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%e show, within mean-Seld theory, that the normal state of a compressible quasi-two-dimen-

sional Bose gas with arbitrarily ~euk attractive interactions becomes unstable with respect to pair
condensation at a temperature T, of order T~ the Bose degeneracy temperature. Below T„ the
ground-state many-particle wave function is the boson analog of the Bardeen-Cooper-Schriefkr
wave function and the charged gas has the principal electromagnetic properties of a conventional

superconductor.

In this paper we point out that the normal ground state
of a compressible quasi-two-dimensional (2D) Bose gas
becomes unstable toward pair condensation as arbitrarily
weak attractive interactions between its particles are
switched on. This property, which does not arise for an
isotropie 3D Bose gas at zero temperature' (T 0), is
reminiscent of the Cooper-pair instabilityz in a Fermi gas.
We show that the mean-field transition temperature, T„
corresponding to the T 0 instability is of order To, the
Bose degeneracy temperature. Below T„ the many-par-
ticle wave function describing the ground state is the bo-
son analog of the Bardeen-Cooper-Schriefer (BCS)3
wave function which was first introduced bp Valatin and
Butler and developed by Evans and Imry as a possible
description of liquid He. In consequence, the charged
gas has the principal electromagnetic propertiess of a
conventional superconductor, i.e., Meissner-Ochsenfeld
e6'ect7 and flux quantizations in units of &0 1'tc/2e. s We
find that the mean-field T dependences of the critical field
H, (T) and pair potential h(T) are also similar to those of
a conventional superconductor, as is roughly also that of
the specific heat C„(T),although the excitation spectrum
is diH'erent from that of a BCS fermion superconductor.
These results have possible implications for the interpreta-
tion of the superconductivity in the perovskite oxides9 and
the interpretation of the order parameter in 2D liquid ~He

layers.
We consider a model of an interacting 2D Bose gas of N

particles of mass m whose thermodynamic potential is
defined by the operator

K ~gagag(q, /t+ pU)—
—(V/2W)g aj',a' L aa, . (1)

k,k'

Here, apt and aq are boson creation and annihilation
operators, respectively, for Hartree-Fock (HF) particle
states with momentum hk and energy ~+pU, where

q, 5 k /2m and pU is a constant Hartree-Fock energy
with U & 0. In the absence of the second sum in (1) the
latter condition ensures that the compressibility (1/8)

2p U is positive. The parameter P is the chemical po-
tential and is determined by the condition that the statisti-
cal average of A 'ggaatag be equal to p N/A, the num-
ber of particles per unit area (N~ ~, A Oo). The

second term in (1) describes a weak attractive interaction
V between pairs of particles of zero total momentum.
This interaction is restricted to particles with ~ s~, a
restriction that is denoted by the prime over the summa-
tion. V is to be considered a parametrization either of the
effect of an attractive component of the direct interparti-
ele interaction or an indirect attraction between particles
mediated by the exchange of quanta with an external sys-
tem to which the gas is coupled. We consider the gas to
be qttasi-2D in the sense that it exists in the 3D volume
0 dA of a slab lying in the x-y plane with area A and
thickness of the order of one or two atomic lattice spac-
ings. The zero-point energy per particle due to localiza-
tion in the z direction is considered absorbed in P. The
model can be readily extended to include a small finite
bandwidth for delocalization in the z direction.

The instability of the normal state in the presence of V
may be demonstrated by calculating the amplitude Tz&
for the pair scattering event (k, -k) (k', -k') and
looking for a possible bound state with energy ss

-m( &0). At temperature T, and from Fig. 1, the t
matrix is

~ 4g+ I» I &/24& dx coth(x)~ —V 1 —-A.
k,k' ~ I» I/2k'& g+ CO

(2)
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FIG. 1. Diagrams for the calculation of the t matrix T&i,

where X NOV, Ns p/kt/TO is the density of states per
unit area, To 2~5 p/mktt, to ta/4k//T, and p(T)

ks T ln [1-exp(- To/T)] is the chemical potential
measured relative to the constant HF term p(U —

2 V).
In the limit T 0, (2) yields the condition

(2k/t To/to)+ 2 in[(2sg+e)/m)

for the bound state. The second term in (3) determines ss
for the case of an isolated pair (p 0), while the first term
describes the effect of the quantum statistics (pWO).
Clearly, Eq. (3) has solutions for arbitrary A, and in the
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&-ZELo~toi+ 2 Z[Ei- «+ I i I ) ~ ~ (5)

by means of the unitary Bogoliubov transformation"

+king gL g -g g ~k +k Uk+-k,

where air, and aq are new boson operators which create
and destroy, respectively, quasiparticle (QP) excitations
with energies

Eg-[{q,+ I p I
)'-&'1'" (6)

limit A, 0, ru-2A, ks To. This implies an instability to-
ward a pairing ~hase in which pair correlations persist
over radii g-(it /2nskke Tn) '/2 and in which the pair po-
tential h(0)-A, keTo is linear in p. The corresponding
mean-field T, is given by AI{T,) 2, where I{T)is the in-
tegral in (2) with m set equal to zero. For eg&0, and

0, T,——To/ln(k). As discussed in an elegant paper
by Nozieres and Saint James, ' in 3D a pure pairing
phase at T 0 can occur only if V & V*, where
pV -keTo(ksTo/eg)'/ is the minimum magnitudeof V
for there to be a bound state for the isolated pair problem.
Since such values of V are too large to be reasonably con-
sistent with a positive compressibility it is unlikely that a
pure pairing phase could ever exist in (isotropic) 3D at
T 0. 'o In 2D it is the constant density of states No
which is responsible for the different behavior.

To describe the mean-field state below T, we follow Bo-
goliubov and BCS and replace (1) by the bilinear form

Z[(%-0)ul&i+ 7/)1 ul O 1+ s -&fu-lul j
k

where hq —V(a -~g) d exp(iS) is the mean-field pair
potentiaL The brackets denote a Gibbs statistical average
taken over the eigenstates of (4) and both 6 and S are
real. Emay be brought to the diagonal form

ship between is and 6:
(p2 —h2) '/2 —2k' Tin[[(x 2+4) ' 2 —x]/21, (10)

where x exp[((is (
—2ksTo)/2keT]. Finally, the ther-

modynamic properties are determined from the Helm-
holtz free energy

F &E+isN) —ks Tg[(ng+ I )ln(ng+1) —ng»(nl, )j

We now discuss the main consequences of these results.
Equation (10) shows that the "gap" Es (il2 —d 2) '/2

in the excitation spectrum is nonvanishing at all finite
temperatures. For

NoV&k, o 1/sinh '[(s /4k To)'/ l,
however, Ee rapidly diminishes as T 0 and is precisely
zeroat T 0. Fork)ko, EsseOat T 0. Figure 2shows
the magnitudes and temperature dependences of h(T)
and p(T) as calculated from (8) and (9) for cases corre-
spolldlllg to 1(Xo [Flg. 2(a)] and )L. & Xo [Fig. 2(b)],
where the parameter values employed are indicated in the
figures. It is seen that b,(T) has a BCS-like T dependence
and the behavior of is(T) is quite different from that of
noninteracting gas. For A, (Ao and T 0, El, is phonon
like for kg(&1, i.e., Elr Ask, where s (~p~/nl)'

(d/ns) ' is the critical superfiuid velocity at T 0. In
the limit A, ~ 0, with e~ seO, d (0)~ pV. The latter result
leads to a compressibility (I/B) 2p2(U-1. 5V). The

BTo =so
X,=O. l

relative to the ground-state value of K, which is given

by the second sum in (5). The amplitudes ut 1 ural

XeXp(iS/2) and ul, I ua I eXp{ iS/2) SatiSfy I ul, I—
I ul 12 1 and their moduli are given by 2) uq( yz

+ 1, 21 ut I yL 1, ~here yt (pc+ I p I )/Et. The
many-particle wave function describing the ground state
is the Valatin-Butler z wave function

@o II I ul I exp[ (uls ux)ol o -1~ I 0)

-0.)

0.2 0.4 0.6 0.8

and satisfies al,@o 0 and +en 1, where (0) denotes
the vacuum. It may be interpreted as describing clusters
of n 1,2, . . . , oo identical time-reversed pairs. The
probability that the particular cluster of n occurs is pg„- Iul, ('"/)ul, ['"+ and satisfies g„Pq,, 1. The equa-
tions determining the self-consistent values of /t (T) and
p(T) are

~ -'g'E&-'(2nl, +1)-(2/V), (8)

p-(2~) -'gE [(~+ [ i ) ) (2n, +1)—E,), (9)

where nl, [exp(Es/keT) —I] ' is the number of QP's
excited with momentum hk at temperature T. Equation
(7) can be evaluated exactly to give the following relation-

2.0— eA /kBTo=5.0

I

2.0
T/To

FIG. 2. d(T)/ksTo and p(T)/ksTo vs T/To for (a) l./lo
0.096 and (b) l./A@ 1.154. In both cases kp 1.04.
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linear spectrum gives rise to a specific heat C,(T) which
varies as TZ as (T/T, ) 0. Figure 3 shows C, (T) as cal-
culated from (8), (9), and (10) for k 0.6 and
sg 5kaTo. In general, we find that C, (T) is linear in T
immediately below T, and the jump in C, at T, must be
determined numerically. For Es&0, C, (T) falls exponen-
tially to zero for T&( T„as in the BCScase.

For the charged gas, the critical magnetic field H, (T)
may be calculated from (ll) and the relation F, -F„

—(H, /8a), where F, and F„denote the free energies of
the superconducting and normal phases, respectively.
Figure 3 shows H, (T)/H, (0) vs F/T, calculated using
the same values of A, and s~ that were employed for the
calculation of C„(T). Within the error of our numerical
calculations, the curve shown for H, (T)/H, (0) vs T/T,
coincides with those which we have also calculated for

0.1 and A, 1.2 with the same value of a~, this particu-
lar functional dependence, therefore, seems to be a univer-
sal one. For the gas with infinite mean free path, the
current response j,(r) at the point r to a weak, slowly
varying, vector potential A(r), applied in the plane (x,y)
of our slab, can be calculated via linear response theory'2
to be

j,(r) -—[n, (T)e'/mcd]A(r),
where

n, (T)-p+& 'ask

is the number of superconducting particles per unit area.
If we now consider our slab to be a disk of radius R
the latter London equation implies the exclusion of weak
magnetic fiux, applied along the z direction, by super-
currents fiowing around the disk perimeter in an annulus
of thickness -ri (me2d/4', e 2) '/2. If there is a hole of
radius R 1 at the center of the disk, where R —R 1 » ri, flux
passing through the hole in the z direction can be trapped
in the hole only in units of @ (hc/2e). This follows from
the standard argument'3 of integrating the gauge velocity

, (r) (h/2m)V, S(r) —(e/me)A(r)

around a path in the bulk where v, 0. We estimate's the
energy Eo is required for the flux unit & to actually
penetrate the bulk superconducting regions of the disk to
be Eo=(po/4m) ri 'ln(g/g). Finally, we note that for
X & ko, ri, (T) —p- T3 for T/T, 0. As in BCS, the re-
sults in this paragraph have been obtained without explic-
itly taking into account the long-range Coulomb interac-
tion between the particles.

EA/keTO= 5.0
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FIG. 3. C, (T)/Nks (right-hand scale) and H, (T)/H, (0)
(left-hand scale) vs T/T, .
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If the pertinent carriers in the oxide superconductors '
are governed by Bose-Einstein rather than Fermi-Dirac
statistics, as discussed by several authors in the litera-
ture, 's '7 and in particular by Kivelson, Rokhsar, and
Sethna's in the context of the resonating-valence-bond
model of Anderson, ' our results would be able to account
for the occurrence of apparently conventional supercon-
ductivity at high temperatures in these compounds. The
origin of V could be the interaction of the carriers with
phonons. With regard to liquid sHe our theory could be
relevant to quasi-2D liquid sHe layers: o Our results do
not aff'cct the Kosterlitz-Thouless transition ' but are
relevant to the interpretation of the superfluid order pa-
rameter.

While it is likely that fluctuations in the local phase
S(r) will destroy long-range order in the strict 2D limit of
the present problem, it is reasonable to suppose that in the
actual quasi-2D systems of interest there will be approxi-
mate long-range order and supercurrents which will live
for macroscopic times at finite temperatures sufficiently
below the mean-field T,. For the perovskite oxides weak
coupling between the CuOz layers would imply a highly
anisotropic 3D Bose gas. The considerations of Nozieres
and Saint James lead us to expect that such a gas will
have a pairing phase for values of V& V~, where V~ is a
threshold still small in comparison to the isotropic thresh-
old V». This gas should exhibit true long-range order at
finite temperature.
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