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%'e study the successive phase transitions and the domain-~all pinning in a model for sodium

nitrite crystals. %e use the Hubbard-Stratanovich transform to derive the Landau-Ginsburg
free-energy functional from a microscopic model. The obtained free energy has a quadratic gra-
dient term, and displays behavior consistent ~ith experiments. In particular there exists a free-

energy barrier to the domain-wall motion, leading to the possibility of the pinning of domain
~alis. This intrinsic pinning is interpreted as the origin of the speci6c-heat anomaly and the hys-

teresis observed in recent experiments.

There exist a number of materials which exhibit succes-
sive transitions from a prototype to an incommensurate
phase and then to a commensurate phase. A typical ex-
ample in the field of ferroelectricity is sodium nitrite
(NaNOz), which is known to have an incommensurate
antiferroelectric phase at temperatures between T,
(= 163'C) and T„(=164.5'C). ' This antiferroelectric
phase is characterized by an incommensurate modulation
of the magnitude of the dipole moments. As the tempera-
ture is lowered from T„, the period of this incommensu-
rate modulation along the a axis increases until a com-
mensurate ferroelectric phase appears via a first-order
transition at T,.

Phenomenological theories which reproduce these
features have been developed by several authors. 3 While
these theories are based on Landau-type-model free-
energy densities, a microscopic lattice dynamical model
containing the translation-rotation coupling has also been
proposed. " Since the crystal field in NaNO2 is strong, this
model essentially reduces to the Ising-spin description. '

In recent specific-heat measurements on NaNO2 crys-
tals, a small specific-heat anomaly with a marked hys-
teresis was observed at temperature Tt slightly above T,.
The origin of this anomaly, as well as of the thermal hys-
teresis, was then attributed to the pinning of domain
walls, possibly due to defects in the sample. Indeed it
seems that the anomaly was more evident in y-ray-
irradiated samples which were expected to have many de-
fects. It is, however, of interest to note that the anomaly
was observed even in virgin crystals with presumably very
few defects. This implies that the defect pinning solely
cannot account for the anomaly, thus making it necessary
to consider another mechanism for the domain-wall pin-
MQg.

The purpose of this paper is to investigate the domain-
wall pinning in the incommensurate phase of NaNO2
crystals and to provide a natural explanation for the
specific-heat anomaly. We start with the Ising-spin
description in which the microscopic parameters describ-

ing the effective short-range interactions can be deter-
mined by the experimental data. From this microscopic
model, we derive the Landau-Ginzburg free-energy func-
tional through the use of a Hubbard-Stratanovich trans-
form. s It is shown that the obtained free energy has a
term quadratic in the gradient of the order parameter.
Such a class of free-energy functionals has been analyzed
within the mean-field theory to reveal the possibility of
successive phase transitions. 3' In particular the com-
mensurate-incommensurate transition at T, is of the first
order, and due to the existence of a free-energy barrier the
pinning of domain walls occurs slightly above T,. This is
in qualitative agreement with experiments if we associate
the specific-heat anomaly with this intrinsic pinning of
domain walls.

Consider the Ising-spin description of NaNO2, where
an Ising spin s; + 1 is assigned to the NO2 dipole at site
i according to its orientation along the ~b axis. The
Hamiltonian is then given by

H 2 QJtJS;SJ,
fJ

with Jtj lt+Dtj, where DJ is the long-range dipole in-
teraction, and I;J is the effective short-range interaction
including the translation-rotation coupling. The summa-
tion is over the sites of the body-centered orthorhombic
lattice.

We now apply the Hubbard-Stratanovich transform to
Eq. (1),and express the partition function in terms of con-
tinuous spin variables 4 (K=—J/T; Soltzmann constant -=

1):

Z —T ~ -0/T Dc ~ -F(e)
4

where

F(4) 2 @Ct(K ');.& —Qlncosh@t
lJ I

In the momentum space the freewnergy functional F(4)
takes the form

F(e)- —,
' gX '(q) —I je(q)e(-q)+(I/12~) g e(q)e(q')e(q")C( —

q
—q' —q")+0(C'), (3)

pig g

where N is the number of sites, and K(q) and @(q) are the Fourier transforms of K~l and Ct, respectively. Noting that
the incommensurate modulation occurs in the direction of the a axis, we expand the interactions l(q) and D(q) near
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q 0 along the a axis:

I(q) a+/Jq + yq",

D(q) b+ ~q —pq,
J(q) -I(q)+D(q) =—a+bq' —cq'.

(4)

For the dipole interaction, our numerical calculations
show that the coefficients b, e, and p are all positive, in
agreement with the data in Ref. 5. Equation (4) then
leads to the continuum form of the free energy in the coor-
dinate space, valid around the critical region (T=a):

F(e)- dxf(e)

f(e)- f(T-a) /2a] e'+ —,', e' (s)
—(b/2a)(de/dx) +(c/2a)(d ze/dx2),

where e(x) may be regarded as the order parameter, and
the coordinate system has been chosen in such a way that
the x axis coincides with the a axis of the crystal.

The free energy of the form (5) has been studied ' to
reveal interesting critical behavior including the Lifshitz
point at T-a b 0 (c&0)." In particular, when b is
greater than zero, there exist three phases according to
the temperature T. For T & T„a+b /24 cthe null solu-
tion e 0 minimizes the free energy [Eq. (5)], implying a
disordered (paraelectric) phase. As the temperature is
lowered, an incommensurate (antiferroelectric) phase ap-
pears via a second-order transition at T„. The wave num-
ber q, of the modulation in this incommensurate phase de-
pends on the temjIx:rature, decreasing from (b/2c)'~ at
T„ to 0.68(b/c)'2 at T, a —1.18hz/c. Below T', the
system is ferrroelectric with the order parameter
e [3(1—r/a)1i~ . There exists discontinuity in the am-
plitude of the order parameter at T,; the commensurate-
incommensurate transition in this case is of the first order
in agreement with experiments on NaNO2 crystals.

With the measured values of (T„, T„q,) and with the
numerical values of (c,P, y), we can determine the param-
eters (a,b, e) describing the short-range interaction. If we
further assume that the short-range interaction exists only
between nearest neighbors and between next-nearest
neighbors (i.e., neighbors along each axis), we get the re-
la'tloll

a SIO+2(I, +Ib+I, ),
s- —(I,+I.),
c -(I,+4S.)/48,

where Io is the interaction strength between nearest neigh-
bors, and I, is that between neighbors along the a axis,
etc.

An interesting feature in this case of the first-order
commensurate-incommensurate transition is that near this
transition there exists a local minimum of the free energy
as a function of the domain-wall spacing. Thus there can

exist a free-energy barrier to the motion of domain walls,
leading to the possibility of the domain-wall pinning. This
"intrinsic" domain-wall pinning, as first pointed out by
Jacobs, ' provides the natural source of the specific-heat
anomaly as well as the thermal hysteresis observed in ex-
periments. The temperature T~ below which the pinning
occurs has been estimated T; a —0.97b2/c. In the in-
commensurate phase the region over which the pinning
occurs occupies the fractional temperature range

(T; —T,)/(r„—T, )=0.1S,

regardless of the values of interaction parameters. Al-
though thermal fiuctuations have been neglected in this
simple mean-field analysis, Eq. (7) is quite consistent with
experiments, which give values of the ratio in the range
0.09 (cooling)-0. 23 (heating) due to the hysteresis.

It should be noted that this intrinsic pinning is different
in nature from the lattice pinning due to the discreteness
effects. '2 In the latter case the lattice-pinning energy can
be estimated by'

E~ = dxcos(2xx) f(e), (8)

where the Poisson summation formula has been used.
Substituting Eq. (5) with e(x) =eo cos (q,x) into Eq.
(8) for the incommensurate phase, we obtain the result
EIp =0. Therefore discrete lattice effects are negligible in
NaNO2 crystals, and the lattice pinning is excluded.

Finally, as noted in Ref. 7, the decrease of the transition
temperatures T„, T„and T; with the y-ray dose can be
explained by reduction of interactions due to the defects
induced by irradiation. In particular, the prediction of
this analysis in consistent with specific-heat measurements
if, for example, we assume that the fractional changes of
the short-range interaction parameters lo, I„and lb+I,
due to the y-ray dose are comparable with each other.

In summary, we have used the Hubbard-Stratanovich
transform to derive the Landau-Ginzburg free-energy
functional for NaNOz crystals, thus establishing the con-
nection between microscopic models and phenomenologi-
cal approaches. The obtained free energy is characterized
by the term quadratic in the gradient of the order parame-
ter, and has a local minimum as a function of the
domain-wall spacing. This leads to the intrinsic pinning
of domain walls at the temperature slightly above the
commensurate-incommensurate transition temperature,
which provides a natural explanation of the specific-heat
anomaly and the hysteresis observed in recent experi-
ments. It has been also shown that the discrete lattice
eff'ects are negligible, and the lattice pinning does not
occur.
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