasiclassical theory to drive
some general expressions for p, . In Secs. III and IV we
examine in more detail two limits: the T=O limit and the
Ginzburg-Landau regime near T, .

II.GENERAL RESULTS

To do our calculations we use the same quasiclassical
formalism used in our previous work. ' We include
scattering from randomly placed impurities of concentra-
tion c; for simplicity we take the scattering potential to
be purely s wave and of strength u. We solve for the
gauge transformed propagator g(k, a), which is a 2X 2 ma-
trix in the particle-hole space. To compute the current J
me need the w3 component of the propagator, g3. For the
A-pl1ase gap,

tri —(a+iq+ia3)
[(a+iq+ia3) +(hok*y ia, )—+(6Jc x iaz)z—]'~~

For a polar gap,

hQk) =5~/kuk z,
me Snd

ni (a+—iq+ib3)
[(a+iq+ib3) +(bok z —ib2)2]'~2

(4)

In these equations, q=pfk v and 6,0 is the gap amph-
tude with impurity scattering fully taken into account.
To first order in v„ the amplitude and structure of the
gap are unaffected by the superfiow, and to compute p,
we need g3 only to first order in v, .

The quantities a;(a) (A phase) and b;(a) (polar phase)
are given by ct;, where t, is the g; component of the im-
purity t matrix. The t matrix is computed from

t(a)=u+Nuu J g(k, e)t(a),
4m

as in our previous work, ' we used the full impurity aver-
aged g in (5), so that our results are not limited to the di-
lute regime. The functions a3(a) and b3(a) may be evalu-
ated at v, =O, while a, (a), a2(e), and bz(a), being odd
function of v„are evaluated to first order in v, . Hence
we write a, (a) =u, (e)v, y, a, (e)=a,(a)v, x, and
b2(e)=P2(e)v, z; it is straightforward to check that a„
a2, and b2 are proportional, respectively, to v, .y, v, .x,
and vg x.

%'e now expand g3 to Srst order in v„and use the re-
sult to compute J.%e then obtain, for the A phase,

A, A
dk hopIk. k.[1—(k z) ]+(e+ta3)[a,(k y) ji';y +a&(k x) x;x ]

p;'t =2Nou& AT ~
4~ t(a+ia ) +RE [1—(k z) ]J

and, for the polar phase,

1988 The American Physical Society



37

0.8 0.8

0.6 0.6

0.4-

0.2-

0
0

l

0.2 0.4
I I

0.6
1/{Rrh, }

e ~0.0001

l

0.8

0.2-

0 I

0.2
l I l

0.4 0.6
1/(2' )

u' ~0.|XO1

nl ) 0

l

0.8

FIG. 1. Plot of p' /p'„„versus 1/(2~+} for the A phase at
T=O. The solid line is for the Born limit ( 0 =0.0001 ), awhile the
dashed line is for the unitarity limit {o = 1.0 ).

FIG. 2. Plot of p' /p' versus 1/{2~6,0) for the polar phase at
T=O. Born and unitarity limits are shovrn, as in Fig. 1.

dk bop/(k z) k;kj+pl(e+ib&}(k z) z;z,
4lr [(e+ib )l+bl{k z) ) ~p;'=2Nuu hu. n T (7)

Results (6) and (7) are valid for any temperature T. We
liow discuss two hmxtlng cases.

IH. T=Q CASK

Firstly, we consider T =0. We must then numerically
solve for the functions &&(e), al(e), aq(e), pq(&), and

bl(e) In F. igs. l and 2 we show results which illustrate the
anisotropic behavior of p, at T=O. For the A phase we

plot p' /p' as a function of 1/(2~au), while for the polar
phase we plot p~/p' . Here, I/r is the normal state im-

purity scattering rate, and b,u is the order parameter mag-
nitude with impurity scattering taken into account.
Hence, the parameter 1/(2rbo) ranges from zero to
inSnity as the impurity concentration increases.

The parameter o is deSned as

IV. GINZSURG-LANDAU LIMIT

In this limit, we work to lowest order in h,ol, and more
analytic progress is possible. We expand (6) and (7) to
first order in b~~; we note that al(e) and b&(e) can then be
evaluated in the normal state, where we have

0.8

0.6

(Nuun. )

1+(Nuum)l

0.4

We show results for o =0.0001 (Born limit} and
o'=0.9999 (unitarity llnllt). In the Born limit, the
phase becomes gapless when 1/{2',o) =2/m; whereas in
the unitarity limit the A phase is gapless for any nonzero
value of 1/(2rb, u).7 The polar phase is gapless whenever
1/r is nonzero, regardless of the value of cr.

Figures 3 and 4 show how the ratios p' /p, p' /p de-
crease fr01Yl Qmfy Ss impurities are added.
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FIG. 3- &lot of p'„„/p and p' /p versus 1/(2,vho) for the 3
phase at T=O. Horn {o =0.0001 }and unitarity ( o = 1.0 ) limits
are shown.
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For sma11 m, we have

m4
S3 =7/(3) — w+

2

m4
S5=

(12)
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FIG. 4. Plot of p' /p and p' /p versus 1/(2m+) for the polar
phase at T=O. Born {0 =0.0001 ) and unitarity ( o = 1.0 ) limits
are shown.

NoU 5'c sgn(E)'
ECif3

——E&3 —— sgn(e) .
1+(Noun )~

(8)

Polar phase:

2&T,'
(10)

Here, we deSne to —= 1/(4n~T, ), and the two functions S3
and S5 are de8ned as

The functions a, , az, and Pt are evaluated to lowest order
in h,o. The Snal results for p, are as follows.
A phase:

p', = [z,.zJS3+(x,xj+y, yj )(2S3+—6wS&)] .+0UfPf ~0

15 T'2

, [f(-,')+-,']+,+ ~ ~ ~ (16)

V. MSCUSSION

Our work, following that of Gross et a1.,
2 illustrates

how, for a superconductor with an anisotropic gap and a
spherical Fermi surface, the presence of impurities can
enhance the anisotropy of p, . It is of interest to include
the em'ect of a more realistic Fermi surface, and we hope
to turn to this problem in the future. If p, is anisotropic
even in the pure limit, because of an anisotropic Fermi
surface, the efFect of impurities could well be more com-
plicated.

Here P(x} is the digamma function. So, if we examine
the anisotropy ratios, we Snd, for the A phase,

p,', /p' =2+1.608to+, to «1
p' /p' =—',in(w) ——,

' ——,'i)(( —,')+, w ))1 (18)

and, for the polar phase,

p' /p'„„=3+3.215w+, to «1
p' /p„'„= —",ln(to) —2——", f(-,' )+
We note that the anisotropy ratio can be made as large as
we want, by increasing w. The quantity e varies from
zero to infinity as c increase from zero to the critical con-
centration which makes T, vanish.
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