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In this paper we show that the development of resonating-valence-bond correlations and the
subsequent superconducting order in the high-7, oxide superconductors are described by an U(1)
lattice-gauge theory. The insulating state has an almost-local gauge symmetry and doping
changes this to a global symmetry, which is spontaneously broken at low temperatures, resulting
in superconductivity. New topological excitations associated with the singlet field are found.

There has been an explosion of activity in the field of
high-temperature superconductivity since the discovery of
superconductivity in doped La,CuO,.! Significant pro-
gress has been made in the understanding of the mecha-
nisms of high-T. superconductivity.? The resonating-
valence-bond (RVB) theory of superconductivity pro-
posed by Anderson® and being developed by the au-
thors*~7 and others®® is based on a simple Hubbard model
and has been quite successful in explaining many of the
experimental results.

The pure La,CuQy is an antiferromagnetic (AFM) in-
sulator which loses long-range AFM order at about 1%
doping by Sr or Ba.!® We have argued® that 1% doping
removes antiferromagnetic order and stabilizes RVB be-
havior by the quantum fluctuation arising from the holes.
At this level of doping, the superconducting 7. is unob-
servably small or is absent due to localization of holes.
However, we have preexisting Cooper pairs in the RVB
state up to a temperature ~J, the antiferromagnetic cou-
pling. Superconductivity is absent in this range of tem-
peratures due to the very small electric compressibility of
lightly doped systems.

The reduced fluctuation in the number of electrons in
any given volume results in large quantum mechanical
phase fluctuations suppressing any long-range supercon-
ducting order. The present authors and Zou® character-
ized this by a Ginzberg-Landau theory with a very small
gradient term arising from the divergent Landau Fermi-
liquid parameter F3. Though qualitatively correct, this
does not bring out the RVB or superconducting correla-
tion completely. In the present paper we show that the
nature of RVB and superconducting correlation is de-
scribed by a lattice gauge theory. The new local symme-
try close to the insulating state arises from the (almost)
conservation of particle number on each site. The behav-
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ior of the Wegner-Wilson loop correlation function
quantifies the RVB correlation. We find new topological
excitations associated with the singlet field. These are
analogs of magnetic charges in a 2-plus-1 dimensional
U(1) lattice-gauge theory of electrodynamics. We believe
that the present theory also points towards the solution of
two outstanding problems, namely, the characterization of
the RVB state in Mott insulators as well as the so-called
Kondo coherence in mixed-valence and heavy-fermion
systems both having enhanced singlet correlation or quan-
tum coherence but not true spontaneous symmetry break-
ing under normal conditions. We find features which are
similar to that in the problem of confinement in quantum
chromodynamics. The present theory is a microscopic
theory of superconductivity which avoids the complica-
tions of Gutzwiller projections (as encountered by the
BZA theory,* for example) in a physical way by
identification of proper symmetries and fields. It also pro-
vides simple and powerful calculational methods for phys-
ical quantities. Our theory is also a natural description of
Fermi systems with very short (singlet) coherence length
of the order of lattice parameters.

For convenience we start with the exactly half-filled
band Mott insulator in a simple square lattice which is de-
scribed by the Heisenberg antiferromagnetic Hamiltonian

H=J3(S:i'S;— %), (D
where J =4t%/U and t is the hopping integral and U is the
“Hubbard U.” Pairs of indices like ij will always stand
for nearest-neighbor bonds in what follows, unless other-
wise mentioned. As is well known, this Hamiltonian is de-
rived from the Hubbard Hamiltonian as an effective
Hamiltonian of the insulator for large U/t. The physics of
the RVB comes out clearly when we write the Pauli spin
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operators in terms of the electron operators ¢ to get*
H = —J Y blby (2)

with the local constraints n;y+n;; =1, where b} =(1/
V2) (c.‘}c)l -c,;cH) is the single creation operator This
Hamlltoman has the important local gauge symmetry
ch—e ‘c'r It is physically obvious and can be shown
mathematically by an extension of Elitzur’s theorem'!
that this local symmetry cannot be spontaneously broken
and the thermal average (b;;)=0 at all temperatures
(even in the presence of a global symmetry-breaking field
which tends to zero).

We should pause here to discuss the nature of this local
gauge symmetry. The above local symmetry is not an ex-
act symmetry of all states of the original Hubbard Hamil-
tonian; it is true only so long as we stay below the Mott-
Hubbard energy gap. But it is a symmetry which controls
the subspace containing the ground state and low-order
excitations, and in this subspace it can be made exact.
Here we have an intriguing situation where a rich approx-
imate local symmetry appears depending on the physics of
the problem. It is also intriguing that a similar gauge
symmetry appears in the Girvin, Macdonald, and Reed
theory of the fractional quantum Hall effect.

The RVB state is believed to be the stable ground state
of the two-dimensional triangular lattice'? as well as the
lightly doped square lattice Heisenberg spin-3 antifer-
romagnets.> Hence we will concentrate on the singlet
correlation '’ and develop an effective action or free ener-
gy corresponding to this. We want to construct a free en-
ergy such that

Tre “#~ [TL(ij)da} (2)da; (e P01 | (3)

where F is the free energy or effective action expressed in
terms of the “order parameter” A;;(z) which is attempt-
ing to condense. Here 7 is the “Euclidean time” variable,
and

[rdA*dAAe ~PF @
Srda*dae ~FF

The free energy FI[A] can be evaluated in several
ways—one is a formally exact way of converting the
quantum average into a functional integral involving
Grassman anticommuting variables; or using the Hubbard
Stratonovic identity. We will for simplicity adopt an ap-
proximate but physically transparent way to calculate
F[A] for high temperatures where we neglect the “time”
dependence of A(r). The procedure is to get the most
general Hartree factorization of # involing A to get

WHF— —JZ(ASb,'j'f'H.C.)'*'JZA,‘?Aij ’ (5)

with A;; being independent complex variables defined on
every nearest-neighbor pair. Since the mean-field Hamil-
tonian is bilinear in fermion variables, the free energy can
be evaluated in terms of a determinant involving the ma-
trix A;j. Then we use this free energy in the functional in-
tegral [Eq. (4)] to calculate averages. Thus, even though
we used a mean-field-type approximate method to calcu-
late the parameters of the effective action, our theory is
not a mean-field theory. Since we are interested in the
high-temperature region, close to the mean-field transition

(bij)E<A,‘j>E

temperature, we can expand the free energy in powers of
Ay,

Since we know that (A;;) =0 by Elitzur’s theorem, the
local gauge invariance puts strong restrictions on the form
of F[A]. The form of F we obtain is

=~aY |a;|2+bY |A;]*
+CZ(A,~’;AjkA2‘1A[,-+H.C.)+ cee 6)

This form is consistent with local gauge symmetry The
symmetry of this free energy is Aj— eAje™. In the
third term of Eq. (7) the summation is over elementary
plaquettes of the lattice.

The mean-field theory described above gives a value of
a=aog(kgT —J/2), b=boJUB)?, and c=coJUB)?3,
where ag, bo, and ¢ are numbers of the order of unity.
An exact derivation of the effective action including
Gutzwiller projection (that is avoiding double occupancy)
is expected to change only the coefficients q, b, c, etc., and
not the form of Eq. (7). This is a nontrivial consequence
of the local symmetry in the problem. In this sense the
parameters a, b, and ¢ may be determined from experi-
ments and can be used as input parameters of our theory.
In Eq. (7) only the third term, the “plaquette” term, de-
pends on the phase of the order parameter. It is this term
which helps in the development of nontrivial RVB correla-
tion. In the absence of the third term we have essentially
fluctuating independent link variables. The plaquette
term correlates them, leading to the nontrivial behavior of
the gaugc invariant Wegner-Wilson loop correlation func-
tions'* ! defined as

w(C) -(b,'jbjkblzl RN W) "'(A,-‘;AjkA]:[ e An) , (D)

where the bonds ij,jk, . .. ,ni form a closed loop C in the
lattice. Thus, one of the first consequences of our theory
is the realization that the RVB state can be characterized
in a most natural way by nonlocal loop correlation func-
tions.

The phase-independent term in the free energy mostly
controls the amplitude ﬂuctuanon Thus we can make the
approximation A;; = | Ag(B) | ™ to get

F = aNgA§+bNgA$
+CAgZCOS(9ij =0+ 0y — 0;) , (8)
where Np is the number of bonds and
Ag - fe _ﬂ(aAz+bA4)A2dA
fe —p(aA2+bA%Y) ’ )
©

W(C) zA&P(C)<COS(9ij —ij+9k[ - . "‘9,,,')) N

where P(C) is the perimeter of the loop C in lattice units.

Equation (8) is precisely the action of a U(1) lattice-
gauge theory (with a slightly different convention for the
definition and sign of the link variables in the effective ac-
tion) and we borrow the known results of this well-studied
theory. In particular, in two and three dimensions this
theory is known to confine for all values of the coupling
constant. Hence the Wegner -Wilson loop obeys the “area
law” for large loops '

(cos(8;j — O+ -+ - Oy)) == ~o4C) | (10)
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where o is the “string tension” and A(C) is the area of
the loop. The nonperturbative effects in the three-
dimensional U(1) gauge theory keep the system only in
the confining phase.'® This is a remarkable result which
shows that in physical dimensions there is likely to be no
genuine phase transition at any finite temperature in an
RVB spin system. The string tension o is a function of
temperature. We will call 1/vo the correlation length
(expressed in lattice units) over which the quantum coher-
ence associated with the RVB correlation is the strongest.
As T decreases the correlation length increases. It may be
possible to measure o experimentally by some neutron
scattering experiments. Another useful quantity is the
plaquette-plaquette correlation function which decays ex-
ponentially in the confining phase and it also provides a
correlation length.

There are interesting topological and nontopological ex-
citations in our theory. Using a Villain type of approxi-
mation'” it is easily shown that there are configurations of
this field A;; corresponding to magnetic monopoles. They
carry integer magnetic charges which are gauge invariant.
As mentioned before we call them magnetic charges, be-
cause our U(J) theory resembles the electromagnetic lat-
tice gauge theory in 2 plus 1 dimensions which carry mag-
netic charges. These magnetic monopoles abound at high
temperatures and we have a magnetic plasma. These
magnetic monopoles are the novel excitations that we have
found in the RVB state. It is remarkable that we have to-
pological defects without any spontaneous symmetry
breaking.

Since the A field is coupled to the underlying electrons
any topologically nontrivial configuration is likely to in-
duce a fermionic charge.'® This point and its conse-
quences are being studied by us. These magnetic mono-
poles together with their possible induced fermionic
charges are entirely new objects that arise in the three-
dimensional RVB state.

We believe that the nontopological unstable energeti-
cally stable point defects of the A field are likely to be the
candidates for the spin solitons and charged solitons of
KRS.? The following limiting case illustrates this. Imag-
ine a dangling (unpaired) spin at the origin in an other-
wise RVB vacuum. In this state clearly Ag; =0, where j
are the nearest neighbors of the site at the origin. If we
take our mean-field Hamiltonian [Eq. (6)] and put
Agj =0, the fermion degree of freedom at the origin is
decoupled from the rest of the system and its energy is
zero. We may identify this with the “midgap state.” If
this state is occupied we have a neutral soliton and have a
charged soliton (hole) if this state is empty. The above
situation is to be contrasted with the topological solitons
in polyacetylene. The nontopological nature of the spin
and charged soliton in our picture may be related to the
possible absence of any discrete symmetry breaking in the
RVB state.

As T decreases, the “time” dependence of the line field
A(7) becomes important and we have to keep the extra
term of the form [Af(r)8/87A;;(z)d in the free energy.
All our local symmetries are time independent. So our
problem does not reduce to an Euclidean d+ 1 dimension-
al lattice gauge theory at T=0. It is plausible that this

theory is in the “Coulomb phase” at T =0 where there is
no energy gap for spin excitations. In a Coulomb phase
there are no energy gaps for excitations.

Now we describe briefly how doping removes the local
symmetry allowing only a global symmetry. At
sufficiently low temperatures, the global symmetry may be
spontaneously broken resulting in superconductivity. The
Hamiltonian in the case of non-half-filled bands is

H = — 13 e et u Yo
i
—J X bby—J X (Blby+H.c.) .
% ijOij (ijzk)( ub]k HC) (ll)

where ;= (1 — fi; - ;) io, etc. This Hamiltonian does not
have the local symmetry. It has only the global symmetry
cio— €'°ci;. Adapting the same procedure as for the
half-filled band, we get an extra “hopping term”
dX(AfAj+H.c.) in the free energy [Eq. (6)], where
d =~ 8Jd,+ 8B%Jt%d, (also the parameters a, b, and ¢ and
in particular the mean-field transition temperature starts
depending on 8). This term breaks the local symmetry
and is invariant only under the global symmetry
A;;— e"®A;;. This global symmetry can be spontaneously
broken and (A;;) can be nonzero at low enough tempera-
ture. With doping the superconducting coherence length
increases and when the coherence length is much greater
than the lattice parameter it is appropriate to replace the
action [Eq. (6)] including the hopping term by its coarse-
grained version which is easily shown to be the Ginzburg-
Landau free energy.

In the heavy-fermion and Kondo problems we have a
strong tendency to have singlets on impurity sites in dilute
systems as well as to have bond singlets in concentrated
systems. The development of this singlet tendency as the
temperature is lowered has been termed Kondo coherence
and it always lacked a clear picture as well as
quantification in the case of the Anderson lattice. The
link variable A;; is definitely the appropriate %uantity to
be looked at as has been emphasized by Noga.!” The sim-
plest approximate free energy that we get starting from an
Anderson lattice Hamiltonian is exactly Eq. (6) with the
additional dA;;Aj term which breaks the local symmetry.
The interesting point is that the chemical potential and
the parameters like the relative position of the f level, etc.,
are such that they lead to a very small d term compared to
¢ term in the free energy leading to the impossibility of
spontaneous symmetry breaking in spite of the presence of
the term which breaks the global symmetry. Most impor-
tantly we find that the behavior of the Wegner-Wilson
loop and the plaquette-plaquette correlation function
characterizes the Kondo coherence. More details of the
Kondo-lattice behavior and calculations of the transport
and other physical properties of high-temperature super-
conductors will be discussed in a forthcoming paper.

Note added in proof: Some of the above, particularly
mechanisms for superconductivity, has been superseded in
the months since submission. Nonetheless the paper
represents the first proposal for exploitation of the local
gauge version of the RVB theory. For more recent treat-
ments see P. W. Anderson (unpublished) or 1. Afflect (un-
published).



RAPID COMMUNICATIONS

kYA GAUGE THEORY OF HIGH-TEMPERATURE SUPERCONDUCTORS . . . 583

We thank E. Abrahams and Ian Affleck for useful discussions. This work was supported in part by NSF Grant No.

DMR-8518163.

1J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 189 (1986);
P. Chu et al., Phys. Rev. Lett. 58, 405 (1987).

2For references of the most recent theories see T. M. Rice, Z.
Phys. B (to be published).

3P. W. Anderson, Science 235, 1196 (1987).

4G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Com-
mun. (to be published).

5P. W. Anderson, G. Baskaran, and Z. Zou (unpublished).

6P. W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Phys. Rev.
Lett. 58, 2790 (1987).

7Z. Zou and P. W. Anderson, this issue, Phys. Rev. B 37, 627
(1988).

8S. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35,
8865 (1987).

9H. Fukuyama and K. Yosida, Jpn. J. Appl. Phys. 26, xxx
(1987); A. E. Ruckenstein and P. J. Hirschfield, J. Appel
Phys. Rev. B 36, 857 (1987); G. Kotliar (unpublished).

10See, for example, D. Vaknin et al., Phys. Rev. Lett. 58, 2802
(1987), and references therein.

1S, Elitzur, Phys. Rev. D 12, 3978 (1975).

12p_ W. Anderson, Mater. Res. Bull. 8, 153 (1973); P. Fazekas
and P. W. Anderson, Philos. Mag. 30, 432 (1974).

13For the inclusion of antiferromagnetic correlation, see
J. Wheatley (unpublished). A theory involving the link vari-
able corresponding to the “bond charge order” has been
developed by I. Affleck and J. B. Marston (unpublished).

14F. J. Wegner, J. Math. Phys. 12, 2259 (1971); K. G. Wilson,
Phys. Rev. D 10, 2445 (1974); a collection of important arti-
cles in lattice gauge theory including the above are reprinted
in Ref. 15.

15Lattice Gauge Theory and Monte Carlo Simulations, edited
by C. Rebbi (World Scientific, Singapore, 1983).

16A. M. Polyokov, Nucl. Phys. B 120, 429 (1977).

17T, Banks, R. Myerson, and J. Kogut, Nucl. Phys. B 129, 429
(1977); R. Savit, Phys. Rev. Lett. 39, 55 (1977).

18See, for example, A. P. Balachandran (unpublished), where
the Wess-Zumino term and induced fermion charge are inves-
tigated for topological point singularities in superfluid helium.

19M. Noga (unpublished).



