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Model for a glassy adsorbate: Two-level systems and specific heat
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A two-dimensional Frenkel-Kontorova model with piecewise harmonic substrate potential is used

to investigate the properties of a glassy adsorbed layer of atoms interacting via harmonic nearest-

neighbor forces. An infinite number of metastable configurations is found. Under certain condi-
tions these are in a one-to-one correspondence to a class of sequences of integers {symbols) in analo-

gy to chaotic dynamical systems also demonstrating the possibility of two-dimensional spatial
chaos. A microscopic derivation of the simplest two-level systems is given. Their asymmetries, po-
tential barriers, and density of states are determined analytically. %e have found that the density of
states depends sensitively on type and degree of the disorder of the adsorbed layer. For quasi-one-
dimensional disorder produced by "kink" defects, earlier results for a one-dimensional model are
reproduced, leading for the specific heat to a power law e( T)- T~ with a fractional exponent small-

er than 1. On the other hand, for "Gaussian" disorder obtained from an idealized quenched pro-
cess, we find a constant density of states and therefore a linear specific heat, provided the quenching
temperature Tq„ is suf6ciently high. For decreasing Tq„ the density of states becomes nonconstant,
developing structures on any energy scale. Furthermore, we show the time dependence of the
specific heat to be exponential.

I. INTRODUCTION

The lack of symmetry of amorphous structures makes
theoretical investigation very difficult, and, hence, their
microscopic description is a challenge. The utmost in-
teresting problem is whether a system of particles
without built-in randomness (i.e., the interactions are in-
variant under a nontrivial group of translations and rota-
tions) can form glassy configurations. This question is
answered by many numerical calculations for a few hun-
dreds of atoms, but a general answer is still desirable.

Recently we followed an approach having its origin in
the field of nonlinear dynamical systems. There it was
shown that even simple deterministic equations of motion
(invariant under time translations) may exhibit rather
complex behavior in time; today, this is called temporal
chaos. Restricting ourselves to one dimension, we have
investigated the possibility of spatial chaos. ' %e found
a simple, translationally invariant model with anharmon-
ic and competing interactions which exhibits an infinite
number of spatially chaotic (glasslike) and metastable
configurations. These con5gurations were shown to ex-
hibit short-range order but no long-range order. One of
our major results was a microscopic derivation of
configurational excitations forming two-level systems
(TLS's). Their contribution to the specific heat below 1

K shows, under certain conditions, a power-law behavior
c(T)-T with Z(1.

For more than a decade such TI.S's have been believed
to govern the low-temperature properties of amorphous
materials in a universal manner. Anderson, Halperin,
and Varma and Phillips independently introduced this
concept to explain the low-temperature anomalies found
by Zeller and Pohl. Asiuming a smooth distribution of
both energy asymrnetries and barrier heights of the TLS's

on energy scales relevant at temperatures below 1 K these
authors found tc(T)-T2 for the thermal conductivity,
c(T)-T for the speci(le heat, and showed, in addition,
that c(T) should depend logarithmically on the time
scale of the measurement. However, most experiments
show considerable deviations from these predictions.
Power laws can be Stted, c ( T) —T, with a fractional ex-
ponent Z (0.5~Z~1.3) depending on the material,
quenching rate, etc., ' thus implying a nonconstant den-

sity of states. This is also experimentally conSrmed by
phonon-echo experiments of Molenkamp and Wiersma
who'found, for the density of states, n (e)-s ' . For de-
tails of the low-temperature physics of amorphous ma-
terials the reader is referred to Ref. 10 and to the reviews
by v. Lohneysen" and by Hunklinger and Raychau-
dhuri. '

The density of the TLS contributing to the speci6c heat
below 1 K is about 10 per atom. This makes it almost
impossible to calculate n(s) (e.g. , for a Lennard-Jones
system) numerically. Indeed, for 500 particles only four
TLS*s with energy smaller than 3.4&10 eV were
found. ' Consequently, simple models like the one-
dimensional chain we have studied are helpful. It is the
purpose of this paper to extend our recent work to two-
dimensional systems where we will focus on the TLS's,
their density of states, and the speci6c heat. For a short
review of the present theoretical work concerning TLS's
see the introduction of Ref. 3 and the overview given by
Hunklinger and Raychaudhuri. '

In two dimensions it is most natural to consider an ad-
sorbed monolayer of atoms interacting with a substrate.
Such a system already satis6es two necessary conditions
for bearing disordered (spatially chaotic) configurations:
(i) anharmonicity produced by the substrate and (ii) com-
petition of the interatomic interactions and the interac-

1988 The American Physical Society



37

tion between the atoms and the substrate. In order to de-
scribe such a monolayer we use a two-dimensional
Frenkel-Kontorova model. In a first step the metastable
configurations of the model are derived and shown to be
spatially chaotic. Then eve turn to the investigation of
transitions between metastable configurations diHering
from each other only locally and which we identify with
the TLS's in our model. Assuming that the driving
mechanism of the transitions is phonon-assisted tunnel-

ing, these excitations are shown to be important at even

very low temperatures. Their density of states (determin-

ing the low-temperature properties of the system) is cal-
culated for two dilerent kinds of disorder.

This paper is organized as follows. In Sec. II we intro-
duce the model and classify its metastable conSgurations.
The TLS, their classical excitation energies (asymmetries)
and potential barrier heights will be discussed in Sec. III.

In the subsequent two sections we investigate the cor-
responding density of states for a quasi-one-dimensional
disorder with "kink defects" (Sec. IV) and for two-
dimensional, "Gaussian" disorder obtained from a
quench process (Sec. V). Finally, Sec. VI contains a sum-
mary and discussion of our results.
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solutions of the nonlinear difference equation

(Dzxo }(j)=—g[xo(j+5)—xo(j)]+Mo(j)]

=0(j;xo } ~ (2a)

with the nonlinearity

FIG. l. Top view of a part of the adsorbed layer. The
hatched region indicates the "cell" m(j) the particle j is sitting

in, and u is the period of the substrate.

II. MODKI.
p(j;xo}=ham'(j;xo) . (2b)

The operator Dz is related to the discrete Laplacian 6 by

Let gz(j) denote the Green's function of Dz. i.e.,

(D~g~)(j ) =5;,o .

An explicit representation and properties of gz(j), which
we wiB use in the following, are given in Appendix A.

Noticing that the difference equation (2) does not cou-
ple the components of a of x, we will suppress u in the
foBowlng cxccp't whcfc l't ls llcccssary. Spllttlllg up x ( j}
into a "cell position" and "intracell position, "

V(x) =—g[x(j+5)—x(j)—ass]2

+ g[x(j)—am(j;x)]
A,C
2 j

x(j)=am(j;x )+u(j),
(la} we can rewrite the difference equation as

Dzuo(j)=ahm(j;xo) .

Using the Green s function this is equivalent to
with the "cell" variable (cf. Fig. 1}

();x )=lllt[x (g)/a + l ] (a!=1,2)

%e consider a layer of adsorbed atoms which topologi-
cally form a square lattice; i.e., the "bonds" of the atoms
build four-sided cells and each atom has exactly four
neighbors. The adsorbed atoms interact harmonically
with their neighbors and, in addition, with a periodic sub-
strate potential. The substrate is assumed to be a square
lattice with lattice constant a (Fig. 1). This model is just
a two-dimensional Frenkel-Kontorova (FK) model. ' If
the substrate potential is much stronger than the
nearest-neighbor interaction it can well be approximated
by a piecewise parabolic potential (Fig. 2}. Hence, the
following system with the potential energy

will be investigated. The 6rst term accounts for the
nearest-neighbor interactions, with C y 0 the correspond-
ing coupling constant, and the substrate potential with
relative strength A, ~0 is represented by the second term.
The integer double index j=(j„jz), which labels the
atoms, has a range j =0, 1, . . . , N —1, so that the sys-
tem consists of N =N, N2 particles. The index 5 runs
over 811 nearest-neighbor vectors of a square lattice, a /san

is the equihbrium position of the nearest-neighbor bonds.
x always stands for the whole set of positions t x(j)]. The
one-dimensional version of this model has been studied
extensively by several authors. ' '

The stationary configurations xo of our system [with
potential energy (1)] are solutions of 5V/5X =0, i.e.,

I~ ~sul slrale

FIG. 2. The substrate potential along the x axis. The in-

tegers m (1 component) of the "cells" are indicated.
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g gz(j —k)hm (k) & —,
' Vj (10)

xo(j)=am(j;xo)+a ggi(j —k)b~(k;xo) .
k

Equation (7) is nothing more than the "integral equation"
associated with Eq. (2). However, suppose for a moment
that m (k;xo) would not depend on jxo(k) j. Then speci-
fying an arbitrary set of integers m = jm (k)I, Eq. (7)
determines a configuration

xo(m) = jxo(j;m ) I

of the adsorbed atoms. But Eq. (lb) readily shows that
this is a solution of the difFerence equation if and only if
the self-consistency condition (SCC)

m (j)=int[xo(j;m)/a + —,']
is satisfied. This restricts the possible integer
configurations j m(k) I. Using (7), Eq. (9}can be written
in a more suitable form

bounded by a value r depending on the relative strength
of the substrate potential, i.e.,

~
[cr(j) —I] e

~

&r (14)

for all j and all e .
To be more precise: For a given r (characterizing the

degree of disorder) a A,,(r) can be found such that all
configurations obeying Eq. (14) also fulfill the SCC pro-
vided A, &A,,(r). Moreover, in this case it can be shown
that all stationary solutions jxo(j)I with hounded Auc-
tuations of the bond lengths can be uniquely labeled by
"sequences of symbols" jar(j)] satisfying Eq. (14). A
lemma stating this fact in detail, and its proof, is given in
Appendix B.

%ith this result we reobtain the context of dynamical
systems. Equation (2) can be regarded as the evolution
equation of a dynamical system vnth two discrete "times"
j& and jz. But, the evolution in one "time" variable is
not independent of the other. In fact, the condition

rota (j)=0 (15)
with the physical meaning that the moduli of the intracell
positions must not exceed a/2, as also required by their
definition. It is obvious that any crystalline "integer
configuration, "i.e.,

m (k)=a k+m (0)

with an arbitrary integer-valued vector a, will satisfy the
self-consistency condition. Before discussing (10} we in-
troduce bond variables via

o(j}=Vm(j) . (11)
Here the discrete gradient operator V is defined by the
partial difFerence operators

& x(j)=x(j+e,) —x(j) (a=1,2) (12a)

(e are the canonical unit vectors in two dimensions} such
that

Vx ( j)= [d,x ( j)]e,+[d ix ( j}]e2 . (12b)

For later purposes (in Sec. V) we already introduce here
conjugate operators

d~(j)=x(j —e ) —x(j) (a=1,2) (12c)
(conjugate with respect to the scalar product introduced
in Sec. V) and discrete divergence and rotation

divy(j)= —V" y(j),
ioty() ) =V'e'y( j), (12d}

where c is the totally antisymrnetric tensor in two dimen-
sions. The discrete I.aplacian can be written as

M(j)= —V Vx(j) . (12,e)
Now let us turn back to the SCC (10). For noncrystalline
configurations the fluctuations of the o's around their
mean value

/=N 'go(j)
mill deviate from zero leading to a competition between
elastic and substrate interaction of the adsorbed layer. In
order that the SCC holds, these fluctuations must be

~(q) =co~ [1+2(2—cosq, —cosqz ) /A, ]'~~, (16a)

cog
——(A,C/m)'~2, (16b)

where m is the mass of the adsorbed atoms. Since co(q) is
always larger than or equal to the gap frequency m, all
stationary configurations are locally stable. That the
dispersion (16) is independent of jxo(j}I is related to the
substrate potential being piecewise harmonic. Thus, for
our model we have managed to separate the
configurational degrees of freedom described uniquely by
jn(j}J and the vibrational part. The latter can be
neglected at temperatures much smaller than the phonon
gap m.

The energy of a metastable con6guration is calculated
by substituting Eq. (7) [with given jm(k)I] into Eq. (la),
which on using Appendix A finally yields the expression

(a consequence of the definition of the rr's as a gradient
field) assures that going from time i =(j„ji) to time
t ' = (j ', ,j2 ) is independent of the path in time space.
Now, the classification of the solutions of Eq. (2} by se-
quences of symbols corresponds to the well-known sym-
bolic dynamics. We have much freedom in choosing our
sequences of symbols; the only restrictions stem from
Eqs. (14) and (15}. But Eq. (15) cannot be regarded as a
"proper" restriction because it naturally arises in dynam-
ical systems with more than one time coordinate in order
to ensure the "path independence" of the evolution.
Thus the equivalence of solutions of (2) and sequences of
symbols can be considered as an embedding of a general-
ized Bernoulli shift. ' Therefore, we feel justified to call
our system spatially chaotic. Physically speaking, the
freedom in selecting the o shows the existence of spatial-
ly disordered stationary solutions. These integer (symbol-
ic) variables describe the "quenched" disorder of the
glassy adsorbed layer.

The metastability of a stationary configuration jxo(j) I

is easily shown by expanding the energy around xo. The
dynamical matrix can be diagonalized yielding for the
phonon frequencies
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=(Cai/2) g gjo (j) cr (k)5. „—diver (j)gi(j—k)div~ (k)]—2g~ (j) p +&p
0,=1,2 j,k j

(17)

where

a (j)=Vm (j) (18a)

configurations which are insensitive on g and, second, our
system is two dimensional.

A. Asymmetries

p.'=( p, , )e, +(e p, ,)e2 . (18b)

Of course, the ground state will depend on p~ and may

exhibit a number of interesting properties such as incom-

mensurability effects which were found for the corre-

sponding one-dimensional model. ' ' As we do not in-

vestigate ground-state properties, we believe these effects

to be of no importance for our disordered configurations.

Consequently we choose ps integer valued so that the

ground state is always given by cr (j}=Is for all j.

III. TWO-I.KVEI SYSTEMS

In this section the TLS's will be investigated. In Sec. II
we showed that the adsorbed layer can be in one of many

locally stable states, their number increasing exponential-

ly with ¹ The potential-energy landscape in

configuration space is complex, and it will occur that the

energy difFerence between two adjacent valleys (corre-

sponding to two configurations differing from each other

only locally) can become arbitrarily small.
In the following we consider the simplest type of TLS

where one particle jumps into one of its four nearest-

neighbor ceBs (as is shown in Fig. 3}and the system is al-

lowed to relax afterwards. This kind of con5gurational
excitation was 6rst studied by Pietronero and Strasssler
for the corresponding one-dimensional model with a fixed

ratio g of the mean distance of the particles to the period
a. The contribution to the low-temperature specific heat
for the system at equibbrium was discussed in Ref. 18. A
Schottky-type behavior with strong incommensurability
effects (because g was not an integer) was found. ' The
present work is different from that in Refs. 16, 18, and 19
in two respect: 6rst, we consider con6gurations with

frozen-in disorder corresponding to nonequilibrium

The type of TLS described above can be represented by

a transition between two metastable configurations

represented by jm(k) I and j m'(k) I for which

m'(k}=m(k) for all k+jo,
m'(jo) =m(jo)+e,

(19)

where e is one of the four nearest-neighbor vectors of the
"substrate lattice" (Fig. 3}. Without loss of generality we
choose e=ei. Then the asymmetry s (cf. Fig. 4) will only
depend on jrn'(j)) (the superscript a= 1 is suppressed
again). With Eqs. (17) and (19) we find for e

(ej Om) =E(m') —E(m)

=so —ACa g g&( jo—k)hm (k), (20a}

where

so= —(ACa /2)Age(0) ~0 . (20b)

[E(m) follows from (17) by substituting (18a).] Clearly,
e( jo', m ) depends on j m (k ) j . For a crystalline arrange-
ment of the atoms this yields

e(jo;m„„„)=so (21)

for all jo. A broad distribution of e only results if the
configuration jm(k) I is irregular which, in turn, induces
a broad distribution of the intracell positions u (j) of the
atoms. It is interesting to note that this close relationship
between s and u (j) can be made explicit for our model:

e™+~~~ x'(g)

FIG. 3. A configurational excitation forming a TLS: The
black particle moves into a neighboring cell.

FIG. 4. The potential energy of the system during the motion
of the particle jo between the equilibrium positions xo(jo) and

xo(jo) in neighboring cells. c and V denote energy asymmetry
and potential barrier, respectively.
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eo —A,Ca /2&a(jo;m)(so+A, Ca /2 . (23}

The density of states n (e) will be discussed in Secs. IV
and V.

c( jo;m )= eo —A,Cau0(jo, m )

following from Eqs. (5), (7), and (20). Because uo(j;m} is

bounded for all j due to the self-consistency condition,
the spectrum of the asymmetries must be bounded as
well:

C. Correlations betaken asylnmetries and barrier heights

Correlations between asymmetries and potential bar-
riers have been shown to be important for the time
dependence of the specific heat by Phillips. %e will
show here that for our model the asymmetry completely
determines the potential barrier (and vice versa) and we
discuss the time dependence of the speci6c heat originat-
ing from this fact.

Inserting (22) into (28) yields

B. Potential barriers
V = Vo[1+(e/4VO)2] (30)

Now we turn to the calculation of the potential bar-
riers V separating the local minima of our TLS (cf. Fig.
4}. V is obtained from the work done by an external force
E acting on particle jo in order to change the
configuration I m (k}) into (m "(k)I. This induces in Eq.
(1) an extra term —x (jo)F changing the difference equa-
tion (2a) into

Inserting the ansatz

xo(F, j)=xo(j)+w (F,j) (25}

for the solution xo(F, j) into (24) we obtain for ui the in-

homogeneous linear equation

with the solution

V;„(A,)) Vo ——A, (Ca /8)gi(0), (29a)

V,„(A,) & A,(Ca '/2) I 1+[1—Agi„(0) ] ) /[2Agz(0) ) .

(27)

Here (Al) was used. Noticing that (19) only aff'ects one
spatial component of the atomic positions, the work done
by the external force can be obtained by integrating Eq.
(27) from the equilibrium position xo(j) to the border of
the cell. The potential barrier is de6ned as the mean
value of the work required in each of the two cells (cf.
Fig. 4) which finally yields

V(jo;m)=[Ca /2gi(0)]I[ —,
' —uo(jo;m)/a]2

—Agq(0)[ —,
' —uo(je;m)/a]

+[iLgz(0)]2/2I . (28)

Since uo(jo, m) is bounded there cxis't lowcl aiid uppcl'
bounds for V, V;„,and V,„, respectively, quite similar
to the results for the one-dimensional model. Using the
self-consistency condition and Eq. (A5) we ffnd

confirming the dependence of V( jo;m ) on e( jo; m ).
Moreover, from (30) it becomes clear that for TLS con-
tributing to the specific heat at about 0.1 —1 K (asym-
metries of the order 10 —10 eV) the potential barriers
are almost 6xed. This can be seen as follows: The poten-
tial barrier produced by the substrate alone is assumed to
be of the order of 0.1 eV, and Agz(0)=0. 7 for A, =10,
which is a reasonable value for the ratio of substrate in-
teraction to nearest-neighbor interaction of strongly ad-
sorbed particles. 2 From this, Eq. (29a), and Eq. (30), we
find that the relative variation of V induced by c (in the
appropriate range} is 10 —10 and can therefore be
neglected.

Discussing the time dependence of the specific heat we
will closely follow the concepts given by Jickle. ' Appli-
cation of this theory can be justified by the following con-
siderations: At low temperatures, transitions between the
two states of our TLS will only occur by phonon-assisted
tunneling. But the phonons of the adsorbate possess a
gap with frequency co& ——(A,C/m)'~ . Assuming m to be
the mass of an oxygen atom, the lattice constant a to be 2
A and Vo to be 0.1 eV, we find the temperature corre-
sponding to the gap to be about 145 K. Therefore, these
phonons cannot contribute to the phonon-assisted tunnel-
ing far below this temperature. This can only be
achieved by the phonons of the substrate. Following
Jickle we assume that the TLS couple via a deformation
potential to the local strains of the substrate. Thus the
results of Ref. 21 are valid with only slight modifications.

Let us now turn to some more detailed investigations.
Allowing transitions with coupling b/2 between both
states of a TLS we obtain, for the energy splitting E,

+(C2+ g2) I/2

where c is the classical energy diff'erence (asymmetry).
(The sign of E is determined by the sign of c.) A simple
Wentzel-Kramers-BriBouin (WKB) expression for 5 is

(32)

with the tunneling parameter

A= —'(2m V/fi )'

Vo is reduced by a positive factoi' Ag&(0) & 1 with respect
()(Ca )/8 due to the nearest-

neighbor interaction. This has already been observed by
Beyeler et ak. ' for the one-dimensional Frenkel-
Kontorova model. '(E, b )=( '),„(E)(&/E)' (34a)

Here %coo is the zero-point energy, V is the barrier height,
and I is the tunneling distance. The relaxation rate is
then given by2'
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with the maximum rate

(r '),„(E)=(1/c&~+2/cIs)[B /6arpA ]

we need the distribution function P(E,r). Here we have
introduced r =(5/E) as a new variable. Inserting (30)
into (33) we get, for e/Vo (& 1,

XE3coth(pE/2), (34b)

where ch and e, are longitudinal and transverse sound ve-

locities of the substrate, 8 is its deformation potential,
and p is its density. The geometrical restrictions arising
from the fact that the TLS are sitting at the surface have
been accounted for by a factor —,

' compared to the results
of Jackie. (As we are only interested in the order of
magnitude of the relaxation time, the exact value of this
factor is irrelevant. )

In order to calculate the time-dependent specific heat
given by

C(T, t)=ks J dE J drP(E, r)f(PE)
0 0

X I 1 —exp[ —t /a( Er)]J, (35)

A=Ao[1+(s/4Vo) ]

with

Ao ———,'(2mVo/art )' I .

For small c this immediately leads to

tai(s) =hoexp[ —(Ao/2)(e/4Vo) ],

o~o = aattoo&

From the joint distribution of e and b„

P(s, &)=n (e)&(&—&(s)),

(37a)

(37b)

(38a)

(38b)

(39)

f(x)=x exp( —x)/[1+exp( —x)] (36)
l

the distribution of E and r can be obtained in a straight-
forward manner:

P(E,r)=n[(l r)' E] (
—E

~
[4r(1 r)] '—5(r'~

(
E

~

—hoexp[ —(Ao/2)(1 r)(E—/4Vo)2]) .

C(T, t)=C(T, ao )I 1 —exp[ t/r(T)]I, — (42a)

Noticing that (El4Vo) g10 for E ~10 eV, P can
well be approximated by

P(E, r) =(1 r) '~ n [(1 r—)'~ E]—
X5(r —(&o/E)') .

Substituting this in Eq. (35) and taking into account that

f has a relatively sharp maximum at x,„=2.4 it follows
that
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Thus we 6nd an exponential time dependence with a
temperature-dependent relaxation time which is of the
order of 10 s up to several seconds (depending on the
parameter values of the system) for temperatures between
0.1 and 1 K. The exponential behavior is due to the very
sharp distribution of the barrier heights for TLS with
asymmetry below 10 eV. This sharp distribution is
typical for the model of an adsorbed layer in a strong
substrate potential. The reader should also note that the
long-time specific heat [Eq. (42b)] is completely deter-
mined by the distribution function n {s) of the asym-
rnetries.
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IV. QUASI-GNK-DIMKNSIQNAI DISlMDKR:
DENSITY GF STATES

FIG. 5. A quasi-one-dimensionally disordered system: (a)
n Sec. III we have calculated the asymmetry g and the without, and (b) with "kink defects" represented by the solid

corresponding barrier height V for the simplest type of
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n(e)=+5(s —e(jO, m))p(m) . (43)

In this section we consider a special type of disorder
~here p is of a simple form.

I.et us start from configurations [m(k}) which are
one-dimensionally disordered [Fig. 5{a)]. They are
represented by two independent sets of integers
Im '(k, ) I and (m (k2) I such that

m'(k)=m '(k ) (44)

for all k. Then we introduce kink defects into the rows
and columns [Fig 5(b)].. These are no proper topological
defects because the adsorbate is always topologically

TI S where only one atom is moved into one of its adja-
cent cells. It was found that c and V are strongly corre-
lated [cf. Eq. (30)] and depend on the quenched variables
Im(k)I. Primarily, we are interested in the density of
states. By an argument completely analogous to that
given in Ref. 3 it can be shown that (choosing the same
parameter values as in Sec. III}quantum corrections can
be neglected for energies E~~50=10 eV. Thus, the
density of states is well approximated by the distribution
of the asymmetries.

Now, determining n (e) requires a distribution function
p(tm(kI ) [or equivalently p(Io(k}J )] which character-
izes the quenched disorder described by the symbols

Im(k) I [or {o(k)I]. n (s) then follows from2

equivalent to a square lattice. Still, they are commonly
used to describe defects in so1ids.

For simplicity we restrict ourselves to the following
configurations satisfying

o' {k)=m (k+e~) —m (k)6 In, n+1J
with e a positive integer. Denoting by p and q the posi-
tions of the defects in the columns and the rows, respec-
tively, the con6guration is given by

k2 —1

m'(k)=m '(kl)+ g +5k 5„z'(p},
n2 —-0 p

(46)

m (k)=m 2(k2)+ g +5„~5k H{q) .
n, =o q

Here the "kink charges" ~'(p) and H(q} take values —1

and + 1 with the only restriction being that the
conSguration (46) has to be compatible with (45) (e.g., the
charges must alternate along the columns and rows).

Thc low-lylllg cxcltatlons are those where thc tllllIlcllllg
particle has similar environments in both wells. This is
exactly the case for particles sitting at the defects. Con-
sequently, we have to regard transitions where a kink just
moves a lattice spacing. Choosing jo——po and a=1
(without loss of generality) we get, from (20) and (46)
after lengthy but straightforward calculations in the ther-
modynamic limit, 2s

e(po™) =&'(po}«'I {1—I))'/( 1+9)]y 9'[&'(Po, i
—I i

—1 P02) —o'(Po, i+I i P02)]

—XCa' y r'(PO)W'(P) y Xgi(Pi —Po, i i2 —P0, 2)
pQp~ i& ——p&+]

(47a)

where the one-dimensional version (A8) of the Green's
function was used and where

I)=1+A, /2 —[(A, /2)2+ A,]'" . (47b)

According to the restriction (45) the o' variables only
take the values n and n +1. The first term of (47a) coin-
cides exactly with the asymmetry of the TLS obtained in

Refs. 2 and 3 for a chain of particles with anharmonic
and competing interactions (except that there the o vari-
ables take values kl). The second term describes the in-
teraction of the tunneling particle with other defects.
For low defect density, i.e., large distances between the
defects, this term becomes negligible. This can be easily
seen using the asymptotic form following from {A12):

){, ( — i — ) ( (A, /4+2K, )

12 =P~+ 1

(48a)

g=[i+X/4+-,'(X'/4+»)'"] ' . (48b)

Taking the parameter values of Sec. III we find from (48)
that the defect interaction term can be neglected on an
energy scale of 10 eV provided the minimum distance
of the defects is of the order of 10 lattice constants.

From the range of the o variables [cf. (45)], it can be
read off that we must have A, ~ A,, ( —,

'
) in order to ensure

that SCC is fu15lled. Using the upper bound for A., ( —,')
derived in Appendix 8, we find from (47b) g=0. 16,
which is smaller than —,'. (I)=—,

' is equivalent to A, =—', .)
Therefore, the scaling property found in Refs. 2 and 3
holds (if we use a distribution of the o's similar to the one
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used by these authors) Qnally leading to an approximate
power-law behavior for the speci6c heat

c(T)-T~ (49a)

Z=ln[p~+(1 —p) ]/lnr), (49b)

where p is the probabihty that o'(j) =n. For details the
reader is referred to Ref. 3.

cells. The vapor deposition of atoms on a substrate at 4
K, or at even lower temperatures, is a good realization of
an almost infinite cooling rate apart from the fact that
the atoms will not stick immediately but will migrate,
thereby dissipating their binding energy to the substrate.
However, we believe our idealization to be instructive.

So we start with the adsorbed layer at high tempera-
tures. The statistical weight of a conQguration Ix(j})=x
is given by the canonical ensemble

V. GAUSSIAN DISORDER:
DENSITV OF STATES

p(x) =Z '(P)exp[ —PV(x)],
Z(P)= f gd x(j)exp[ —PV(x)],

(50)

The type of disorder we have considered in Sec. IV, al-
though not implausible, was introduced in a more or less
phenomenological way. A realistic determination of the
disorder in a glassy state should start with the Quid phase
and subject it to a cooling process. For large enough
cooling rates the system will relax into one of the meta-
stable glassy configurations. Unfortunately, the theoreti-
cal description of such a glass transition on a microscopic
level is still beyond a possible analytical treatment. Con-
sequently, an idealization is necessary.

Starting with the Quid phase, all kinetic energy is taken
instantly out of the system at a time to. %'e then assume
that during this quenching process the particles just fall
into those ceBs m(j) where they were sitting at to and
finally reach the metastable positions xo(j;m). This is
nothing else but a relaxation along the gradient of the po-
tential energy. The simplification is twofold: (i) an
infinitely large cooling rate is required, and (ii) it is as-
sumed that the particles will stick to their corresponding

I

with the potential energy V of Eq. (1). The reduced dis-
tribution function pq„(m} describing the frozen-in disor-
der follows from (50) by integrating over the intracell po-
sitions u( j) defined by Eq. (5)

~ „(m)=Z —„'(p „)f ff d u(j)exp[ —p „V(am+u)],
(51)

Z „(p „)=gf ff de(j)exp[ —pq„V(am+u)]

=Z(Pq„) .

The integration range is —a/2(u'(j) &u/2 (et=1,2)
p „=I/ka T „, and T „ is the initial temperature « the
Quid when the quenching process starts. The integration
in (51) can be carried out exactly up to terms of the order
(Pq„Ca /2) . In the limit for high "quenching tempera-
tures" Tq„, i.e., Pq„Ca /2 && 1, we thus find the following
result:

2q„(pq„)= g g exp —p „g[Vm (j)—y, ]2
a=1„2 I~[j)~ j

(52)

where p is given by Eq. {18b). p „(m) is the Gibbs state
for a discrete Gaussian model, similar to those models
used to study roughening transitions. ' Remark: In Sec.
II it was shown that for given A, , the only conQgurations
that are metastable are those for which the fluctuations of
the nearest-neighbor distances do not exceed a critical
value. The Quid conQgurations we start with need not be
m'etastable and the self-consistency condition (9) is gen-
erally not satisQed, as can be seen from (52): pq„(m }gives
a nonzero probability to conQgurations with arbitrarily
large Quctuations which are, therefore, not metastable.
But our numerical investigations show that particles with

~
uo{j)

~

~a/2 have negligible statistical weight in any

configuration even for high quenching temperatures.
This is clearly demonstrated by Fig. 6, where the distri-
bution of the intracell positions is shown for a system
with 22 particles.

Let us now turn to the calculation of the density of
states. First we notice that p«splits up into two in-

P(u)

tsnits

-0.6 -0,4 0.2 0,4 0.6 ula

FIG. 6. The distribution P(u) of the intracell positions u(j)
for Ar I0 and kp Tq /( CQ /2 ) 5 I ( 9 ) is given in arbitrary
units. Particles with

1
u (j) I

&a/2 violate the SCC.
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dependent distributions for the spatial components. Con-
sequently we will only consider one of these in the follow-
ing and suppress a. Second, we introduce a slightly
shorter notation which will turn out to be very con-
venient. Variables will be collected in N-dimensional vec-
tors snd summations over j will be denoted by scalar
products:

Z — ~ ~ P( hm ') m '~ i ( h,P ) m '

qu

Z ~ P(hn') m'
(60b)

x y =gx(j)y(j),

X =X2= T

Thus, we can write the distribution (52) as

pq„(m)=Z q'(P q) exp[ —P(Vm —p, ) ],
Zq„(Pq„)=+exp[ —P(Vm —p) ],

where we have set

(53a)

(53b}

(53c)

(54)

For mathematical convenience we replace the negative
discrete I.aplacian —6 by D =p —5 with a positive p
and take the limit p~0 afterwards. This guarantees the
existence of the inverse of the Laplacian and is equivalent
to separating out the singular part of b. D~ is symmetric
and positive de6nite, so there exists an operator 8& with

Dz =B~B~. f (it)) can now be transformed into

f (~) Z l ~ P(8 m'—) —i(B )1) tb m')

(61}

m'

(55)

and g =g) i;)). The asymmetries we have introduced
in Sec. III are of the form

c(0;m ) =co—A,Ca g), b m, (56)

where gz ——Igz(j) }.
Assuming the same self-averaging property as in Sec.

IV the density of states is given by

n (c)= (5(c—c(0;m)) )

1 it) cc),0ii)Ca g&hm,dre (e2. ~qu
' (57)

m(j)=p j+m'(j), (58)

and impose periodic boundary conditions on m (j}.
In order to calculate the expectation value in Eq. (57}

we determine

(eig hm)
) qu

~ —1 ~ —P(Vm —p) iP hm
Zqu e (59)

whcl'c (()= I())(j) I ls an albltlaI'y field wltll pcl'iodlc
boundary conditions. Because of Vn —p =Vm ',
h, m =b,m', and P hm'=(b((}) m', this can be
transformed into

Now, averaging with respect to the distribution pq„still
requires determination of the boundary conditions for the
configurations Im(j)}. In order to avoid incommen-
surability effects, there remain two physicaBy reasonable
possibilities: (i) fixing the "volume" of the system at the
most probable value or (ii) regarding the volume as one of
the systems degrees of freedom. In Ref. 28 both possibili-
ties are investigated in detail and shown to lead to the
same results. Therefore, we will restrict ourselves to al-
ternative (i), which is mathematically much easier to deal
with. As p, is assumed to be integer valued we introduce
new integer variables rn'(j) via

As the summation over the discrete variables m '( j ) is not
trivial the question arises: Can replacing the summations
by integrations over continuous m' variables be regarded
as a good approximation for high quenching temperature
T „'? An inspection of (61}shows that the answer is not
at all clear. In the limit P~O, the first factor in the sum
for f (P) becomes a slowly varying function of m,
whereas the second term does not. %e will now calculate
the density of states for continuous m'(j) and show later
that this is the right approximation for P~O in a certain
sense.

The details of the calculations can be omitted because
the integrations sre sll Gaussian. %e 5nd

f„„,(i)I ) =exp — (B~P) ~exp — (V(())'
1

for p ~0, (62)

)(exp
Pq„(c—co)'

2Ca 1A,1 [Ag1 (0)]
(63)

Here we have used the identity (A5) for the Green's func-
tion. In this approximation the density of states is given
by a Gauss function centered at so ———(Ca /2)Agl(0)
which is of the order of Ca /2 as can be seen from (A7).
Using the same parameter values ss in Sec. III we find
that this function is practically constant on energy scales
of 10 eV and smaller. This leads to a linear tempera-
ture dependence of the speci6c heat at temperatures
below 1 K with s positive quadratic correction term.

Now the interesting question arises: Can the discrete-
ness of the variables m(j), which will become more
prominent for lower quenching temperatures Tq„, modify

which, inserted into (57), yields with the substitution
p=tACa gl

' 1/2

n„„,(c)=
2m Ca )(, [)),gz(0)]
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this almost constant density of states'7 In particular, can
it even produce a fine structure with self-similar proper-
ties as was found for the kink disorder in Sec. IVY To
find an answer let us turn to the exact calculation of the
density of states. To this end we apply the Poisson sum-

mation formula

5(x —m}= g e

to Eq. (61). (This is a well-known procedure for related
models, e.g., discrete Gaussian model, two-dimensional

I

planar model, Villain model, ' etc., resulting in a duality
transformation which maps the high-temperature phase
onto the low-temperature one and vice versa. ) In our
case the summation over m'(j) will be converted into a
summation over integer variables n(j) [dual to m'(j)],
which also obey periodic boundary conditions. After
some algebra, the details of which are presented in Ap-
pendix C, we Snd

Z (c—eo,P)
n (s)=n„„,(e)

N )
with

T
eZ(c,P)=g'exp 2mi

(Vgl )' A,Cal

Tn gg
cos 27T

(Vgl ) ACa'

m2
&(P)=g'exp — n T G,n

2

exp — n Go—

2

exp — n Go—

gage
T

( Vgl )'

T

(66a)

(66b)

where g„' means a restriction of the summation to those
n with g n(j )=. 0, Go stands for the matrix ago(j —k) j,
and go denotes the lattice Green's function as described
in Appendix A.

Thus, the full density of states is given by the continu-
um result multiplied with a "correction factor. " This
correction can be regarded as a superposition of oscillat-

ing terms (with respect to the energy e), their relative
weight given by an exponential of a quadratic form in n.
To discuss these oscillations quantitatively several prop-
erties are crucial, and these are (for details see again Ap-
pendix C) given below.

(i) The quadratic form in the exponents of Z(c,p) is

positive semide5nite and possesses a simple zero eigenval-
ue with corresponding direction u =Edg&, where E is an
arbitrary real constant. This direction is generically in-
commensurate with the integer vectors n = I n (j) I (which
form a lattice}, i.e., this direction contains no other lattice
point apart from zero.

(ii) Therefore, the main contribution to the correction
factor stems from those n approximating the direction of
u as well as possible. These n's can be grouped into
"rays" (denoted by q) in n space. The problem is then
converted to finding rays approximating the direction of
Q.

(iii) A special sequence of approximating rays, [q'"'],
n =1,2, . . . , is constructed from the representation of
gz(j) given in (A6a) under the assumption that A. is in-

teger valued. (Although k bring an integer is necessary
for the mathematical considerations of Appendix C, we
believe the results to hold for general A,. This is support-
ed by our lllllllcI'leal lllvcstlgatlolls. } Tllc fl'cqllcnclcs of
the oscillating terms belonging to the q'"'s, a)'"', are
shown to form asymptotically a hierarchy,

~'"+"=Ac)'"' for n ««1,

and to be integer multiples (up to corrections getting
small with increasing n) of the basic frequency

co'"=2m/(so'/2) .

It is argued that approximants not contained in the se-
quence will also lead to frequencies belonging to this
hierarchy.

Thus it can be concluded that the correction factor
gives rise to periodic modulations of the continuum result
on any energy scale. Because of the existence of a basic
frequency, cf. Eq. (68), the correction factor possesses
maxima at energies keo/2 (k integer), in particular at
a =so. As a consequence, the density of states will always
show a maximum at e.=0.

This is also supported by our numerical investigations.
We have directly evaluated the density of states (DOS)
via Eq. (57) for a system with 22 particles. The o 's

varied from }tl, —3 to ju +3 which is reasonable for the
range of quenching temperatures we have investigated.
The modulations of th~ continuum result are clearly to be
seen in Fig. 7 where the DOS is shown for increasing
resolution on the energy axis. The hierarchical behavior
already shows up although n is small there. Evaluating
the exact recursion relation for the frequencies, (C22),
gives a good quantitative agreement with those found in
Fig. 7.

The last important point to be examined is the depen-
dence of the correction factor on the quenching tempera-
ture Tq„. It can be easily seen from Eq. (C13) that the
amplitude of the oscillating term belonging to q decreases
with increasing T „ for all q, thus leading to a "dying
out" of frequencies. But the frequencies that die out first
are those belonging to "bad" approximants, i.e., mainly
to low frequencies. So, for a given energy scale, we will
always 6nd a crossover from a behavior dominated by the
oscillations of the correction factor to an almost constant
behavior of the density of states with increasing quench-
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ing temperature. This crossover occurs when the fre-
quencies relevant for this energy scale just die out. Such
a transition can be clearly seen in Fig. 8, where the ener-

gy scale is about 10 Ca /2 and the quenching tempera-
ture varies in the interval 1 &ko T „/(Ca /2) & 10.

%hat are the consequences of these considerations for
the low-temperature specific heat, i.e., for temperatures
in the range 0.1-1 K corresponding to an energy scale of
10 eV and smaller' If the quenching temperature is
suSciently high or, equivalently, if the disorder is large
enough, the specific heat will have a linear temperature
dependence. (The numerical example shown in Fig. 8 re-
veals that quenching temperatures with kii T „ in the or-
der of 5-10 times the elastic energy of the adsorbate
atoms are sufficient. ) As the density of states always has
a maximum at a=0 (stemming from the maximum of the
correction factor at a=co), the first correction to the
linear T law will be a negative T term. This is in con-
trast to what results from the continuum approximation
which would yield a positive T term. For low quenching
temperatures the density of states is dominated by the os-
cillations of the correction factor and looks rather
bizarre. It is not clear whether a scaling behavior analo-
gous to that of Sec. IV can be found. Thus, from the
theoretical point of view, the interesting question remains
open whether one can bridge the gap between Gaussian
and kink disorder.

VI. DISCUSSIQN AND SUMMARY

-0.1
I

-0.05 0.05 0.1

0.004 o.oo4

FIG. 7. The DOS for increasing resolution on the energy
axis. The energy E is given in units of Ca /2 and the DOS in
arbitrary units. The parameter values are 1,= l 3.57 and

kp Tqti /( Ca /2 )=2. The dashed lines indicate the part of the
energy axis which is magnified on going one step from top to
bottom.

In this paper we have investigated the metastable
configurations of a two-dimensional Frenkel-Kontorova
model in a regime for which the external potential is
much larger than the harmonic nearest-neighbor cou-
pling. The most natural realization of our model is an
adsorbed layer of atoms on a substrate, but the applica-
tion to quasi-two-dimensional ionic conductors, e.g., P-
alumina, etc. , may be reasonable, also. (The one-
dimcnsional version was used to describe quasi-one-
dimensional ionic conductors like hollandite with large
success. 's's"s io)

As a first result we have found that the potential-
energy landscape is rather complex; i.e., most of the
metastable con6gurations are disordered. This is mani-
fested by the fact that under certain conditions these
configurations are in a one-to-one correspondence with
sequences of symbols taking only integer values. Intro-
ducing the bond variables o (k), the one-to-one
correspondence allows to interpret the disordered or
glassy configurations as spatially chaotic arrangements of
atoms analogous to the symbolic dynamics in dynamical
systems exhibiting fully developed chaos. Moreover, this
property demonstrates the applicability of the concept of
spatial chaos to systems with more than one dimension
(which correspond to dynamical systems with more than
one time coordinate).

The exact knowledge of all the metastable
con6gurations and of their energy turns out to be very
important. In particular, we were able to derive the
asymmetries, the potential barriers, the correlation be-
tween both, and the corresponding density of states n (E)
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DOS
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FICJ. 8. The DOS for gro%'lng qQenchlng temperahll e Tqu
(from top to bottom) and low energy. The energy E is given in
units of Ca /2 and the DOS in arbitrary units. P varies from
top to bottom as 1.0,0.7,0.5,0.1; the relative strength of the sub-
strate potential has the value A, = 10.

for the TLS's which are formed by configurational excita-
tions. Here we have restricted ourselves to the simplest
case where only one atom moves into one of its four adja-
cent cells. An intimate relationship between n(E) and
the distribution of the particle positions within the cell
was found, which may lead to a connection between n (E)
and the pair distribution function 6(r}. This point is un-
der investigation.

One of the main results of the present work is the high
sensitivity of n (E) on the type and degree of disorder.
For quasi-one-dimensional disorder, assuming "kink" de-
fects, the one-dimensional behavior of Refs. 2 and 3 was
reproduced leading for the speci6c heat to a power-law
behavior c ( T)-T~ with a fractional exponent d smaller
than one. Quite a difFerent kind of disorder results from
an idealized quench process leading to "Gaussian disor-
der." Here the quenching temperature T „allows us to
tune the degree of disorder. In case of large disorder, i.e.,
kii T „ is large compared to the elastic energy Ca /2, we
find an almost constant density of states (on an energy
scale of 10 —10 eV, cf. Fig. 8) leading to a linear
specific heat.

Vhth decreasing Tq„n(E) deviates more and more
from a constant behavior and exhibits a rather bizarre be-
havior (Figs. 7 and 8} with more or less pronounced
"gaps, " quite similar to the results found by Pietronero
and Strassler for the corresponding one-dimensional ver-
sion of the model. However, the reader should note that
our results are not just a two-dimensional generalization,
the main difkrence being that we have considered meta-
stable configurations with frozen-in disorder, whereas
thermodynamical equilibrium states exhibiting incom-
mensurability effects are studied there.

The "gap" structure appearing in n (E) is a conse-
quence of the discreteness of the variables m (k). Since
the dependence of physical quantities on discrete vari-
ables is characteristic for chaotic systems we may specu-
late that such a gap structure for the density of states
may exist in general. Unfortunately, measuring average
quantities, e.g. , the specific heat, etc., cannot reveal these
gaps unless they are very well pronounced. In other cases
more direct methods to determine n (E) would be neces-
sary. It would also be helpful if n (E) could be measured
for E larger than 10 eV.

A further peculiarity of n (E) occurs for Gaussian dis-
order: n (E) is not symmetric with respect to E =0 im-

plying a nonvanishing Gruneisen parameter I TLs. This
was found experimentally (although I TLs was small} and
as a possible explanation the asymmetry of n (E) has been
suggested.

It is also tempting to speculate that the nondispersive
excitations found by Lauter and co-workers " in absorbed
helium Nms at 0.5 K could be interpreted as TLS.
Indeed a 6ne structure was found for the corresponding
density of states with a maxitnum at about 0.8 meV (cf.
Fig. 8 of Ref. 34). But the resemblance of this experimen-
tal result and our n (E) may be an accident.

Concerning the time dependence of c (T) our model for
a glassy adsorbed layer does not yield a logarithmic, but
an exponential behavior due to a strong correlation be-
tween asymmetries and barrier heights of the TLS. As
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these two time laws can be well distinguished from each
other, this prediction could probably be checked experi-
mentally.

Finally we mention that we do not find a universal rela-
tionship between n (0) (often called P) and the glass tran-
sition temperature T as it was deduced by Reichert
et a/. This can be seen as follows: Taking the continu-
um result for n (E) we get

n„„,(0)-(1/Ca )exp(3P/& )

- ( A, / V)exp [3P(Ca / V) ] .

Here we have used that the barrier height V-XCa for
A, »1. Assuming that Ts —V (which is almost fixed for
k »1), we find a relationship between n„„,(0) and Ts de-
pending on the elastic coupling constant C thereby ruling
out such a universal relationship for our model. A simi-
lar conclusion was drawn by Berret and Meissner,

Although the preparation of low-dimensional glassy
systems is probably much more di%cult than that of
three-dimensional materials, it would be interesting to ex-
perimentally study the dependence of the properties of
the TLS on the spatial dimension and particularly to
check the predictions of our model for the density of
states and the low-temperature specific heat. In addition,
more systematical studies of the inhuence of the degree
and type of disorder on the density of states could eluci-
date the origin and nature of the TLS.

which, upon division by I,—p and p~k, is transformed
into

~g~«)/~~= —g g~« —j)g.(j) . (A5)

Expanding the right-hand side of (A2) into a power series
of 1/A, (which is valid only for A, & 8) yields

Agi(k)= g (1/A, )'al(k),
I&0

where

a((k) =6'5i, 0,
from which it follows that

(A6a)

ui(j )=0 «r
I ji I

+ I J21»
showing

(A6d)

Equation (A2) shows that gi(k) only depends on
~
k,

~

and
~
k21. An expansion of the Green's function into a

power series in 1/(I, +4) shows gi(k) to be positive for
all values of k. Applying the difference operator D& to
the expression gg„(k—j)gi(j) and using Eq. (A3c)
yields

gi(k) —g„(k)=—(2—p) ggi(k —j)g„(j)
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Summing over one component of the double index k the
Green's function of the one-dimensional version of our
difFerence equation can be derived from (A2):

gg„(k)=N, ' +exp(iq, k, )/(A+2 —2cosq, )

k2

APPKNMX A: THK GRKKN'S FUNCTION

According to Eq. (4) the Green's function gi belonging
to the difference equation (2) is determined by where

for X&~ac,
1 —n

(AS)

(Digs )(k)=(A+4)gi(k) —hagi(k+5)=5qo .
S

(Al) q =1+X/2 —(X+X'/4)'"

(A2)

where the q summation runs over the erst Brillouin zone.

1. General properties

Some properties of g& which can be easily deduced
from Eq. (Al) are

Agi (k) = hagi (k) —5i, 0, (A3a)

Using periodic boundary conditions we can solve this
equation by Fourier transformation:

gi(k)=N ' g exp(iq k)/[A, +4 2(cosq, —+cosq2)],

2. Asymptotic behavior

In order to study the asymptotic behavior of the
Green's function, which is needed in Sec. IV, we assume
the expression for an infinite system to be a good approxi-
mation as long as

~

k
~

~~X . Thus, we replace the
summation in (A2) by an integration

X 'g~(2n. ) f f 1 q

1/(2D —cosq, —cosq2 )

= f dr exp[ —(2D —cosq, —cosq2)t],

D„gi.«) =5~,0+(V —~)gi.«) .
where D =1+1,/4. Performing the integration over q
leads to
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gi (k) =
& f di exp( —2Dr)I

I
k

I

(r)I
I
k

I

(r) ~ (A9)

where I„ is the modified Bessel function. Using the iden-
tity

I„(z)I,(z) =(2/n ) f I„+„(2zcos8)cos[(p —u)8]d8
0

[Re(p+ u) & —1] (A10a)

exp —owl, x x= a2 z Iyz "o+ a2 2]/2 —' Reo & —1, Reo; & Re

one obtains

1 f n/2 «s '(8 }cos[(
I "i

I

—
I kz I }8]

Ilkll 1

gi(k)=
)IkI)

d8,
2n o [D2—cos2(8)]'/ tD+[D —cos2(8)]i/z]II ll~

(A10b)

(A 1 1)

~h~~~ llklli= lki I+ lk2 I
F« llklli large the factor

cos '(8) will be significantly different from zero only for
small 8. Consequently, the slowly varying parts of the in-
tegrand can be replaced by their values for 8=0 which
yields upon evaluating the integral

g„(k)=-,'(D' —1)-'"

ly, we investigate the properties of the difference equation
(Al) and its solution (A2) for A, ~O+. Noticing that

gi(0)=N ' 1/A, + g 1/[A, +4—2(cosq, +cosqz)]
q~o

(A13)

it is obvious that gi(0) diverges for A, ~O. To obtain the
lattice Green's function this divergent term has to be sub-
stracted at any lattice point k. Thus we consider the
function

(//k//i~op) . (A12)
gi (k) =gi (k }—gz(0) (A14)

This shows that the asymptotic behavior of gi„(k) is dom-
inated by an exponentially decreasing factor. However,
this decay is not isotropic, but shows a characteristic
dependence on the direction rejecting the structure of
the underlying square lattice: along the diagonals we find
the slowest decrease.

3. The 1attice Green's function

In Sec. V we need some properties of the Green"s func-
tion belonging to the discrete Laplacian h. Consequent-

l

which has no divergency for A, ~O as can be seen from
(A2} and (A13). The following property holds for go(k):

g fc(j—k)M(k)= x(j)+N —' g x(k) . (A15a)
k k

This can be shown using (A3a),

ggi(j —k)du(k)= —x(j)+ g Agi(j —k)x(k),

and (A2),

&gi. (3 k)=N —' 1+ g A, xpe[iq (j k—)]/[A, +4 2(cosq—, +cosq2)]
q~o

Now for q&0 we have

A /[A, +4—2(cosq i +cosq2 )]
& max', /[A, +4—2 cos(2'/N )]~0

t

tern. This equivalence is fundamental for our considera-
tions because it allows us to completely describe and
characterize all solutions (in a certain class) of the
difFerence equation (2)

for g~O, implying (D&xo)(j)=Arm (j;xo}, (81)

Agq( j k) ~N ' for A,—~O .

Thus, for all x with gsx(k) =0,
where m and Di are defined in (1) and (3). As we have»-
ready seen, the solutions can be described by integer vari-
ables [ m (j) ) provided the self-consistency condition

+go(j —k)dx(k}= —x(j)
k

is valid. This property is needed in Sec. V.

(A15b)

APPENDIX 8 caEQUIVALENCE" OF SYlVIBOL
AND STATIGNARY SOLUTIGNS

Here we give a precise formulation of the equivalence
of integer variables and stationary solutions of our sys-

m(j)=int[xo(j;m)/a + —,']
or, equivalently,

gg„(j—k)bm(k) & —,
' Vj

is fulfilled. Here xo( j;m } is determined by

(82a)

(82b)
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xp(j;m) =am(j)+a ggz(j —k}bm(k),
k

(83)

Denote by M„ the set of m obeying

I
d m(j) —I (m)

I
&r Vj,a

and let X„be the set of solutions xp of Eq. (Bl) with

I
d m(j;xp) —l'(m(xp})

I
&r Vj,a .

(85)

Then there exists a critical value A,,(r) &0 such that the
mapping m~xp(m) is one-to-one from M, onto X, for all
A, & A,,(r).

To put this in other words: If the substrate potential is
strong enough, then any set of integers I m (j}I with

I

and g~ is the Green s function of D~. The reader should
be careful not to confuse the set of integer variables
m = Im(j)I with the maPPing xp~m(xp)=Im(j;xp) I.

The condition for the validity of (82) and, therefore,
for the correspondence between the integer
configurations and the stationary configurations are stat-
ed in the following lemma: Let r be a positive number
and let l(m) [for given m = I m (k) I] be determined by

l{m)=N 'g Vm(k) .

bounded fiuctuations of the "nearest-neighbor distances"
[cf. Eq. (85)] determines exactly one stationary solution
with the same bounds for the Nuctuations of the nearest-
neighbor distances [cf. Eq. (86)], and vice versa. 1(m) is
the mean value of the nearest-neighbor bonds around
which the latter fiuctuate. [Our considerations can be
shown to be valid for any field I(j) with divl(j)=0.
However, in order to fulfill the SCC l(m) turns out to be
best. ] That the strength A, of the substrate potential must
exceed a critical value A,,(r) is required in order not to
violate the self-consistency condition.

%e split up the proof of the lemma into three parts:
First, we show the existence of a k, (r) such that for all
m EM, the self-consistency condition is satisfied provid-
ed A, & A,,(r). Assuming, then, the self-consistency condi-
tion to be satisfied, it is proved that m~xp(m) maps M„
onto X,. Finally, we show the mapping to be injective.

(i) Existence of A,,(r): We first notice, that I(m) is a
constant field which implies divl(m)=0. Thus the SCC
(82) can be rewritten

ggi(j —k}div[Vrn(k) —1(m)] &,' pj .

With Eq. (A4b) we obtain

hagi(j —k)div[Vm(k) —l(m)] &max
I
div[Vm(i} —l(m)] I hagi(j —k)

k 1 k

=(I/A, )max
I
div[Vm(i) —l(m)] I

For m GM, we have

max
I
div[vm(i) —1{m)] I

&4max I
d m(i) —I (m) I

&4r
i,a

according to Eq. (85). Consequently the SCC is satisfied
if A, & 8r, this showing the existence of A,,(r) and giving an

upper bound

A,,(r)(8r . (87)

(ll) Sllrjcctlvlty of 'tllc Inapplllg: Wc liow suppose thc
SCC to be satis5ed and show that any m EM„yields a

xp EX„via the mapping (83):

Thus we have

(Dzup)(j) =abm(j)

showing that xo is a solution of the di6'erence equation
(81). That x p EX, follows directly from

m (j;xp)=int[xp(j)/a+ —,']=m(j) .

To show that tllc lllapplllg m~xp(m ) ls ollto Xr ls trivia
because any xo EX„determines a suitable m EM, via the
mapping xp~m (xp ).

(hi) Injectivity of the mapping: Let m be an element of
M, and suppose that there exist xo,x 0 EX„with

xp(j) =am(j)+a ggi(j —k)&m(k)

It follows that

m(xp)=m(xp)=m .

%e sety =xo —xo and notice that

(88)

int[xp(j)/a+ —,']=int m(j)+ ggi(j k)lcm—(k)+
k

=m(j},
accordlllg to (88); I.c., y(j) ls bollndcd. Now, y ls a solll-
tion of the linear equation

up(j) =xp(j) —am(j;xp)

Diy(j)=(4+&)y(j) —gy(j+5)=0 . (89)

=xp(j)—a int[xp(j)/a+ —,']
=xp(j) —am(j)

=a ggz(j —k)5m(k) .

Consider an arbitrary jp. According to (89) there exists a
nearest-neighbor yp+5p with

ly{jp+5p} I
&{I+~/4}Iy{jp}I

.

Sct j,=jp+5p and go on with the procedure determining
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5i, j2, etc. This yields a sequence (j, ), i =0, 1,2, . . . with

[y(j;) [ &(I+&/4)'[y(jo)
~

.

As y ( j} has been shown to be bounded this implies
y(jo}=0. The proof is completed by noticing the arbi-
trariness of jo.

0 Dpd

Eq. (C3) is changed into

f(P)=Z „' g'exp (VP)2 exp —n P

(C6)

APPENMX C Err', CTS
OF THE DISCRETENESS OF THE m's

2

g exp — n Gon

(C7)

In this appendix the technical details of Sec. V will be
given, i.e., we investigate the elects of the discreteness of
the variables m (j).

Z ~ dPI @P" 2~inx
qll

(Cl)

Let Gp be the inverse of Dp, i.e., Gp can be identified with
the matrix Igp(j —k}),cf. Eq. (4). Then we can write

n rx =(DpGpn)Tx =(BpGpn) (Bpx) . (C2)

Inserting (C2) into (Cl) the x integrations can be carried
out yielding

1. Derivation of E4is. (65) and (66)

After application of the Poisson summation formula
(64) to Eq. (61) we get

7r2
Zq„= g' exp — n Gon

where g„' means a restriction of the summation to those
n with g;n(j) =0 R.eplacing p by t ACa ,gz and inserting
(C7} into (57), we finally get for the density of states the
result given in Eqs. (65) and (66).

2. The zero eigenvalue of the quadratic form of the amplitudes

In the following we will be mainly interested in the en-

ergy dependence of the correction factor. As N(P) is en-

ergy independent (it just accounts for the normalization
of the DOS) we only have to examine Z(e, P).

As Eq. (66a) reveals, Z(e, P) consists of oscillating
terms (with respect to the energy s), their amplitude be-

ing determined by an exponential of a quadratic form in
n. This quadratic form is positive semide6nite with a
simple eigenvalue 0 that can be seen as follows: Let v be
determined by

f(P)=2 „'+exp 1 TPrDpg exp nP—T
v=VGon

which implies V v=n Then it i.s

2

g exp — n Gzn
T

~' T2q„= g exp — 5 Gpn

T

Go- n=v ' 1—(Vg~)(Vg~)'
~ v&0

(Vg&)'

Now the limit @~0can be performed without di%culty.
The only thing one has to care about is the divergent part
of Gp which must be subtracted:

n Gpn = g n(lt)gp(k —/)n(l)
k, l

= y ~(&)[gp(lt —l ) —gp(0)]n(l )+g (0) 'y n (I )
k, /

= y &(&)gp(k —1)n(l )+g (0)
'

y pg(1)
'2

. {C4)
k, l

In Appendix A it is shown that for @~0g just yields
the lattice Green's function go, whereas gp(0}~ ao. Con-
sequently

'1

2 2
T T-

exp — n G&n ~ exp — n Gon 5
P g n(l j,O

because the quadratic form for v consists of a projector
with simple eigenvalue 0. Equation (CS) shows that the
direction of the zero eigenvalue is given by v=EVg&
with an arbitrary real constant K. From the definition of
v then it becomes clear that the direction of the zero ei-
genvalue is u = —Ehg&.

3. The approximation problem

Thus we have gained the following picture: The main
contribution to the correction factor is given by those os-
cillating terms in the sum which have considerable
weight. As we have seen in (CS) this means that only
those n give a relevant contribution to Z(s, P) which ap-
proximate the "direction" of hg& in n space. Now, the
lattice formed by the variables n =

I n (j ) I splits up into
"rays" so that we can reduce the problem to 6nding rays
approximating the hgz direction. To be more precise, let

where 5 denotes the Kronecker delta. Using this and

N= n = In(j)I ~
n(j)integer, g n(j)=0

j
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and

Q=[n EN
~
Q(In(j)I)=1], (C9b}

where 0 denotes the greatest common divisor. Any ele-
ment q EQ now defines a "ray," and the summation over

n EN of an arbitrary function f can be replaced by

g f(ii)=f(0)+ g g f(i"q) .
nGX qEQ r=1

Applying this formula to Eq. (66a}yields

(C10)

1 qgx c m
T 2 T

Z(s P)=1+ g —8 m exp — q Go — q —1
(Vgi)' ACa2 P (Vgi)

(Cl 1)

which gives a splitting of the correction factor into the
mean value and oscillating terms with zero mean and
with frequency

2n.
ACa (Vgi )

(C12)

The summation in (Cl 1) only runs over rays in n space.
83(x,y) denotes the 8 function as given in Ref. 39. It
has period m with respect to x and its amplitude is deter-
mined by y, i.e., the amplitudes of the oscillating terms in
the correction factor depend on

a (q) =exp m T 6 gAx2 T

P (Vg&)'
(C13)

Now we have to 6nd rays approximating the direction
of hg&. If there existed a q having precisely this direc-
tion, this would imply

l

permit some quantitative statements about the correction
factor.

Following from (A6a) we have

co

/=1
(C15a)

where [cf. Eq. (A6b)]

a(( j ) =b, '5; (i (C15b)

'a&(j) (n =1,2, . . . ) .
I =1

is integer valued. Suppose now )(, to be an integer [see the
remark in Sec. V, (iii)]. An integer-valued approximant
q'"' is then defined via

q("'(j}=A," g —a((j)
1=1

(C14a)
In (A6c) a, (j ) has been estimated:

with a j-independent factor K. Equivalently we could
write (C17)

Ol

0 ~g~(j) ~jq(0)
hagi 0

(C14b)
yielding

q("'(j) ~gi.( j) 8+0q("'(0) bg, (0) )(,
(C18)

q(j)
q (0) hg&(0)

Vj. (C14c)

As q (j)/q (0) is a rational number, whereas the values of
Age, (j)/hagi(0) are generically not rational for all j, Eq.
(C14c) does not hold. Thus we cannot find an integer
valued q exactly in the direction of hg&, but we can Snd q
approximating this direction. As Eq. (C14c) reveals, this
is equivalent to a simultaneous approximation of N —1

numbers by rationals. A necessary condition for getting
an ever closer approximation is

~ q (j )
~

~ 00,

~
q(0)

~

~no. Consequently we expect the existence of
frequencies with nearly maximum amplitude belonging to
some q with q =g;q (j) and

~ q (0)
~

large.

4. A spenal sequence of approximants

At first glance, things do not seem to have become a lot
easier by transforming the summation in Eq. (66a) to
rays. However, motivated by the representation (A6a) of
the Green's function we will construct a special sequence
of approximating rays, [q'"'], n =1,2, . . . , which will

q'"+"(j)=&[q'"'(j)+~"(i;,o] .

The obvious symmetries of q™(j)with respect to j show
that the values of the approximants at j=0 (which will
turn out to be important) contain a factor 4 for all n:

q(n+1)(0) 4[q(n)(e ) (qn ( ()0+g ]n (C20)

Now, the most interesting question is: %hat are the
frequencies belonging to the q'"'7 Inserting (C16) into

which shows the required approximation property. (The
quality of the approximation still depends on j.)

%'e, furthermore, have to show that the q'"' belong to
the set of "rays, " Q. From (A6b) and (A6d) it can be de-
duced that a„(one ) = 1, a = 1,2 (provided N & 2n )

showing that 0( Iq'"'(j) I )=1. Thus q'"'GQ.
In order to study the asymptotic behavior of the fre-

quencies ai(q'"') (for large n) we give a recursion relation
for the q'"' following from (C16) and (C15b):
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(„) 2m q '"'(0)
so/2

(C21b}

showing that all frequencies are integer multiphes of the
basic frequency o)"'=2'/(so/2) (up to corrections get-

ting small for increasing n). As a consequence the
correction factor possesses maxima at energies kso/2 (k

integer). This is clearly revealed by the top part of Fig. 7
(lowest energy resolution) where the oscillation with o)")
can be seen. Because of the presence of ro'" the density
of states will always show a maximum at s =0.

To investigate the asymptotic behavior of the frequen-
cies (o(") (n »1}we consider the recursion relation fol-

lowing from Eqs. (Cl 1}and (C19):

(Cl 1) and using (C18) we find

(n) ~( (n) )
'n+« '

2m q(")(0)
so/2 4 A,

where e& is given by Eq. (20b). Thus we have approxi-
mately

(C22)

where we have used (A3a). From Eq. (C16) we deduce
that the second term on the right-hand side (rhs) becomes
negligible compared to 6rst term for Iarge n:

o)'"+"=~("' for n &&1 .

Asymptotically this yields a hierarchy of frequencies that
is already indicated in Fig. 7. (The way Figs. 7 and 8
were obtained is described in Sec. V.)

Up to now we have only considered a special sequence
of integer approximants to the hagi direction. What can
be said about the other q in the sum of Eq. (C10)'? We
conjecture that for any approximant q there must exist a
q'"' differing from q only for j's with

~ j( ~
+

~ j2 ~

in the
order of, or larger than, n because otherwise q would not
be a good approximant. But as the frequency is mainly
determined by q(")(0), this q will lead to an oscillating
term with a frequency in the vicinity of co'"'. Thus it can
be concluded that asymptotically the hierarchical behav-
ior of the frequencies still holds even in the case that all

q EQ in the sum are considered.
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