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%e propose that high-energy electrons when scattered from random media reveal a backscat-
tered peak similar to that found recently for optical ~aves. However, unlike electromagnetic
~aves, an antibackscattered peak will appear when spin-orbit scattering is strong. The anti-
enhancement of the backscattered electrons is unique to three-dimensional systems and is absent
for two&imensional systems where a reduced backscattered peak is predicted. Possible experi-
mental realizations are proposed.

Recently, weak localization of classical waves has at-
tracted much interest. In particular, it has been demon-
strated' that when light is scattered from a random
medium, the scattered wave exhibits a narrow backscat-
tered peak of width -A, /l, where X is the photon wave-
length and I is the elastic transport mean-free path. In
random solids, this peak is hidden due to the optical inten-
sity fluctuations (speckle) and is recovered45 only after
an ensemble average of the intensity is performed. Thus,
the backscattered peak is a general phenomenon which re-
sultss from interference between a multiple-scattering
path and its time-reversal path. This always leads to con-
structive interference which enhances the backscattered
peak near the backward direction (e tt). Effect of polar-
ization on the backscattered peak was also intensively
studied.

The problem we address in this Rapid Communication
is whether it is possible to observe antibackscattered peak
due to the destructive interference. We argue that this
can be realized for scattering of high-energy electrons, in
the energy range of -200 eV, from amorphous semicon-
ductorlike Ge or Si. The backscattered intensity will pos-
sess a narrow backscattered peak of width A/l =0.0l rad.
When the semiconductor is doped or alloyed with large
valence atoms (for example, Si:Sb or Sit — Nb„)„wepre-
dict that an antibackscattered peak will be revealed. The
antibackscattered peak results from antilocalization, a
phenomenon known from studies of transport properties
of disordered materials. However, surprisingly, we find
that the effect of the spin-orbit interaction on the back-
scattered peak depends strongly on the dimensionality of
the system.

The antibackscattered peak appears only for three-
dimensional systems. For strictly two-dimensional sys-
tems, we find that the effect of the spinwrbit interaction
leads only to a reduced backscattered peak which never
turns into an antipeak. Crossover effects from three di-
mensional systems to quasi two dimensional systems are
also of great interest. We hope that our predictions will
motivate an experimental search in the area of scattering
of high-energy electrons from disordered materials.

We consider an electron of wave vector K; and spin S
that is injected into a random material at point n undergo-
ing elastic multiple scattering and is emitted at point m

with a final wave vector Kf and spin S' (see Fig. 1). A
time-reversal trajectory exists in which the electron is in-
jected at point m and emitted at point n, with a different
final spin state S" due to the spin-orbit interaction. We
calculate the intensity which results from the interference
between these two trajectories. The initial electron wave
function is y; ) K;,S), where S is the initial spinor. At
point m, the final wave function is yf ~ Kf,S') in which
both the K state and the spinor S of the electron are
changed due to multiple-elastic scattering. The spinor is
changed due to rotationss caused by spin-orbit interac-
tions. The final electron state in the reversed trajectory is

I//f (TR) ( KI,S"). Thus, although the electron is emit-
ted with the same final wave vector, its final spinor S" is
diferent from S' due to lack of time-reversal symmetry in
the spin-orbit interaction Hamiltonian

HID Cpcr L,
where Cp (2m C2r) '(dV/dr) and V is the scattering
potential.

The scattering amplitude in the Born approximation is

FIG. 1. The two-electron time-reversed multiple-scattered
trajectories which contribute to the interference which results in
a backscattered intensity peak.
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A~ -&S,,K, i H„iK.,S.&

which can be rewritten as

ing way:

cos8/2 e''4+~' i sin 8/2 e

i sin8/2 e'~e ~~ cos8/2 e '~e+~~

A~-Vx. ,x,&ssII+ie(%«» eris & ~

where V,K, and e depend on the explicit form of the po-
tential V r). As pointed out by Bergmann this term has
the effect of rotating the initial spinor. The final spinor

i Sb& is related to the initial spinor by a rotational matrix

iS,&-RiS.& .

For n multiple scatterings, R can be written as a product
The rotational matrix can be

expresseds in terms of Euler angles (8,p, @) in the follow-

I

For a given trajectory, we may write

Wf I Kf&(R I S&) ~

l/ff(TR) i Kf&(R '
i 8&)

where R ' is the inverse matrix of R. The intensity of
the electron backscattered wave for a particular trajectory
1s given by

IJ (Kg, Kf) i lpf, J' (TR)+pf, j' i (7)

Using Eq. (6) and summing over all trajectories that start
at point n and end at point m (within a distance -I from
the scattered boundary) we get

I(Kt,KI) Iag+ IP~Iexp[i(K& r„-Kfr~+p~j)]~R,~J i 3&+Pm' exp[i(Ki r~ —Kf r„+pggygf)]R 'IS& I

where p„~is the phase acquired during the trajectory j
between points n and m. By using Eq. (8) we take only
the "diagonal"5 terms: namely, interference of a given
trajectory with the time-reversed trajectory. For random
solids, however, the off&agonal terms lead to interference
between digerent trajectories which produces intensity
fluctuations. 5 Thus, Eq. (8) may be understood as the
ensemble-averaged backscattered intensity which removes
the off-diagonal terms (speckle). s Using the relations

&Si(Rt)'iS&-(&SiR'iS&)', &SiR'iS&-A.",
and p J p i the final expressions for the backscattered
intensity is

I(q) Io 'I+ Q AJ iP, i zcos[q (r„-r)+bj]', (9)
j,nnt

where i P i i is the probability for an electron that is
first scattered at point n to be emitted at point m in a tra-
jectory j. The scattering vector q is given by q K&+Kf.
The second term in Eq. (9) leads to the backscattered
peak due to interference. Whether this term is positive or
negative (destructive interference) depends on the values
of AJ and bj which are due to the spinwrbit interaction.
For AJ I and 8~ 0 we get the usual enhancements e for
scalar spinless waves which, as seen from Eq. (9), leads to
a maximum peak of factor of 2 at q 0 which corresponds
to the backscattered angle 8 a; This will be approxi-
mately the case for a weak spin~rbit interaction. If we
define the diffusion spin-orbit length L as the distance an
electron diffuses in a spin-orbit scattering time, then for a
sample of size L &L, one always expects an enhanced
backscattering peak as in the case for light scattering.
However, for L»LI, and Lao«Lq (L~ is the inelastic
scattering length) the second term in Eq. (9) is usually
negative for large trajectories where the size of the trajec-
tories WJ is much larger than L . For such long trajec-

toriess,

the angle between I 8& and I
8'& is rando m and un-

related and the sum over all possible (large) trajectories is

I

equivalent to an average over all Euler angles which leads
to

((S i R i S»e,e,,e
——', WJ »L (lo)

Thus for trajectories for which WJ »L, we may take in

Eq. (9) the values Al —2, Bl 0. This is the origin of
the antipeak of the backscattered electrons in a disordered
system undergoing spinwrbit scattering. Since long tra-
jectories correspond to small backscattered angles, the
width of the antipeak will be of order 8=2K/L . For
short trajectories for which WJ &L, which correspond to
8»A/L~, the spin-orbit effect is negligible and we get the
normal enhancement backscattered tail. Thus in the pres-
ence of strong spin-orbit scattering, the backscattered
peak is split into two peaks separated by an antipeak. In
Fig. 2, we plot our calculated backscattered peak for a
threeMimensional system in the presence of spin-orbit
scattering. We used the diffusion approximation ' for

i P ~ i with an absorbing boundary, which was very suc-
cessfule9 in accounting for the backscattered peak of
light.

The dashed curve is the backscattered peak for l/X 2
without spin-orbit scattering. The solid curve cerresponds
to the backscattered antipeak. The two maxima corre-
spond to the crossover from short trajectories (W, &L~)
to long trajectories (WJ &'L ).

We now turn to the calculation of the backscattering of
electrons from a disordered strictly twoMimensional sys-
tem. For light scattering from a two-dimensional system
it was shown'0 that the line shape of the backscattered
peak is identical to that for threeMimensional systems
(except near 8=+ where strong localization rounds off
the peak). By contrast it turns out that the effect of spin-
orbit scattering on the backscattered peak is very sensitive
to the dimensionality of the system. For two dimensions,
the fact that the orientation of the z component of the spin
is unchanged due to spin-orbit scattering afl'ects the back-
scattered peak. The matrix (S i R 2

i S& in two dimensions
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FIG. 2. Backscattered intensity as a function of backscat-
tered angle. The solid curve corresponds to the case of spin-
orbit scattering and the dashed curve is the enhanced peak
without spin-orbit scattering.

FIG. 3. Backscattered intensity as a function of backscat-
tered angle for a two-dimensional system. The dashed curve is
the backscattered peak without spin-orbit scattering and the
solid curve is due to spin-orbit scattering.

depends only on p and @ and for long trajectories,
WJ &)L, we obtain

Long trajectories will not contribute to the backscattered
peak since according to Eq. (11) on the average there is
no interference between the time-reversal trajectories and
the second term in Eq. (9) vanishes. Thus there is no an-
tipeak for backscattering of electrons from a two-
dimensional system, although the peak is much reduced
since for 8()/L there is no constructive interference.
In Fig. 3, we plot the backscattered peak of electrons from
a two-dimensional system for I/X 2. The dashed curve is
the backscattered peak without spin-orbit scattering. The
solid curve is due to spin-orbit scattering. The crossover
between the curves occurs at 8= + A/L~; for [ 8 )

& l,/L„,the efl'ect of the spin-orbit interaction is negligi-
ble and both curves nearly coincide.

For a quasi-two-dimensional system where the com-
ponent of the spin S in the z direction is not strictly con-
served, we expect interesting crossover effects from Fig. 2
to Fig. 3 as the width of the layer is reduced.

Very recently, it was proposed" that strong spin-flip
scattering of neutrons may lead to an antibackscattered
peak. These calculations were carried out only to second
order which is justifIed for neutrons which possess a long

mean-free path. We have carried out a similar calculation
on the effect of spin-flip on electron scattering which in-
cludes all higher orders and find that the antibackscatter-
ing peak is much reduced that it will be hard to observe
experimentally. Therefore, the only realistic possibility of
observing an antibackscattered peak for electrons is via
the spin-orbit interaction. For electron energies of -200
eV in amorphous Ge or Si, the elastic mean-free path is
about'~ 500 A which allows for many multiple scatterings.
A strong electron spin-orbit interaction can be obtained
when these semiconductors are doped, for example, with

Sb. This sugIIestion is supported by the fact that recently
it was found that spin-orbit scattering dominates the
low-temperature transport of Si:Sb. Other materials
which may exhibit strong spin-orbit effects are Si~ -,Nb„
and Si~ —,Au, .

In summary, we have shown that the scattering of
high-energy electrons from random systems leads to a
sharp backscattered peak. When spin-orbit interactions
are strong, we predict an antibackscattered peak for
three-dimensional systems and a reduced backscattered
peak for two-dimensional systems.
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