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The fictitious spin-2 operator formalism is used to describe the nuclear relaxation of spins I ~ 2

in solids for single or mixed relaxation processes. This permits us to describe the time evolution of
the nuclear magnetization with a macroscopic kinetic equation extremely convenient for analyzing
NMR data. Applications to the spin-spin and spin-lattice relaxations are given for quadrupolar
{I= 32) and/or dipolar Auctuations for like (I =—') and unlike (I = —', S & —') spins. In these calcula-

tions we have purposely chosen an exponential correlation function for all these fluctuating in-

teractions to clearly point out the quantum behavior of the spin system. For quadrupolar relaxa-
tion, we predict a narrowing of the central line and a very large broadening of the satellite lines at
suSciently low temperature (r, &&1/~o). We explain this seemingly paradoxical result by the
nonexistence of the adiabatic part in the T& process for the central line of a half-integer spin I g —,.
Our treatment takes into account the second-order dynamical shifts, which are, in some tempera-
ture range, of the same order of magnitude and even much greater than the homogeneous
linewidths. Consequently„ in the central line, exists an inherent structure or differential line shifts
in the lines, respectively, in the absence or in the presence of a residual static quadrupolar interac-
tion. We Snd a nonexponential time evolution of the longitudinal magnetization coming from a
cross relaxation between different spin states. For dipolar relaxation'(unlike spins I,g we predict
that such cross relaxation dominates largely, at low temperature, over the direct relaxation and
enhances the T&

' by a factor cur/(~& —~s). %e have also studied the general case of quadrupolar
and dipolar (like and unlike spina) relaxations. The occurrence of several distinct maxima in the
temperature variation of the longitudinal relaxation rates comes from the quantum characteristic
frequencies of the spin system (i.e., co&, ~s, ml —~s, ~&, . . . ) rather than by using different ad Iloc

correlation times. The objective of the general theory proposed is indeed to interpret, with a sin-

gle calculation, aB the phenomena induced by the relaxation, including the residual nonaveraged
static interaction always present in anisotropic motions. The effects of a residual quadrupolar in-

teraction have been considered explicitly for quadrupolar and dipolar fluctuations, Finally, we

have considered the quadrupolar relaxation of the double- and triple-quantum spectra. We show
that the double-quantum spectra are composed of two lines whose temperature behavior is similar
to that of the sateHites in the monoquantum spectra, while the triple-quantum spectra has a tem-

perature behavior similar to the central hne of the single-quantum spectra. The theoretical results

appear to be directly applicable for ana1yzing relaxation data for quadrupolar nuclear spins involv-

ing anisotropic motions in solids.

I. INTRODUCTION

Solid-state NMR has for many years been used in the
study of complex materials. ' However, diSculties still
remain in obtaining dynamical information on these sys-
tems, especially in presence of nuclear spins I ~ —,'.

From a theoretical point of view these diSculties
come mainly from the spin relaxation theory needed to
interpret the data. Since the pioneering works of Kubo,
Abragam, '" and Red6eld several attempts have been
proposed to study the relaxation of such quadrupolar
nuclei in solids. ' But these theoretical attempts do
not appear able to account for aII the relevant physical
observables induced by the relaxation in a single united
theory easy to app/y. Such di%culties occur mainly from
the complexity of solving the master equation for the
spin density matrix ' * which describes the relaxation
for quadrupolar, dipolar or mixed fluctuations. Abra-

gam has proposed a method to avoid such diSculties by
giving the relaxation rates through a macroscopic kinet-
ic equation. '" However, its method was not able to de-
scribe all the relaxation cases. ' '

The purpose of this first aper is precisely to general-
ize the method of Abragam "to all the possible 6uctua-
tions using the Sctitious spin- —,

' operator formalism. 3' '
%e present a reasonably simple application of this for-
malism to the study of the microdynamics of quadrupo-
lar and/or dipolar nuclei in solids. Here the main
diSculty arises in the treatment of the nuclear relaxation
due to dil'erent mixed Auctuating interactions A. The
macroscopic kinetic difFerential equations will be
presented for any observable (Q ) expanded as a vector
like (Q) on a complete basis set of 4I(,I+1) indepen-
dent fictitious spin- —,

' operators I„' (r =x,y, z) with in-

tegers c ~d labeling the 2I+1 Zeeman states. Then for
each mechanism of relaxation A, the time evolution of
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an individual average operator (I„'"& is given in terms of
either a spin lattice 1/T;A f (for r =z) or a spin spin
1/TzA'f (for r =x,y) component of relaxation rates.
Here cd, ef is a notation to specify the coupling behavior
of difference of populations (for 1/T& ) or transitions (for
1/T2) between the Zeeman states c,d and e,f. The time
evolution of the vector-hke ( Q } is thus given in terms of
a generalized matrix of relaxation [1/Ti ] or [1/T2].
The dimension of this matrix is associated to the z or x,y
subsets of the basis for 1/T, and I/T2, respectively. In
most cases the eigenvalues of this matrix gives informa-
tion on both the observable relaxation rates and line
shapes. In presence of mixing of different mechanisms
of relaxation (A&A'), the elements of the total matrix of
relaxation are simply obtained by adding the individual
matrix elements in the corresponding basis subset.

In Sec. II, we show how to obtain a generalized mac-
roscopic di8'erential equation for any observable using
the fictitious spin- —, operator formalism. The deffnitions
and useful properties of these operators are resumed in
two tables. We separate the intercorrelations between
different mechanisms A+A' from the sum of the auto-
correlations of these mechanisms. We discuss the condi-
tions of validity of the secular hypothesis for solids
where the presence of @nisotropies of the local fields is
the commonly encountered case. The theoretical treat-
ment of a residual nanaveraged perturbation term 8 is
given. This could affect the relaxation when its ampli-
tude is at least of the same order of magnitude as the
one inducing the relaxation itself. We will insist particu-
larly on this effect in Sec. IV.

In Sec. III, restricted to the completely averaged case
(H =0), we apply our method to the quadrupolar (I = —', }
and dipolar relaxations for like and unlike spins. In
each case we present the elements of the matrix of relax-
ation, in an adapted basis set or subset, in terms of linear
combinations of spectral densities at the frequency (or
multiple) of the transitions. When it is possible, a com-
parison with previous results is given. Theoretical dia-
grams for the temperature variations of the spin-spin
and spin-lattice relaxation rates are given for the quadru-
polar, dipolar (like and unlike spins}. A second-order
dynamical line shift is evidenced for these processes.
For quadrupolar interaction this induces a temperature
dependent structure in the adsorption spectrum even in
the completely averaged case. The usefulness of the
presented formalism is evidenced in treating exphcitly
the case of a mixing of quadrupolar and dipolar (like and
unlike spina} Suctuations. The temperature variations of
the spin-spin and spin-lattice relaxation rates are
presented and discussed in such mixing cases which
occur in real materials. A surprising result is the oc-
currence of several distinct maxima in the temperature
dependence of the observable spin-lattice relaxation rates
obtained with 8 single corre18tion time. As proved in
this paper, by choosing on purpose the same monoex-
ponential correlation function for all the Nuctuations,
this is due to the repartition in the spectral domain of
the characteristic frequencies of the transitions created
by the various kinds of fluctuations. This shows the im-
portance of a correct treatment of the quantum part of

the relaxation process before trying to interpret the dy-
namics from the data.

In Sec. IV, the effects of a residual quadrupolar in-
teraction have been considered explicitly for quadrupolar
and dipolar fluctuations. Finally we have considered the
quadrupolar relaxation of the double- and triple-
quantum spectra. %e show that the double-quantum
spectra is composed of two lines whose temperature be-
havior is similar to one of the satellites in the mono-
quantum spectra, while the triple-quantum spectra has a
temperature behavior similar to the central line of the
monoquantum spectra.

The applications of this treatment to some materials
of low symmetry, such as the superionic conductors ' '
are reported in a following paper.

II. SEMICLASSICAL TREATMENT
OF THE SPIN RELAXATION IN SOLIDS

A. Macroscopic di5'erential equation

The purpose of this section is to propose a general
treatment of the spin relaxation for an ensemble of spins
I & —,

' in solids. For the sake of convenience, we shall
follow as close as possible the usual treatments and nota-
tions of Abragam "' and generalize it, when it will be
necessary, using the fictitious spin- —,

' operator formal-
ism 15, 16

Let start from the total Hamiltonian

HD+H)(t)

where the constant part Ho is given by the superposition
of a Zeeman term 8, and a time-averaged part H

00——H, +0, (la)

with H AH, and where the time dependent part H, (t)
given by

H&(t) =H(t) H— (lb)

represents the deviation from H. The interest of such
partition is to include explicitly a possible non zero time
averaged part in the treatment of the relaxation. This is
of particular importance for local and long range ionic
motions in superionic conductors' ' or in polymers
studies.

Representation in the interaction frame

In the following the stationary random operator H, (t)
will be considered as a high-frequency perturbation that
can be treated by usual perturbation theory using the
well-known master equation for the spin density
matrix6" '3

dt
— o'(t)= —I dr [H' (ti), [ fH(t ~),o'(t) o,]—] (2)—
where the overbar stands for a statistical average over
the system of spins and where a*(t} and H', (t) are
defined in the interaction representation by

tr'(t) =e cr(t)e (3a)
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H;(t)=e 'H, (t}e

r, « t«(~H&
~

r, ) (3c)

and o.o is the equilibrium density matrix. It is recalled
that Eq. (2) ls valid piovldiilg the conditions

where ~, is a time cut oiT for the correlation functions
involved in such master equation and t is supposed much
larger than v; but much shorter than an estimate of the
homogeneous relaxation time. From Eqs. (2) and (3c),
we can derive the macroscopic difkrential equation of
any time independent observable Q like I„,I,I, in the
interaction representation as

—
& g )"=Tr Q—a'(r) = —I"d~TrI [H', (t —r), [H f (t),Q]][tr'(r) —a'o]I .

dt dr 0

The possibility of transforming Eq. (4) into a kinetic
equation

(5)

which defines a relaxation time T„could avoid the expli-
cit calculation of the time evolution of the density ma-
trix. However, this latter transformation is not always
possible@ ' due to the fact that for I&—,

' the operators
I„,/~, and I, do not belong to a complete basis. On the
contrary, the 6ctitious spin- —,

' operator formalism' al-

lows to define such a basis. This latter is built on a set
of 4I(I+1) spin operators I;", where r =x,y, z and the
integer indices c & d E I 1, . . . , 2I + 1) stand for the
eigenstates m E II,I —1, . . . , I ) of the —Zeeman Ham-
iltonian, respectively. We point out below the ortho-
gonality relations and the de6nition of the scalar product
for the spin operators which compose the basis. For r
(or s}=x,y such orthogonality relation is given by

Then one can express the operator Q as

Q =aoi++ g q„'I„'
I' C&d

where 1 is the (2I+1)(2I+1)unit matrix and

ao —— TrI Q I, q,'d=2Tr[QI;~I .1

Thus q„'" in Eq. (6c) defines a projection-like of Q on a
basis operator I„'. For a two-spin (I,S) Hamiltonian
H, (t), Eq. (6c) is always valid if we extend this equation
by a direct product of the spin operators I and S. We
give in the Table I the definition and some useful proper-
ties of such operators.

We intend to prove below that using the spin 6ctitious
algebra, we can always transform Eq. (4) into a general-
ized kinetic equation

TrII„' I;Ij=—,'5 5„5dI . (6a}

For r and s =z, there is a redundance of the I,' opera-
tors in the z subspace, so we restrict the choice of such
operators according to the relation

TrI I;dI;II = —,'5„5~/ .

where the vectorial &Q &' and matrix [1/T;] notations
will be defined in the following sections.

Substituting Eq. (6c} into Eq. (4) gives for each opera-
tor I„'"a macroscopic differential equation

&I„'d)' = —I—dr Tr I [H i (t), [H f (r —r), I„' ]][tr'(r)—~ro]I .
dt 0

TABLE I. Definition and useful properties of Sctitious
spin- 2 operators.

( c
i

I'd
i d ) = (d

i I; i
c ) = —,

'

&c iI„"id)=—&d jI; ic)= ——'

(c fI; fc)= —(1 [I,' [d)=2, all the other elements

are equal to zero
Icd lcd' lcd

X

Icd Ict+ICd
g z g

TABLE II. Commutation rules for the spin-2 operators.

[Ij,I"]=+I,", [I'j,I~")=iI,", [I'+i,I" ]=2I j,

[I'4 ~y'l=iIzj [Ix'iy Ix'gy]=+ ~y', [I&~If]=+If,Z P» Z

[IX IP)= +IX [IZ Iy")= I'" [I'4 I% )=0——

[Ij,I„']=*j,'If, [ ,' ,„I,j]I=jk*-—' I,'i,.
[Iij Ijk] i Islk [I&i Ijk] 0

[Iij Ijk] g 1 Iij [Iij Iik+Ijk]



D. PETIT AND J.-P. LORS 37

In the most general case the Auctuating perturbation
H, (t) can be written as a superposition of different in-
teractions HA(t)

2 +l
HA(t)=CA Q g ( —1) FI" (t)AI (9b)

H, (t)=+HA(t) .

where cA is a numerical factor.
In the interaction representation each component Al

becomes

Each interaction A can be expressed as a scalar product
of spatial spherical tensor F"(t) and spin spherical ten-
sor A

(10)

where the index p stands for the different transition fre-
quencies. With Eqs. (9,10), one obtains for Eq. (8)

(I„'d—)'= —g C„CA g g ( —1) + g exp{i[(toIAp+oll p )]„„,t I

~Fl 0 I'l" ~ ~ exP —icul~r
0

)& Tr{[AtAP, [ A,AP. ,Ied]][a'(t) trO] I—
We will see in Sec. II 8 that the only time-dependent terms conserved in Eq. (11) will be those (noted [ ]„„,) coming
from the non zero time averaged part of the perturbation H which induce a very slow time oscillating contribution for
which all the coefficients of Eq. (11) stay constant when t verifies Eq. (3c). Using Eqs. (6c) and (6d) and the commuta-
tion rules given in Table II, the double commutator in Eq. (11)can be written as

[g Ap [ g A'p' Ied]] y y aaPIef
s e,felf

a„„=2Tr{[A "P [A" I' ]]I' I

and the collective indices a, P, u and v symbolize four indices, respectively

a=(t p), p=(l p ), u =(„' ), v =(;/) .

Substituting Eq. (12a) into the rhs of Eq. (11) gives for the Trace

y y a„„~Tr{I;I[a'(t) eJ ]I =y y —a„~{(I,' )' —(I,' ) I .

(12b)

(12c)

Finally for Eq. (11)

—(I )*=-gy
s e,f jelf

(14a)

A g g ( — ) + g e p{'[(co, +to, )]„„tJa~ f dI F, (0)F, (I.)exp( Icolpl) . —
Ti A, A' l, l' m, m' pp'

(14b)

Now Eq. (14a) dcff ncs a kllMtlc cquatloll of all 8 colll-
ponent of a vector (Q)' built on the basis of 4I(I+1)
independent 6ctitious spin- —,

' operators; the elements of
the relaxation matrix [1/T;] being given by Eq. (14b).
Therefore, without introducing physical restrictions, one
call always wl'ltc Eq. (14) lllto thc foITll glvcll ill Eq. (7).

2. Representation into the rotating frame

In liquids the interaction representation corresponds
to the rotating frame at the resonance frequency. In

solids, when H&0, these latter representations are
different and one is usually interested by the dynamical
response in the rotating frame. In Table III, one intro-
duces the de5nitions and some useful relations to express
the observables and their dynamics in different frames.

Using the dynamical transformation given in Table III
with Q =I„', one has in the —rotating frame

„;,,P&I &' &I;»,)+ —(I "&--cd

(15a)
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TABLE III. Observables in dilerent representations.

Interaction Q time independent

Rotating Q=e ' 'Q e+' '
—iHo t ~ +iHo t

Laboratory Q=—e Q e

—iHt e +iHt

—leot 4, +laot0'=8 0' 8

&Q&'—=TrIQ'o I

&Q) =TrIgo I

&Q&—=Tr!QoI
all equal

with ihe dynamical transformation:

—&Q&=Tr gdt dt

where —&Q)'= —&Q'&
dt dt

= —i Tr[( Q', H)o']+—&Q&*~—&g&
dt dt

where according to Eq. (6), the B,e,f given by

co,d,f—2Tr f [I„'—,H ]I;f], (15b)

represent the characteristic splitting frequencies of the
spectrum. In the following we will consider only the
secular part of the perturbation H (i.e., [H,Hz]=0), for
instance, the first-order quadrupolar interaction H =Htt.
This corresponds to omit the fast oscillating terms in the
relaxation treatment. [']'

B. Autocorrelations and intercorrelaiions

l+
A&A'

(16)

This first sum of matrices in the rhs of Eq. (16) reveals
the statistical independence of the autocorrelation con-
tribution of each interaction A contrary to the second
sum which takes into account a possible intercorrelation
between two difkrcnt 1ntcractions A and A. Th1s 1ntcr-
correlation cfkct, often neglected in the literature, could

The expression (14b) for the relaxation rates both in-
cludes the autocorrelation and intercorrelation terms ei-
ther for diferent interactions or individual tensorial
components of a given interaction. These intercorrela-
tion terms can be simpli6ed for a liquid owing to the
orthogonality properties of irreducible tensors and of the
isotropical character of the motion. Ho~ever in solids
the motions are mostly anisotropic and these intcrcorre-
lation terms should be included.

Let separate Eqs. (14) according to the following three
steps. (i) We separate the intercorrelations between
difFerent interactions from the sum of autocorrelations of
these interactions. (ii) We discuss the secular hypothesis
in order to conserve only the slow variation component
into Eq. (14). (iii) For a given interaction, we discuss the
case of the intercorrelations between different irreducible
tensorial components.

The first step (i) gives for Eqs. (14) [generalized as Eq.
(7)]

occur in solids, for instance, when a nucleus is both sen-
sitive to chemical shift, quadrupolar and dipolar interac-
tions. For example, when such a nucleus jumps between
two sites, the chemical shift and electrical field gradient
variations are simultaneous and then temporarily corre-
lated. This type of event occurs in solids and conse-
quently renders such a temporary correlation statistical-
ly non-negligible. %e shall continue only with the 6rst
sum in Eq. (16), though both terms could be formally
treated in the same way.

Step (ii) is relative to the consideration of the secular
terms in Eq. (14). Owing to the definition of Ho, where
0 is always a perturbation compared to Hz, one con-
serves only the terms with m'= —m. Moreover among
thc remaining p,p t1me dependent terms we conserve
only those for which

[ I & +~i Il-.i.-= I
f)',(' I

& IHi
I
~, . (17a)

It is particularly important to conserve such terms be-
cause their frequency 0, coming from H, are not neces-
sarily much larger than the homogeneous relaxation
time. Consequently they will give a nonnegligible time
dependent contribution in Eq. (14). However these
terms should also verify Eq. (3c), thus giving the follow-
ing restrictive condition on t and 0:

~, ««&(flf~ ) '&( IHi I'r, ) (17b)

which transforms such time dependence in a very slow
oscillation, thus preserving the kinetic character of Eq.
(14). Similar restrictions have been previously con-
sidered when dealing with the solidlikc contribution of
the nonzero average dipolar coupling to NMR signals. '

Step (iii) concerns the possible intercorrelations be-
tween dil'erent I components of Fi (l), defined in Eq.
(9b), for a given interaction A. This step is not relevant
for the quadrupolar (A=Q) and dipolar (A=D) interac-
tions because I =l'=2. On the other hand, chemical
shift (A=o), J-coupling (A=J) and spin-rotation
( A =SR ) interactions can produce such intercorrela-
tions. From a theoretical point of' view these kinds of
intercorrclations should be conserved in solids because of
the anisotropy of the angular distribution probability.

According to these three steps, a matrix relaxation
element can be written as
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(18)

where the notation [ ]„„,stands for the restrictions for
0 and t given in Eq. (171). One introduces here the re-
duced and nonreduced spectral densities j and J, respec-
tively, by

+ co

Jll'm (4»»» }= gfl'»n (+)exp(

Jg (g )=Gg (0j)it (Q ) (19a)

ka. (~ )—= f+"gti (~)sin(aq r)d~,

+II' {4 ) =Gl! (0)ka»»»(cof~ ) {191)

A. Single source of relaxation

Quadrapolar relaxation

%e consider the relaxation of a single nuclear species
with I =-,' in the presence of a strong constant magnetic
field Bo. We study the case where the relaxation is only
due to the modulation of the quadrupolar interaction
(A=Q). Physically this case applies for an isotropic
liquid. However one should notice that the monoex-
ponential description for the correlation function is not
adapted to real liquids. ' Here one has

and the reduced correlation functions

gg (~)=F( (0)Iti' (~)/Gii (0), (19c)
a, =a, =~,r, ,

H, (t) =H(l(t},

(20a)

(201)
%Vlth

Gg (0)=—I'i (0)Ei' (0) . (19d)

The reduced spectral density k(oi) defined in Eq. (191)
induces a previously studied dynamical shift of the reso-
nance lines. 20'2'

+2
Hg(t)=Cg g [F (t)]'A (21)

where tot ———ytBo. According to Eq. (9b) in which
I =2, the modulation of the quadrupolar interaction can
be written as

HI. APPLICATION TO QUADRUPOLAR
AND MPOLAR RELAXATIONS

%ITHQUT A RESIDUAL TIME AVERAGED
BiTKRACr xON

The cases where H+0 will be treated in Sec. IV.
Here we restrict to the case H=O for quadrupolar and
dipolar fiuctuations in order to illustrate the eSciency of
the proposed formahsm in some simple but useful cases.
Basically the interest in these cases is twofold. First, we
both obtain with the same treatment, the spin-lattice re-
laxation time T, and the spin-spin relaxation time T2 for
quadrupolar relaxation. This result is achieved in a wid-
er range of correlation times (1/ cor, (1/H, ) than in

the extreme motional narrowing (r, ((1/coo) previously
done. @" Second, we present the only way to super-
pose properly the quadrupolar and dipolar relaxation
mechanisms by adding our generalized relaxation rna-
trices.

In order to illustrate the di8'erent variations of the ob-
servables, we have considered below in the apphcations
and on the figures, monoexponential correlation func-
tions with a correlation time characteristic of an activa-
tion law: r, =roexp(E, /kT) with so=7 5X10 ' sec.
and E, =0.215 eV. These values and. those for the qua-
drupolar and dipolar fluctuation amplitudes given in the
legends of the figures correspond. to a case of a superion-
ic conductor. ' Of course it is always possible to have
other forms of correlation functions depending on the
physical case considered, for instance when one consid-
ers translational motions in low-dimensional systems. '

~0 V T~g» ~Xi 0» ~k2 q 9Q~Q ~ (23a)

introducing the usual notations for quadrupolar interac-
tions

~n —~xx

~zz
(23b)

In Eq. (22) we used the Wigner matrix D' '(a, —8, —P)
(Ref. 26) which rotates the principal axis X,Y,Z of the
efg into the corresponding axis x, y, z of the laboratory
frame. The angles 8 and»I) are the spherical coordinates
describing the Z axis of the efg in the laboratory frame.
The angle o, is defined by the rotation around Z which
brings the principal axis X into the (z,Z) plane.

Now we express the spin spherical tensor A in a ficti-
tious spin- —,

' basis II„' J. For that we associate the 2I + 1

indices c (or d)=1,2, 3,4 to the spin states m =—',, —,',
and ——,', respectively. The basis operators I„'"

should verify the Eqs. (6}. In particular to avoid the
redundance of the I,' subset of the basis we choose the
three operators I,', I, , (1/&2)(I,' I, ) which. verify-
Eq. {61).

where C& eQ/2I(2I———1)irt with Q is the nuclear quad-
rupole moment and eel is the Z component of the electri-
cal field gradient (efg). It is worthwhile to express each
component Ii in function of the component P ~ into
the principal axis XYZ of the electrical field gradient
(e g)

+2
F.= g D.".' (a, —e, —{()V.. ,

Nl = —2
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Then the A components can be written, after some
algebraic manipulations using Table I, as

iHot —iHOt im co& I
e A~e = A~e

Ac —— (3I, I—(I+1)=v'6(I,' —I, ),

2 +1 ——+ ,' (I,I—+.+I~I, ) = + &3(I~ I+—"),
i I2 ~3(I 13 +I24 )

In the interaction representation Eq. (10) reduces to

(24a)

(24b)

(24c)

with QP~ =NEQ)1.
a. Spin-lattice relaxation. To obtain the matrix of re-

laxation describing the time evolution towards equilibri-
um of the longitudinal magnetization, one has to replace
I„ in Eq. (18) by the three operators
I,',I, , (1/v'2)(I, ' —I, ). Using the commutating rela-
tions g1ven in Appendix A, one has the foHowing longi-
tudinal kinetic equations:

(I 14 )»

(I23 )»

(&I"&-(I"&)'
2

1

T14, 14
1Q

1

y 23, 14
1Q

1

T 14,23
Ig

1

T23 23
1Q

g(I 14)»

g(I23)»

Z
—(&I"&-(I"&)'

T 12—34, 12—34
1Q

(26)

where the spin lattice relaxation rates are given in Table
IV and with the notations: 6, & I; ) ' for
(Icd)» (Icd)

From this relaxation matrix one notes that the corn-
ponent ((I,' ) I, ) )' rela—xes independently of the oth-
er components. Then it represents an eigenstate of the
longitudinal relaxation matrix. Along these lines, one
can find easily the other two eigenstates and transforms
the Eq. (26) into three decoupled kinetic equations:

EQUlLIBRIUM

I I
I I

3U

-1/2

SATURATloN lNVERSloN

'~
»

g( (I 14 )» + ( I23 )» )
d TA Z

1g

((I14)» (I23)» ) g( (I14)» (I23)» )
dt IQ

(&I"&' —&I"&*)= — a(&I")»—&I"&'),
Z Z Z Z

1Q

(27)

Devlatlon from
equihbnurn in
unit of u Equthbnurn Saturation

10

lt(),& I 0

h& I 0

6, (& I, &s'- & I &*) 0

h, {&I, &s' + & I, &4')

$ {&I, &* - & I, &*)

h, {3&I &a+& I &a)

6, {&I, &a -3& I, ~&*)

Inversion

20

Symbols

X+0

TASI.E IV. Elements of spin-lattice relaxation rates for the
quadrupolar case.

1

,d,I ——3C&~[aJ1(COI )+bJI(2C01 )]
1Q

14,14
14,23
23,14= 14,23
23,23 = 14,14
12-34,12-34

FIG. 1. Schematic diagrams for the deviations 5 from equi-
librium of the population differences between levels 14,23, and
12-34 for saturation and inversion preparations. The 6rst dia-
gram presents the difkrent notations and equilibrium offset
populations, in unit of U=(N js)%coo/kT, between the levels
14 and 23. The deviations from the equilibrium (dotted lines)
are noted in each case by a continuous line. In the last column
the symbols ( Q, +,0) represent the basis of averaged operators
used in the calculations of the [1/T, ] tnatrices ( X ), the eigen-
states for both quadrupolar (+ ) and dipolar (0) relaxation pro-
cesses, respectively.
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1 2 1
=6C(2J2(2a)r ), =6C(3J,{a)q ),

T1Q T1Q

1 1

TC T12—34, 12—34
1Q 1Q

of an isotropic rotational di8'usion, @' transforms our re-
sults as

1 9 '9Q
1+ C&5&j 2(2col )

—=2W2,
5 3

Figure 1 shows that the deviation dL, at t =0, from equi-
librium of the population diC'erences between levels 1-4
and 2-3 always belongs to the subspace generated by
&I,' & and &I, & whether for saturation or inversion ex-
periments. In consequence only the 6rst two rates
I/T,"& and I/T, & are involved in such experiments.
The last one I/Tl(J cannot be measured because the
devlatlon d( &I,' ) —

& I, ) )' ls always zero.
A comparison with previous calculations, using a

master equation for the populations applied in the case

2

1+ C(35(3jl (co~ ) =—2 W, ,5. 3
(29b)

which are expressed in terms of the well-known relaxa-
tion rates 8'1 and $V2.

b. Spin-spin relaxation. For the transverse relaxation
rates, we replace I„ in Eq. (18) by the three operators
I+,I+,I+, respectively. Using the commutation rules

given in Appendix A, one has the following transverse
kinetic equations:

&I12 )»

&I23 )»
dt

&I34 )»

1

T12, 12
2Q

1

T34, 12
2Q

1

T23 23
2Q

1

T 12,34
2Q

1

y 34, 34
2Q

l2 0 0 &I l2 )»

0 ~23 0 &I23 )»

() 34 &I34 )»

(30)

where the spin spin relaxation rates are given in Table V
and the dynamical shifts coQ are given by

volution

&I &(~)= &I &'(~)~a~~~, } . (33b)

&I+.' )'(~)=

+ &I,"(o)&'],
723, 23 l' ( + 23){T23, 23)2

&I"{o)&'
1+[(~+~23)( T23,23)]2

(32a}

(32b)

1 1 1

T X T12, 12 T12,34
2Q 2Q 2Q

The magnetization Mk(co)=%yah&I+)(co} can be
expressed as

&I &(~)=&3(&I"&+&I~ ))( )+2&I"&(~), (3»)

where &I+ )(co) is obtained from &Ik )*(co) by the con-

~g 6CgK, (~~——),
~~g' 6cg'[K, (——~1 )+K2(2~1 )]

34 12
COQ =COQ

The solution of Eq. (30) in the frequency domain is ob-
tained after some algebraic manipulations, which give
for the two observable eigenstates of the relaxation

[&I,")*( )+&I."&'{ )]

T2~ l (CO+ CO&
—)( TZ& )

, [&I,"(o)&'
1+[(co + cog )(T2g )]'

c. Discussion. %e have displayed in Figs. 2 and 3 the
main observables for a pure quadrupolar relaxation pro-
cess. Figure 2(a) shows the temperature variation of the
spin-spin relaxation rates (Table V) and of the second-
order dynamical shifts [Eq. (31)], even when
1/~c(r, (1/H(3. There are two interesting features in
this fIgure.

(i) One notes an opposite variation in the low tempera-
ture range for the two observable rates labeled "1"and
"2". The paradoxical narrowing of the central transition
2-3 when the temperature decreases comes from the
nonexistence of the adiabatic part in the T2 process (see
Table V). This is characteristic of the quadrupolar re-
laxation of a half-integer spin (I y —,') when the perturba-
tion conserves the same value at each time on the two

TABLE V. Elements of spin-spin relaxation rates for the
quadrupolar case.

1

,d,f 3Cg[aJO(0)+——bJ, (col )+cJ2(2rog)]
T2Q

12,12
12,34
23,23
34,12= 12,34
34,34= 12,12
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central states (e.g., 2 and 3 for I =—,'). lt results, when

the temperature decreases, a suSciently important nar-
rowing of the central line (2-3) and a broadening of the
two other lines (1-2 and 3-4); so only the central line (2-
3) is observed [Fig. 2(d)].

(ii) One observes also some temperature ranges where
the second-order dynamical shifts e& are of the same or-
der of magnitude and even very much greater than the
linemdth. It results important differential shifts

(rog r0——(I~ro(2) and linewidths (1/T2f2~1/T2fI ) on
the line (2-3) and (1-2 and 34) which are really observ-
able when r, &1/roo [Figs. 2(b)-2(d)]. This shows that,
even without static quadrupolar splitting, there exists an
inherent dissymmetric structure in the line [Fig. 2(c)]
which gives supplementary information on the dynamics
of the system. There are some recent experiments which
use these efFects to study the ionic motion in solids.

Figure 3(a) shows the temperature variation of the
spin-lattice relaxation rates [Eq. (28)] for the three eigen-
states. Figures 3(b)-3(d) show the time dependences of
the relative deviation of the longitudinal magnetization

at three temperatures for the observable states given in
Eqs. (26) and (27). As explained in Fig. 1 and above,
only the T,"& and T,& relaxation times [Eq. (28)] can be
measured from a saturation or inversion preparation of
the longitudinal magnetization.

Since the time evolution of the longitudinal magneti-
zation is obtained through the transverse magnetization
after rf irradiation of the spin system, a question arises:
what are the relations between such transverse magneti-
zation after the rf pulses and the longitudinal magnetiza-
tion before the rf pulses? The answer depends on the
temperature range considered. For instance in the
high-temperature range, v, (1/coo, [Figs. 2(b) and 3(b)],
the total longitudinal magnetization I, is transformed
after a m/2 pulse in the total transverse magnetization
I„. In consequence, the vectorial image for the spin
operators is still valid and I~ gives complete information
about the time evolution of I, . The relevant curve in

Fig. 3(b) is then associated to I, . In the temperature
range 1 /co o(r, &1/H&, Figs. 2(c) and 2(d) show that
the major part of the signal comes from (I ) . Since

%1

30

1O'

QUADRUPOLAR RELAXATION

1000/ T (K )

QUADRUPOLAR RELAXATION

(8)
co 10—

l I

3
1000/T(K )

T*)OOOK (t.-) T=333K (d) T*222K

- )o

Q

)o
'U

N

-"KX) 0 100

f (Hz)

9.4 QB 0 .01 .03 0

FIG. 2. (a) Semilogarithmic plots of the calculated variation
of the spin-spin relaxation rate 1/T2 and second-order dynami-
cal shifts ~d„„(both in rad/sec) vs 1000/T{K) for a pure qua-
drupolar relaxation. The indices 1-3 stand for the eigenstates
of the quadrupolar relaxation I+ (1),I '+ +I+ (2), and
I'+ —I+(3), respectively. The dotted lines correspond to the
unobservable eigenstates referred to in the text. The indices

4,5 stand for the ud»m' =m (4) and co (5), respectively. All

these quantities have been calculated with the expression given
in Table V aud Eq. (31) in using a quadrupolar fluctuation am-

plitude of 3.5 X 10 rad/sec. (b)—(d) Absorption signals (in arbi-
trary units) ca1culated from Eqs. (32) for three temperatures
T =1000 K (b), 333 K (c), 222 K (d). This illustrates the rela-
tive importance of the ~d„„and of the linewidths for the 23 and
12,34 transitions. In each case we have represented the absorp-
tion signal with (continuous line) or without (dotted line} md„„.
The indices 1-3 stand for ( I» ) (1), 2(I~~3 )(2), and
v3((I„' +I~~)) (3), respectively. We use hnear scales in (b)
and (c) and logarithmic scales in (d).

FIG. 3. {a) Semilogarithmic plots of the calculated variation
of the spin-lattice relaxation rate 1/T& (in rad/sec) vs
1000/T(K.) for a pure quadrupolar relaxation. The indices 1-3
stand for the three eigenstates of the quadrupolar relaxation
(I,'4+Ii ) (1), (I' I ) (2), aud (I—,' I ) (3). The dot—ted
line corresponds to the unobservable eigenstate referred to in
the text. All these quantities have been calculated with the ex-
pression given in Table IV and Eq. (28) in using a quadrupolar
fluctuation amplitude of 3.5&10' radfsec. (b)-(d) Semiloga-
rithmic plots of the time dependences of the relative deviation
from equilibrium value, Mo, of the component (I; ) of the
magnetization for three temperatures T=1000 K (b}, 333 K
(c), 222 K (d). In each case we have represented such devia-
tions for the Sve foBowing states labeled with the indices (1-5)
as (I, ) (1), (I,' +I, ) (2) (I' I ) (3) (I' ) (4) aud (I—")
(5), respectively. Here the points correspond to the eigenstates
labeled (2) and (3) and the continuous lines to the em'ectively

measured relative deviations as discussed in the text. A11 the
quantities have been calculated from the solution of Eq. (26).
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the behavior of (I„) after rf associates linearly the
terms (I,' (0)) and (I,23(0)) before rf, the time depen-
dence of the eN'ectively measured longitudinal magneti-
zation will be a linear combination of the z components
in the 14,23 subset. It is interesting to see in Figs. 3(c)
and 3(d) that each of these z components follows a
different time behavior. The components (I,'"& + & I,
decay exponentially because they are two eigenstates for
the quadrupolar relaxation. On the contrary (I,' ) and

(I, ) present a nonexponential time behavior. For
(I, ) such time behavior is due to a cross polarization
phenomenon between the 1-4 and 2-3 states. This has
been observed previously in Li3N. We will discuss this
behavior in the presence of quadrupolar static interac-
tion in Sec. IV.

Ho=Hz =o)t(Iz+Iz )

H, (t)=Ht3, (t) .
(34a)

(34b)

According to Eq. (9b) in which 1 =2, the modulation of
the dipolar interaction can be written for a two-spin sys-
tem as

+2
Ht3 (t)=Co g [E~(t)]'A~,

PH = —2

(35)

where CD ———2ytR. An elementary transformation in
the unique principal axis rtt. joining the two spins, gives
for I

2. Dipolar relaxation for like spins

We consider successively the dipolar relaxation of an
ensemble of like (I-I) and unlike (IS) nuclear spins with
I =-', whatever the S value is. The I contribution will be
developed on the same basis operators as the one used in
the quadrupolar case. This will be useful when consider-
ing the superposition of dipolar and quadrupolar relaxa-
tions. Let us consider first the modulation of the dipolar
interaction (A=DII) between like spins. This means
that

14,14

14,23

23,14= 14,23

23,23

12,34

1

10
3
10

9
10

1

2

3
4

ll

3
2

12
5

6
5

u =err O ~..
ln the interaction representation Eq. (10) reduces to

lHpf —/Hpf ilail OJI f
e A e =A~e (38)

a. Spin-lattice relaxation Foll.owing the same pro-
cedure used for the quadrupolar case but with the com-
mutators obtained similarly to those of Appendix A, one
has the following longitudinal kinetic equations:

(I23 ) e

dt
((I,"&-&I,"&)'

i) &Ii4)'

i) (I23)e

i)(&I,")—(I,'4&)'

(39)

where the spin lattice relaxation rates are given in Table
VI where the other elements are equal to zero. One
finds three eigenstates for the dipolar relaxation matrix:
(I ) 3(I14)4+ (I23)4 (I14)4 3(I23)» a d (I12)4
—(I, ) ' associated respectively to the three relaxation
rates:

TABLE VI. Elements of spin-lattice relaxation rates for the
dipolar case with like spins.

,'I(—I+1)Co2[aJO(0)+bJ, (cog )+cJ2(2', )]
ilia

cd, ef 0 6

F =Do( '(0, —8, —Q)&o,

9'o ——3/3/2533, P~ i
——7~2 ——0,

with

5D—:1/(rtt )' .

(36a)

(36b)

(36c)

= —,'I (I +1)C33[,' J, (col )+2J2(—2cot)],
1D

1
1=—,'I(I +1)Ct3[Jo(0)+3Ji(cot)+6J2(2o)t)], (40)

1D

l = —,'I(I +1)CD[—,'Jo(0)+ —32Ji(co, )+3J2(2col )] .

Then the A components can be written as

Ao ——— —(3I,I, —I-I'),1

v'6

3~i ——T- ,'(IzI~ +I~Ig ), —

~*2=2I*IZ . (37c)

The spin operators A are written in Eqs. (37) as a
direct product of two operators acting on subspaces as-
sociated to the I and I' degrees of freedom. Sy the same
way the total spin density matrix is de5ned as

Of course, the first rate 1/T,"D is the well known spin re-
laxation rate 1/Tit3 given in Ref. 6(a). For the other
two modes of relaxation, one sees in Fig. 1 that the devi-
ations 6 from equilibrium of the population differences
between the levels involved in their associated eigen-
states are zero whether for saturation or inversion exper-
iments. In consequence only the 6rst rate 1/T&D drives
the dipolar relaxation process for like spins.

b. Spin-spin relaxation. Using the commutators ob-
tained similarly to those of Appendix A, one has the fol-
lowing kinetic equations for the transverse relaxation
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'(I l2 ) e

(I34 ) e
+END 1

2D
II

'(I12 )e
'

(I23 )»
(I34 ) e

L

where the dipolar dynamical shift is given by

,'I (I—+1)CD[,'K—,(Col )+K2(2Col )] .

and the spin-spin relation rates are given in Table VII.
The solution of Eq. (41), in the frequency domain, is

obtained after some algebraic manipulations which give

T~D i—(coVcon )(r~D)
(I+(0) ) «5(co %col ),

1+[(co+coD )(&»)]'

(43)

Equation (43) shows that the second-order dynamic shift
and the homogeneous linewidth do not depend on the
transitions. So the dipolar modulation for like spina
does not split the line but shifts it.

c. Discussion We . have displayed in Figs. 4(a) and
4(b) the temperature variation of the spin-lattice and
spin-spin relaxation rates for a pure dipolar relaxation
process. As shown above, one has only one T,D and one

T2D driving the dipolar relaxation for the direction I,
and V3(I /+I~~~ }+2I+3 (i.e., Iz ), respectively The.
other directions of relaxation will be useful in Sec. III 8
to study the superposition of a dipolar and quadrupolar
relaxation processes. In Fig. 4(b) one sees that the
second-order dynamical shift conll stays always much
smaller than the homogeneous linewidth T2D, thus in-

ducing an insigni6cant lineshift.

where T2& is the well-known transverse relaxation time
de6ned as

1
,'I(I+1—)CD[,'Jc(—0)+,'J, (—cog)+—,'Jg(2col)] .

2D

(44}

TABLE VIII. Transition frequencies aP and spin operators
A~ for unlike spins.

m =0 AD —— —I S coo ——0

A O
= — —I+@+ s Q)O =+{{gPI—Q)~ )

+1
2&6-

m —+1 A yl ——W —I+5'„a)gl ——ka)I1 1 1

3 +1 ——2I,Sg, cogl = Xmg1

m =+2 A ~2
——-'I~S~, ~g2=4{~1+~~)

whatever the S value is. This means that

Ho =Hz =Q)II +Q)gS

H)(t)=HDqs(r) .

(45a)

DIPOLAR RELAXATION (like spins)

(8)
fJ)

)O-2

The expression of HD~z(t} is obtained by substituting in
Eqs. (36)-(38) I' by S. Using Eq. (10), one obtains the
transition frequencies coi' and spin operators A given
in Table VIII.

a. Spin lattice-relaxation Here. one obtains the fol-
lowing longitudinal kinetic equations

3. Dipolar relaxation for unlike spins

In this section we consider the modulation of the di-
polar interaction (A =Dls } between unlike spins I = —,

' 4

1000/T (K )

12,12

12.23

12,34

23,12= 12,23=
23,34=34,23

23,23

34,12= 12,34

34,34= 12,12

1I
20

—~3/10
1

l9
10

—2v 3/5

20

TABLE VII. Elements of spin-spin relaxation rates for the
dipolar case with like spins.

1
d /

——,'I(I+1)Co[aJO(0—)+bJ,(a)g)+cJ~(2cog)]
Tcd~ef 3

II
Cd, ef Q b

FIG. 4. {a) Semilogarithmic plots of the calculated variation
of the spin-lattice relaxation rate 1/T, {in rad/sec) vs

1000/T(K) for a pure dipolar (like spins I= ~) relaxation. The

indices 1-3 stand for the eigenstates of the dipolar relaxation
(I, ) (1) (continuous line) (I,' —3I~') (2), and (I) 2 I,34) (3)—
(dotted lines), respectively. The difFerent 1-/T1 have been cal-
culated with Table VI and Eq. (40) in using a dipolar tluctua-
tion amplitude of 6.9X10 rad/sec. (b) Semilogarithmic plots
of the calculated variation of the spin-spin relaxation rate 1/T2
and dynamical shifts Qppyp (both in rad/sec) vs 1000/T(K) for a
pure dipolar (like spins) relaxation. The indices 1-3 stand for
the unobservable states v 3(I+ +I+ )—3I~+~ (1) and 3(I~+ I'+)—
(2) in dotted hnes, and the observable one I+ (3) in continuous
line. The dilerent 1/Tz have been calculated with Table VII
in using a dipolar fluctuation amplitude of 6.9X10 rad/sec.
The single cod~ has been calculated from Eq. (42).
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l II

)IS
)SS

($1

2l
2s

TABLE IX. Spin-lattice relaxation rates for the dipolar case vrith unlike spins.

1 Z(Z+I)
TLF 3 IgC~ [ar,{O)+bJ,{ru, ~, )+ej,{~,)+dJ, {m,)+ex,{ei,+~g)]

z 8 b C d

1

6
1

I
6

6
1

12

12

&I i»)»

(I23)»

&s, &'

(Ii2)» (I34)»
3'

TSI
I

11 1

TII

1

y SI
1

TSS
I

3 1 3 1

TII 10 TIS

1 1

10 TIs

3
TII

g(I 14)»
g(I23)»
~(s, )'

~(&I,"&"-&I,")")
(46)

where the spin-lattice relaxation rates are given in Table IX. In this Table CDIRT
———2yIyzi{l and the notations

1/T, I, . . . , are similar to the one used by Abragam. {"
Introducing the foHowing terms: (I, ) =3(I,' )+(I, ), (S, ), and the other ones given in Eq. (47), Eq. (46) be-

coH1es

(I, &'

&s, &'

(Ii4)» 3(I23)»

1 1

TII TIS
1 I

1 1

TSI TSS
1 1

0 0

0 0

0 0

3
TII

I

a(I, )'
~(s, &'

~(&I,")'-&I,")')
g((Ii4)» 3(I23)

(47)

0 0 0

Of course in the (I, ), (S, ) subspace, one finds again the
well-known coupled kinetic equations (6a) which de-
scribe the cross-relaxation phenomenon between the only
t~o observable magnetizations. On the other two direc-
tions, one notes that the eigenstates for the dipolar (un-
like) cases are exactly the same as the one for the dipolar
(like) cases.

b. Spin-sp~n relaxation. Using the same method, one
has the following kinetic equations for the transverse re-
laxatlon

1 2

T2 1

I TII

v'3
TII

I

1 3
TI TII

2 I

v'3
TII

I

v'3
TII

I

1 2

T I TII
2 I

(49)

(I34 )

1 + l GPD I
2D

IS
&I", )
(I34 )

(48a)

6)D ———s (s + 1 )[—'K 0 ( CO I —
dos ) +—'K

i ( COI )

+x,(~, +~, )], (50a)

—„&s &'=—,+i~, 1 &s &',d ~ 1

d~ +
2

(48b)
a)D, ,'I(I + 1)[—,'Ko(cos————coI)+ ,'E, (a)s)—

+F2(co, +cps)] .

where the transverse relaxation matrix [llTzDIz] and
the dynaHllcal shifts QPDIs and GPgpsI are given by

The solution of Eq. (48a) in the frequency domain gives
for &I+ &(co)
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to each of these fluctuations. In this section we consider
explicitly the cases of a mixing of quadrupolar and dipo-
lar (like and unlike) fluctuations which mostly occur in
real materials.

(51)

and the like expression for (S+ &(co) by interchanging I
and S. Equation (51) shows that the second-order dy-
namic shift and the homogeneous linewidth do not de-
pend on the transitions. So the dipolar modulation
whether for like or unlike spins does not split the line
but shifts it. As usual the spin-spin relaxation process
are decoupled in I and S.

c. Discussion W. e have plotted in Figs. 5(a) —5(c) the
temperature variation of the spin-lattice [Fig. 5(a)] and
spin-spin [Fig. 5(b) and 5(c)] relaxation rates for a dipo-
lar relaxation process (unlike spins).

As explained above there are only two observable
spin-lattice relaxation rates in this case [labeled I, and

S, in Fig. 5(a)]. These two rates are the eigenvalues of
the coupled kinetic equations in the I„S, subspace.
Physically they represent the trend to equilibrium of two
coupled reservoirs associated to the I and S spin systems
connected with a lattice. One of these rates [lower con-
tinuous line in Fig. 5(a)] corresponds to the direct relaxa-
tion of either I or S systems to the lattice. The other
one [upper continuous hne in Fig. 5(a)] corresponds to
both the direct or the indirect relaxation (via the cross
relaxation phenomenon). One sees on this figure that
their temperature variations are different. At low tem-
perature the cross relaxation dominates largely over the
direct relaxation because the cuto8' of the spectral densi-
ty corresponds to characteristic frequencies ~z —mz of
the spin system. This corresponds to the Hip-Aop transi-
tions associated to the Jo(col —co&} contribution which
enhances the T

&

'
by a factor co&/(co& —cps) at this tem-

perature. Due to the nonequivalence of the I and 5
spins these transitions are nonresonant and the presence
of the lattice is necessary to conserve the total energy in
the relaxation process. At high temperature the spectral
density spreads over a wider range of frequency with a
cutofF either for mi or ~s The Jo(&or —~s) Ji(~i)
J)(cps), and J2(aii+cos) contributions are of the same
order of magnitude and the two mechanisms of relaxa-
tion present an identical temperature variation.

Since the spin-spin relaxation is decoupled for I and S
spins, we have decoupled their temperature dependences
in two difFerent figures [Figs. 5(b) and 5(c)]. As in the di-
polarlike case, the dynamical shifts stay always much
smaller than the homogeneous linewidths, thus produc-
ing insignificant line shifts. However, one notes for the I
spin [inset of Fig. 5(b)) a change of sign of the dynamical
shift at low temperature [r, —1/(co& —co@}]. This is due
to the Ko(col —res) contribution which dominates at this
temperature.

8. Multiple sources of relaxation

The formalism presented above allows to define easily
the total matrix of relaxation, for a mixing of difkrent
Auctuations, by using the individual matrices associated

I. Mixing of quadrupolar and dipolar
(like spans) relaxations

In order to obtain the kinetic equations for the longi-
tudinal and transverse magnetizations, we take into ac-

DIPOLAR RELAXATION {Unlike spins)

~o
( )

V)

(Q

$Q
2

1

1000/T (K )
FIG. 5. (a) Semilogarithmic plots of the calculated variation

of the spin-lattice relaxation rate 1/TI {in rad/sec) vs
1000T/(K) for a pure dipolar (unlike spins I= —,', here S = —,')
relaxation. The indices 1-4 stand for the eigenstates of the di-
polar relaxation (I, ) (1}, (S, ) (2) (continuous lines),
(I," I, ) (3), and (I—,' —3I,") (4) (dotted lines), respectively
The different 1/T] have been calculated with Table IX in using
a dipolar fluctuation amplitude of 6.9&10' rad/sec for A»
where we have chosen the particular case: Lithium (spin I)
and phosphorus (spin S). (b) Semilogarithmic plots of the cal-
culated variation of the spin-spin relaxation rate 1/T2 and
dynamical shifts copy (both ln rad/sec) vs 1000/T(K) for a pure
dipolar (unlike spins I= —,, here S=—') relaxation. The indices
1-3 stand for the eigenstates of the dipolar relaxation for
[1/T2]: &3(I'+ +I+ )+2(I+ ) (1) (continuous line),
&3(I+ I~ ) (2), and v'3—(I~~+I3+~ ) 3(I~ ) (3} (dotted—
lines). The different 1/T2 have been calculated from Eq. (49)
with the last two lines of Table IX in using a dipolar Auctua-
tion amplitude of 6.9&10 rad/sec for Alz where we have
chosen the particular case: Lithium (spin I) and phosphorus
(spin 5). The md„„(spin I), labeled by the index (4), has been
calculated by Eq. (50a). In insert we give the linear tempera-
ture variat&on of ~d». (c) Same legend as (b) but for the spin S,
with (S+ ) as eigenstate for [1/Tsz] and cod,„given by Eq.
(50b).
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count the sum of the matrices given in Eq. (26) and Eq.
(39) for [1/T, ] and in Eq. {30) and Eq. (41) for [1/T2]
since the results of the calculations have been expressed
in the same basis sets.

In Fig. 6, we show the temperature variation of the
spiil-spill, dyilalliical shifts [Fig. 6{a)] and splli-lattice
[Fig. 6(b)] relaxation rates. The comparison between
these figures and those of the pure quadrupolar Quctua-
tions [Figs. 2(a) and 3(a)] shows that in a wide tempera-
ture range the quadrupolar fluctuations drive the relaxa-
tion process. However when the dipolar adiabatic part
is of the same order of magnitude as the quadrupolar
lifetimes the dipolar fluctuations modify drastically the
temperature behavior of the relaxation rates. For in-

stance at low temperature the linewidth associated to the
2-3 transition becomes mainly due to the adiabatic Auc-

tuations [Fig. 6(a)]. On the contrary the linewidth asso-
ciated to the 1-2 and 3-4 transitions stays monitored by
the quadrupolar 6uctuations. In the same low-
temperature regime„one of the observable spin-lattice re-
laxation rates increases and the other decreases with the
temperature [Fig. 6(b}]. According to the discussion
given in Sec. IIIA 1 c, we know that the time depen-
dence of the electively measured longitudinal magneti-
zation is a linear combination of the z components in the
1-4,2-3 subsets and not only a pure (I, )'. In this sub-

space, the shortest relaxation time is representative of
the cross-relaxation assisted by the dipolar Sip-Sop tran-
sitions between the levels and the longest relaxation time
reflects the return of the total magnetization to the equi-
librium.

MIXING CASE Ql ~ Dll

4 (8)

(b)

)O2

3
1000/T (K }

FIG. 6. (a) Semilogarithmic plots of the calculated variation
of the spin-spin relaxation rate 1/T, (in rad/sec) vs )000/T(K)
for a mixing of quadrupolar and dipolar (hke spins) relaxation.
The symbols A and 0 stand for the different 1/T2 (see the Sec.
III 8) and 67dytI& respect1vebJf (b) Seml10garlthmIc plots of the
calculated variation of the spin-lattice relaxation rate 1/T& (in
rad/sec) vs 1000/T(K) for a mixing of quadrupolar and dipolar
(like spins) relaxation.

MIXING CASE Ql'Dll DSS DIS

'y) 1Q

} )O2

I I

3 4

1000/ T (K ')
5

FIG. 7. Semilogarithmic plots of the calculated variation of
the spin-lattice relaxation rate 1/T& (in rad/sec) vs 1000/T(K)
for mixing of quadrupolar and dipolar (like spins) and dipolar
(unlike spins) relaxation (see the text, Sec. III 8, for explaining
the curves. ).

2. Mixing of quadrupolar, dipolar (hke spins)
and dipolar (unlike spins) relaxations

Finally we consider the complete mixing case which
takes into account all the individual fluctuations de-
scribed above (noted Qz+Dtt+Dzz+Dss}. In Fig. 7,
we show the temperature variation of the three observ-
able spin-lattice relaxation rates (I and S spins). The
similar variation for the spin-spin relaxation rates and

dynamical shifts are omitted because of their similarities
with the preceding mixing case f'or the I spin and with
the Dts case for the S spins.

There are interesting new feature in this figure.
Namely, when we compare the longest longitudinal re-
laxation time here and in the pure Dts case [Fig. 5(a}],
one notes a practically temperature independence of this
rate over a large temperature range (200 K for the corre-
lation function used here}. For the shortest longitudinal
relaxation rate, the temperature variation is quadrupo-
larhke with a noticable difFerence at low temperature
due to the dipolarlike flip-flop fluctuations. The inter-
mediate relaxation rate is monitored by the quadrupolar
fluctuations up to a correlation time r, —1/(cot —cos)
where the dipolar (unlike) fluctuations dominate again.
This is exactly what happened, at low temperature, in
Fig. 5(a}.

What is particularly significant here is the diferent
maxima in the temperature variation of the observable
spin-lattice relaxation rates obtained with a single ex
ponential correlation function. As proved in this paper,
by choosing on purpose the same monoexponential
correlation function for all the fluctuations, this is due to
the repartition in the spectral domain of the characteris-
tic frequencies of the transitions created by the various
kinds of fluctuations. This sho~s the importance of a
correct treatment of the quantum part of the relaxation
process before trying to interpret the dynamics from the
data.

IV. APPI.ICATIGN TG QUADRUPQI. AR
AND DIPGLAR RKLAXATIGNS INCLUDING

A RESIDUAL TIME AVERAGED INTER@&=rIQN

In this section we include, in the relaxation, the pres-
ence of a static or residual time averaged quadrupolar
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interaction H&. For example, in superionic conductors,
this latter interaction may come when the nuclear spin
tensorial interactions are not averaged to zero by the lo-
cal or long range ionic motions. ' ' This induces some
modi6cations in the relaxation results, namely a splitting
of the Zeeman frequencies and a slow oscillating time-
dependent term in the spin-spin relaxation rate accord-
ing to Eq. (18). We discuss below the effects of such re-
sidual interaction on the spin-lattice and spin-spin rates
in the diFerent cases considered in Sec. III.

A. Discussion

Here the static Hamiltonian Ho and the time-
dependent perturbation H, (t) are given, respectively by

10
I

4A

10

1O22
(C)

I
CO

1

I-
1O

2

QQ+ 0

~I'Du
I I I l

(52a)

Hi(t)=Hg(i) ol Hpll(t) oi' Hpls(t) (52b)

or mixing of these perturbations, where Hz and H&(t)
are defined in Eqs. (20a) or (45a) and (21), (34b), and
(45b), respectively. We restrict H& to its first-order ap-
proxirnation, thus neglecting again the fast oscillating
terms in the rotating frame. This gives

40

-2 QI DII DIS SS
I I i i

2 3 4 5 6
iooo~T(K )

2 3 4 5 6
1000/T (K )

Hg ——Q(i(Ig' —I, ) (53a)

Q&
——,'C&5&I(3cos 8—1)+i)& sin 8cos2aI, (53b)

where C&, 5&, i)&, 8, and a are defined in Sec. IIIA1
and the overbar stands for the time average.

Using the same procedure as in Sec. III but with Ho
given in Eq. (52a) leads, after straightforward calcula-
tions, to the spin-lattice and spin-spin relaxation rates
given in the tables of Appendix B.

In Fig. 8, we show the temperature variation of the
spin-lattice relaxation rates for the different Auctuations.
The comparison with the case of Q& —0 shows the
disappearance of the dotted lines when Q&&0. This
means that all the rates defined in the tables could be
theoretically observable. This comes from the couphng
of all the components of the longitudinal magnetization
by the relaxation process. One should note that the cou-
pling terms, for any fluctuations, are composed by a su-
perposition of difterences of spectral densities like
J„(mco&+ Q& ) —J~ (m col —Q& ). These differences
are close to zero in case of monoexponential correlation
functions, thus involving the classical relaxation behav-
ior described above. On the contrary these di5'erences
can be far from zero when the individual spectral densi-
ties vary drastically with the frequency. This occurs
when considering properly the local and/or the low di-
mensional motions ' ' @which produce a residual time
averaged quadrupolar interaction Q&&0. %e vali see in
a following paper such effect on the spin relaxation rates
in superionic conductors of low symmetry. Moreover, at
lmv temperature, another difference with the case 0& ——0
comes from the cross relaxation due to the Gip-Sop dipo-
lar terms. This is particularly evident in the pure dipo-
lar case [Fig. 8(b)j where a second maximum of 1/Ti

FIG. 8. Semilogarithmic plots of the calculated variations of
the spin-lattice relaxation rate 1/T& (in rad/sec) vs 1000/T(K)
in presence of a residual time averaged quadrupolar interaction
Q~ ——30 KHz for various fiuctuations: (a) pure quadrupolar;
(b) dipolar (like spins); (c) dipolar (unlike spins); (d) mixing of
quadrupolar and dipolar (like spins); (e) mixing of quadrupolar
and dipolar (like and unlike spins). The corresponding Auctua-
tion amplitudes are the same as in the case 0& ——0, respective-
ly.

ABSORPTlON QQ = 30 kHz

476 K

JX

2?BK UI.
0

t (kHz)

FIG. 9. Absorption signals (in arbitrary units} at six temper-
atures for a pure quadrupolar relaxation process in presence of
a residual time averaged quadrupolar interaction 0& ——30
KHz. The quadrupolar fluctuation amplitude is 1.2 g 10
rad/sec.
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occurs in this temperature range when the cutoff time v,
is about 1/0&. The two orders of magnitude separating
these different maxima comes from the ratio co&/0& be-
tween the corresponding values of T, . Concerning the
mixing cases shown in Figs. 8(d) and 8(e), the occurrence
of difkrent observable maxima with a single exponential
correlation function is emphasized by the presence of
Qg &0.

In Fig. 9 we have displayed the spectrum at different
temperatures for a pure quadrupolar relaxation process
in presence of 0&+0. The most interesting feature is
the emergence of a well-de6ned structure observed when
the temperature increases. As explained above this
comes from the adiabatic terms which dominate the
homogeneous linewidth of the satellites while the non-
adiabatic terms determined the linewidth of the central
line. This theoretical behavior is in very good agreement
with the evolution of the Li absorption spectra with
temperature described in the Fig. 6 of Ref. 17. One
notes also at the higher temperature that the ratio be-
tween the difkrent lines is difkrent from the well-known
3-4-3 ratio expected for a quadrupolar spectrum. This is
due to the evolution of the density matrix during the
preparatory pulse which allows to insert the initial value
in the calculation of the spectrum. During this pulse a
part of the signal goes to some coherences which are not
detected by a simple pulse. 2~' 0

B. Homogeneous 1inemidths of the meltiqoanta spectra

Though the preparation of multiquanta excitation is
well described. ' ' The discussion of the quadrupolar
relaxation of such transitions has not been made already.
%'e have then applied our formalism to deal with such a
problem and propose in the tables of Appendix 8 the
spin-spin relaxation matrices of the double- and triple-
quantum spectra. Following such tables the double-
quantum spectrum is composed of two lines whose tem-

perature behavior is similar to that of the satellites in the
monoquantum spectrum. On the contrary, the triple-
quantum spectra has a temperature behavior similar to
the central line of the monoquantum spectra.

V. CQNCI. USION

%e have used the 6ctitious spin- —,
' operator formalism

to describe the nuclear relaxation of spins I g —,
' in solids.

%e found a generalized macroscopic kinetic differential
equation for any observable, expanded on a complete
basis set of independent Actitious spin- —, operators, and
whose time evolution is expressed in terms of a matrix of
relaxation. The interest of such method is to allow a
possible treatment of the relaxation whether for single or
multiple relaxation processes. In this latter case by sim-
ply adding the individual matrix in the corresponding
basis subset. Our calculations include formally the treat-
ment of a residual nonaveraged perturbation term which
could aSect the relaxation when its amplitude is at least
of the same order of magnitude as the one inducing the
relaxation itself.

%e have applied this treatment to the quadrupolar

(I =—,') and dipolar relaxation for like spins (I =—,') and
unlike spins (S = —,

'
) but also to the mixing case of these

two kinds of relaxation. In each case theoretical expres-
sions and diagrams have been given to follow the tem-
perature variation of the spin-spin and spin-lattice relax-
ation rates. %e give also, for the quadrupolar relaxation
at three diferent temperatures, the spectrum and the
time evolution of the relative deviation from equilibrium
of the longitudinal magnetization.

For quadrupolar relaxation (I =—', ) we found an oppo-
site variation, in the low-temperature range, for the two
observable spin-spin relaxation rates. The paradoxical
narrowing of the central transition when the tempera-
ture decreases has been explained by the nonexistence of
the adiabatic part in the T2 process for a half-integer
spin (I &1/2). In some temperature range it is shown
that the second-order dynamical shifts are of the same
order of magnitude and even much greater than the
homogeneous linewidths. It results in important temper-
ature dependent differential shifts and linewidths on the
central and other lines which could be observable. This
predicts that, even without static quadrupolar splitting,
there exists an inherent structure in the line. This effect
could give supplementary information on the dynamics
of the system. Concerning the measurement of the
spin-lattice relaxation rate, we have shown that in the
high-temperature range, r, &1/coo, the vectorial image
for the spin operators is still valid and I gives a com-
plete information about the time evolution of the total
magnetization I, which is exponentially decreasing.
However, in the intermediate temperature range
1/co &0r& I/H&, the major part of the signal comes
from the transverse magnetization associated with the
central transition. Here the vectorial image is not any
more valid-and the longitudinal magnetization presents a
pronounced nonexponential time decay.

For dipolar relaxation (unlike spins: i.e., I =—', and
S=—,') an interesting new feature in the temperature
variation of the spin-lattice relaxation rates has been evi-
denced at low temperature. Namely the dominance of
the cross relaxation over the direct relaxation which
enhances largely the T, ' by a factor co&/(co& —cos ).

%e have considered the complete mixing case of qua-
drupolar and dipolar (like and unlike spins) relaxations.
We note a practically temperature independence of the
longest longitudinal relaxation time over a very large
temperature range. %'hile the temperature variation of
the shortest longitudinal relaxation time is practically
quadrupolarhke with only a noticeable dift'erence at low
temperature due to the dipolar cross relaxation which
enhances such rate. It results in diferent maxima in
these temperature dependences which have been ex-
plained in terms of the repartition, in the spectral
domain, of the characteristic frequencies of the transi-
tions induced by the diferent fluctuations rather than by
using difterent correlation times.

Finally we have considered the quadrupolar relaxation
of the double- and triple-quantum spectrum. %e show
that the double-quantum spectrum is composed of two
lines whose temperature behavior is similar to the one of
the satellites in the monoquantum spectra, while the
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TABLE X. Commutators used in the longitudinal quadrupolar relaxation calculations in Sec. IH A 1 a.

[Ao, [AO,I; ])=0

[a ~ „[A~„I,"]]=—3[I)'—IP],[a ~ „[a~„I,'2)]=3[I,"—I,"],

[A p ), [A y), I,' I,' —)]= —6[I,' —I,' ],

f ~ ~2 [~*2 I"l]=3[I"+I,"]f ~+2 f ~ ~2»"))=3[I"»")

[&p2, [&y2,I,' —I, ]]=6[I,' —I, ], the A Components are given in Eq. (24).

triple-quantum spectrum has a temperature behavior
similar to the central line of the monoquantum spectra.

» t»s «st paper, we restrict our calculations on the
quantum part of the relaxation, by choosing on purpose
the same monoexponential correlation function for all
the Auctuations. In the following paper, we will apply
this treatment to some materials of low symmetry in
considering a residual nonaveraged perturbation term
and in calculating explicitly the correlation functions.

APPENDIX A

In this appendix we present the commutators used in
the calculations of the longitudinal (Table X) and trans-
verse (Table XI) quadrupolar relaxation.

The commutators used in calculations of longitudinal
and transverse dipolar (like or unlike} relaxations are ob-
tained similarly after tedious but straightforward calcu-
lations.
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APPENDIX 8

In this appendix we give the elements of the relaxation
matrices for quadrupolar and dipolar fluctuations in
presence of a residual time averaged quadrupolar split-
ting 0&. The notations for the spin-lattice and spin-spin
relaxation rates given in the beginning of Tables
XII-XVI are the same as in the text. One should note
that the slow oscillating terms present in such tables can
disappear by changing the variables in the kinetic equa-
tions. Introducing the magnetization ( u„'"}defined by

TABLE XI. Commutators used in the transverse quadrupolar relaxation calculations in Sec. III A b.

[Ao, [»{O,I,'2]]=6I„', [Ao, [AO,I,"]]=0, [Ao, [AO, I„'~]]=6I„2,

[~*i [~+i I"ll= —3I'p [~~i [~~i I"]l=—3I'4 [~~i [~~i I"]]=—3I'p,

[~+2 [~22 I."))=3[I"—I."] [~~2 f~g2 I"l]=3I'P

f »t *2 f ~+2 I.")]=3[I'"—I,"1,

[Ao, [AO, I»'2)]=6I»'2, [Ao, [AO, I»2']]=0, [Ao, [AO, I» )]=6I»',

[A + ),[»t+),I»"]]=%3iI'~2, [A p „[»t+,,I2']]=+3jI2~2,

[a —„[a ~„I„"]]=—3iI2~4

[»t P2, [Ag2, I»"]]=3[I»"—I»"], [A P„[Ag2,I»")]=+3iI2~2

[&y2, [&g2,I» ]]=3[I» I»' ], the A Components are gi—ven in Eq. (24).
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TABLE XII. As in Table IV, but modifI[ed by the presence of a residual time-averaged quadrupolar
splitting Q0.

,q,f ——
~ Cg[ccJ)(col —Qg )+bJ, (coc+Qg )+cJ2(2', —Qg )+dJ~{2col +Qg )]

1Q

14,14
14,23
14,12-34
23,14= 14,23
23,23 = 14,14
23, 12-34
12-34,14
12-34,23
12-34,12-34

I
—2

2
2

TABLE XIII. As in Table VI, but modified by the presence of a residual time-averaged quadrupolar splitting 00.

Tcc~fef 3
'I(I+ &)C-D[ccJO{Qg)+bJO(2Qg)+&J~(~c Qg)+d—JI(~c)+eJi(c+Qg)

II
+fJ2(2col —2Qg )+gJ2{2c0I—Qg )+h J2(2coc ) +kJp(2coc+ Qg )+ I J2(2c0I +2Qg )

-14,14

14,23

14,12-34

23,14

23 23

23,12-34

12—34,14

12—34,23

12-34,12-34

1

10
3
10

3
10
9
10

3
10

3
8
3
8
3
8

3
8
3
8
9
8

3

3
4
3
4

3
8

3
8

3
8

3
8
3
&

9
8
3
4
3
4
3
4

9
20
9
20
9
20
9
20
9

20
27
80
9
10
9
10
9
10

3
10
3
10
3
10
3
10
3
10
9

40
3
5

3
5

3
5

9
10
9
10

9
10
41
10

3
10
3
10
3
10
3
10
3
10
9
40

3
5

3
5

3
5

9
20
9
20
9
20
9
20
9
20
27
80
9
10
9
10
9
10

TABLE XIV. As in TaMe IX, but pxodi5ed by the presence of a residual time-averaged quadrupole splitting 00.

1 1
~er = aXT1A' s =+,0, — Tl&&, I+,0, —

)

+Qg
with X, F=II or IS and [+,0, —j Q= 0—Qg

Spin I
1

T1XF, I +,0, —I

Z(Z+1)
3 Cg)cg[al Jo(a)c cog+ Q)+bcJ—, (coc+Q)+acJ2(coc+cog+Q)]

II f+,0, —j

IS[+,0, —j
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1

TCd~
1X

14,14

14,23

14,12-34

14+z
23,14

23 23

23,12-34

23,5,
12-34,14

12-34,23

12-34,12-34

12-34,S,

3
4
3
4
3

3

3

3
4

3
2
3
2
3
2

TABLE XIV. 4,'Continued).

3

3
4
3

3
4
3

3
4

3
2
3
2
3
2

3
20

3
20

3
10

4
10

3
20

3
20

3
10

XF[+,0, —]

SI I +,0, —j

SS[+,0, —]

T[&~, I +,0, —
I

Spin S
Z(Z+1)

3
Czzz[as Jo(cos —cui+Q)+bz J~(cos)+csJ2(col+Ns+Q))

bs

1

6
1

6

cs

1

Tcd,
1X

0
Qss

0
~sr

Sz,14

Sz,23

Sz, 12—34

Sz,sz

3
2

3
2

3
2

3
10

3
10

TABLE XV. As in Table V, but modi5ed by the presence of a residual time-averaged quadrupolar splitting 0. We used below
the variables q+ =exp[2i(Qgt) „],q =exp[ 2i (Qg—t) „]where the notation (Qgt) „has been defined in Eqs. (17a), (17b), and
(18).

1

,e,f Cg[aJO(0——)+ J, (cot —Qg )+cJi(cot +Qg )+d t(2a)I —Qg )+eJ2(2aii+Qg )]

cd,ef

12,12

12,34
23 23

34,12

34,34

Single-quantum coherences
3 3

2

3
2
3

g
+

3
2

3
2
3
2
3
2
3 +
2
3
2

13,13

13,24

24, 13

24,24

3
2

3q+
3
2

Double-quantum coherences
3

3q+
3
2

14,14
Triple-quantum coherence

3
2



D. PETIT AND J.-P. LORS 37

cd, ef

TABLE XVI. DyncaLmical shifts %Pith 00 modiScation.

afg~'I C——g2[bk, {tot Q—g }+ck( {tot+Qg )+dk2{2cot —Qg )+ek2{2tot +Qg )]
b c

12,12
12,34
23 23
34,12
34,34

Monoquantum coherences
6
0
3
0
0

—3
—3g

3
3q
3

3

3g
3

—3g
—3

13,13
13,24
24, 13
24,24

3g
—3'

3

Double-quantum coherences
3

—3g
3g
3

14,14
Triple-quantum coherence

3

( u„' ) = (I„' ) exp[i (Q&t )„„,],

(u„)=(I„)exp[ —i(Q&t )„„„]. (82)

one obtains kinetic equations where all the coeScients
are constant. According to Eqs. (81) and (82) the oscil-
lating terms induce only a splitting of the resonance fre-

uencles.

M. Mehring, High Resolution %MR in Solids (Springer Verlag,
Berlin 1983); U, Haberlen, High Resolution in Solids, Selec-
tive Averaging (Academic, New York, 1976); D. %olf, Spin
Temperature and Nuclear Spin Relaxation in Matter,
(Cla rend on, Oxford, 1979), Chap. 12; R. R. Ernst, G.
Bodenhausen, and A. Wokaun, Principles of Nuclear Mag
netic Resonance in One and Two Dimensions (Clarendon, Ox-
ford, 1987).

2P. M. Richards, Physics of Superionic Conductors, Vol. 15 of
Topics in Current I'hysics, edited by M. B. Salamon,
(Springer, Berlin, 1979), p. 141;J. L Bjorkstam and M. Villa,
Magn. Res. Rev. 6, 1 (1980); H. Theveneau, Structure and
Dynamics of Molecular Systems, edited by R. Daudel, J.-P.
Korb, J.-P. Lemaistre, and J. Maruani (Reidel, Dordrecht,
1986), Vol. II, p. 231.

3A. Pines, S. Vega, D. J. Ruben, T. %. Shattuck, and D. E.
%'emmer, Magnetic Resonance in Condensed Matter —Recent
Deuelopments, Proceedings of the IVth Ampere Summer
School, I'ula, Yugoslavia, edited by R. Blinc and G. Lahajnar
{J.Stephan Institute, Ljubjana, 1977).

~J. Haum, K. K. Gleason, A. Pines, A. N. Garroway, and J. A.
Reimer, Phys. Rev. Lett. 56, 1377 (1986).

5R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
6{a) A. Abragam, The Principles of Nuclear Magnetic Resonance

(Oxford University, London, 1961), Chap. VIII; (b) Chap.
VIII, Sec. II Fc.

7A. G. Redfield, IBM J. I, 19 (1957).
SE. R. Andrew and D. P. Tunstall, Proc. Phys. Soc. 78, 1

(1961).
9P. S. Hubbard, J. Chem. Phys. 53, 985 (1970).
~0M. I. Gordon and M. J. R. Hoch, J. Phys. C 11, 783 (1978).

B. HaBe and H %'ennerstrom J Magn Reson 44 89 (1981)
~2A. G. Marshall, J. Chem. Phys. 52, 2527 (1970);T. E. Bull; J.

Magn. Reson. 8, 344 (1972).
'3C. P. Slichter, Principles of Magnetic Resonance {Harper and

Row, Neer York, 1965).
'~A. %'okaun and R. R. Ernst, Mol. Phys. 36, 317 (1978).
'5S. Vega, J. Chem. Phys. 68, 5518 (1978).
' S. Vega and Y. Naor, J. Chem. Phys. 75, 75 (1981).
' D. Petit and B. Sapoval, Solid State Ionics 2j., 293 (1986).
' D. Petit, Ph. Colomban, G. Collin, and J.-P. Boilot, Mat.

Res. Bull. 2i, 365 (1986).
'9J.-P. Cohen Addad, J. Chem. Phys. 60, 2441 (1974).
20C, Fouques and L G. %'erbelow, Can. J. Chem. 57, 2339

(1979); L. G. Werbelom and A. G. Marshall, J. Magn.
Reson. , 443 (1981).

2 D. Brinkmann, M. Mali, J. Roos, R. Messer, and H. Birli,
Phys. Rev. B 26, 4810 (1982).

~2M. H. Cohen and F. Reif, Solid State Phys. 5, 321 (1957).
2 J.-P. Korb, M. %interhalter, and H. M. McConnell, J. Chem.

Phys. 80, 1059 (1984).
2~L. P. Hwang and J. H. Freed, J. Chem. Phys. 63, 4017 (1975).
25J.-P. Korb, M. Ahadi, G. P. Zientara, and J. H. Freed, J.

Chem. Phys. 86, 1125 (1987); J.-P. Korb, M. Ahadi, and H.
M. McConnell, J. Phys. Chem. 91, 1255 (1987).

26D. M. Brink and G. R. Satchler, Angular Momentum, (Ox-
ford University Press, London, 1968).

~~H. Birli, L. Schimmele, and R. Messer, Proceedings of the
XXIInd Ampere Congress, Zurich, 1984, edited by K. A.
Muller, R. Kind, and J. Roos (Schippert 4, Co., Buchdruck
und OSerdruck, Zurich, 1984), p. 171.

28D. Petit, These d' Etat, Orsay, 1987.
29A. Samoson and E. Lippmaa, Phys. Rev. 8 28, 6567 {1983).
30P. P. Man, J. Magn. Reson. 67, 78 (1986).
3'S. Vega and A. Pines, J. Chem. Phys. 66, 5624 {1977).


