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The zero-temperature phase diagram of mixed-stack charge-transfer crystals is investigated
through a diagrammatic valence-bond technique. The direct solution of the single-chain Hubbard
Hamiltonian inclusive of intersite Coulomb interactions constitutes the basis for a perturbative, adi-
abatic treatment of the electron-lattice-phonon and electron-molecular-vibration couplings. It is
shown that intersite Coulomb interactions and electron-molecular-vibration coupling cooperate in

favoring uneven distribution of the electronic charge on the sites, possibly giving rise to a discon-
tinuous, first-order neutral-ionic (S-S) phase transition. On the other hand, the electron-lattice-
phonon coupling favors an uneven distribution of the charge between the sites, yielding a Peierls-

type dimerization instability. However, when all the interactions are turned on, a rather subtle
feedback interplay is found, the dimerization instability range being widened by the Coulomb in-

teractions and the electron-molecular-vibration coupling. The resulting four-dimensional phase di-

agram is able to account for the experimentally observed ground states and phase transitions of
mixed-stack charge-transfer crystals. In particular, it is found that the boundary between N regular
stack phases and I dimerized ones is, in general, very complex, as several minima in the potential-
energy curve are available to the system. Consequently, the corresponding phase transition is very
sensitive to the experimental conditions, a situation we believe is encountered in the famous N-I
transition of tetrathiafulvalene-chloranil. In addition, preliminary calculations on dimerized stack
systems show that whereas ionic regular chains are intrinsically unstable towards dimerization, the
corresponding energy gain decreases as the ionicity increases. Therefore at 6nite temperatures ionic
regular stacks may be observed, their transition temperature to the dimerized phase being expected
to be lower with increasing ionicity.

I. INTRODUCTION

Organic mixed-stack charge-transfer (CT) crystals are
made up by chains of alternating electron-donor (D) and
-acceptor (A) molecules, At' Dt'+At' Dt'+, p
being the degree of ionicity (sometimes referred to as the
average degree of CT along the stack). ' Since the
discovery of pressure - or temperature -induced phase
transitions implying a change in ionicity (neutral-ionic,
N-I, phase transitions), many experimental investigations
have been carried out, and a number of theoretical
models have been proposed '" aimed at understanding
this new kind of transition. On the experimental side it
has been recognized that the F-I transition is a quite un-
common and complex event it has in fact been clearly
identified only for the tetrathiafulvalene-chloranil (TTF-
CA) crystal, alld ill such a case lt is accolllpalued by a
stack dimerization. Moreover other types of phase
transitions have been observed, involving only the stack
dimerization' ' (i.e., ¹Nd and Ir Id; r and d stand -for
regular and dimerized stack, respectively).

The proposed theoretical models clearly point out that
the stability of the four observed phases (¹,Nd, Ir, Id)
in mixed-stack CT crystals is determined by the interplay
between electrostatic intersite interactions (we shall refer

to them as Coul interactions) and the electron —lattice-
phonon (e-lph) coupling. Both these interactions couple
to the electronic density; in particular, the e-lph coupling,
favoring an uneven electronic distribution between the
molecular sites (bond order wave BOW), leads to a stabil-
ization of dimerized structures. On the contrary, the
Coul interactions couple to the site-electron-density wave
(SEW): they favor an uneven distribution on the molecu-
lar sites of the electron exchanged between D and A mol-
ecules, ' possibly causing a discontinuous ionicity varia-
tion in going from N to I regime. However, as we have
pointed out in a preliminary paper, ' there is a third kind
of interaction which affects the properties of mixed-stack
CT crystals: the electron-molecular vibration (e-mv)
one, which, having the same symmetry as the Coul in-
teractions, also couples with the SE%. None of the pre-
viously proposed models ' ' has simultaneously taken
into account all the above interactions.

The valence bond (VB) technique has proven to be a
valuable numerical method to describe the properties of
mixed-stack CT crystals. ' Besides the advantage af
working with basis functions (the electronic configu-
rations) which are well known in the field of physical
chemistry, the VB method allows one to easily treat the
Coul interactions, being not limited to mean-field (mQ ap-
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proximation, nor to nearest-neighbor interactions. ' In
a previous paper" (hereafter paper I) we have applied the
VB technique in a Srst description of the interplay be-
tween N-I and r d-interfaces, treating the Coul interac-
tions in mf approximation and introducing the e-lph cou-
pling via a perturbative approach. Here we extend the
analysis by relaxing the mf approximation (an unscreened
Coulomb potential will be considered}, and by introduc-
ing also the e-mv couphng. In this way we are able to
draw the complete zero-temperature phase diagram of
mixed-stack CT crystals. Although some of the results
have already been anticipated, ' the consequences of the
rather subtle interplay betwec:n the various types of in-
teractions were not analyzed in detail. Moreover in this
paper we correct a previous misconception, "'3 showing
that at 0 K the Ir phase is intrinsically unstable towards
d1meAzatlon.

The paper is organized as follows. The next two sec-
tions introduce the model and analyze the ground-state
properties of the system in the absence of electron-
phonon coupling. Section IV introduces the e-mv cou-
pling and its consequences on the N-I instability, whereas
in Sec V. we treat the consequences of e-lph coupling.
Section VI reports the full phase diagram, expressed in
terms of experimentally accessible parameters. Before
drawing the conclusions, the comparison of the phase di-
agram with the experimental data is carried out, and a
brief outbne of the temperature eN'ect is given.

II. KLEix SONIC HAMII. TOMAN

The properties of mixed-regular-stack CT crystals are
investigated by choosing as a model system an isolated
DA regular chain, with one %Pannier orbital per molecu-
lar site and with only the nearest-neighbor CT integral
different from zero (t, de6ned positive). We also exclude
the states with doubly ionized molecular sites (D++ and
A ) by assuming a large value for the on-site electro-
static interactions (the Hubbard U), i.e., U/taboo for
both D and A molecules. '9 Estimates of U for several D
and A molecules indeed place it in the 4-7 eV range;
since typical values of t in mixed-stack CT crystals are
0. 1 —0.4 eV (Ref. 21), Ult —10-70. The large-Uassump-
tion is therefore a sensible one, and the purely electronic
Hamiltonian is written as (here and henceforth v 2t =1
and R= 1 }:

%=—50+(—1}'n; —v 2+b;+ g Vjp;p;,
lsJ

(i pj}

where i counts the JV molecular sites (odd for D and even
for A ) and o the two spin states (a,P).

Pl;= Q; 0;

ones, 250 ——A z I—n, where A„and ID are the electron
aSnity of A and the ionization potential of D, respective-
ly. The last term in Eq. (1) accounts for the intersite elec-
tronic interactions, V," being the interaction energy be-
tween fully ionic i and j sites, and p; the charge operator
defined as p,- =2 —n,- at D sites and p; =n; at A ones.

The large-U assumption embedded in Eq. (1) Hamil-
tonian has been generaBy adopted in the description of
mixed-stack CT crystals. "" Only Nagaosa' (and,
apparently, I.uty' ) assumes a rather small-U value
( U = 1.5 eV), corresponding to an efFective value
screened by electron-electron interaction and which can-
not be introduced in a Hamiltonian where these interac-
tions are explicitly accounted for. Since Nagaosa's
Hamiltonian reduces to that of Eq. (1) only in the large-U
limit, his model is actually different from the other ones.

The Eq. (1) Hamiltonian can be solved by treating the
Coul interactions in mf approximation, i.e., by substitut-
ing one of the two p operators in the last term with iis
ground-state mean value (p= (p }). In order to get a
proper estimate of the pair ionization energy for any
value of the ground-state ionicity, the average is per-
formed as follows:

V p = —V 1+2po, —1, 2
J

where V is the absolute value of the electrostatic interac-
tion between fully ionic nearest-neighbor sites and a an
efFective Madelung constant defined by JVVa

VJ. The mf approach can, therefore, be applied
irrespective of the specific form of the electrostatic poten-
tial, provided a is finite. In particular, for an infinite
stack e ranges from 2, when only nearest-neighbor in-
teractions are present, to 2ln2 when an unscreened,
iong-range Coulomb (lr-Coul) potential is introduced.
In any case the Hamiltonian in Eq. (1) simplifies as fol-
lows:

%=—z g( —1)'n; —&2+b, .

The electronic Hamiltonian in mf approximation depends
explicitly only on the z parameter, which represents half
of the energy required to destroy an ionic pair in a stack
with ionicity p:

z =zo+c,,p,
where so=50+ V/2 and s, = V(a —1). In paper I the
Hamiltonian in Eq. (3}has been solved and the ground-
state properties and the stability of the system have been
investigated. A self-consistent approach has then been
applied to study the effects of finite c., values on the sys-
tem ionicity.

In this paper we shall directly solve the full Hamiltoni-
an in Eq. (1), choosing as electrostatic potential a lr-Coul
one, i.e., by setting

b, =2 'g(a; a;+, .+H.c. )
V; =+V/d;-, (5)

are the occupation number and bond order operators, re-
spectively, a, (a, ) bring the Fermi creation (annihila-
tion} operator of an electron with spin o at the ith site. If
one assimilates the %'annier orbitals with the molecular

where d;J is the distance between i and j sites (in units of
the nearest-neighbor intermolecular distance) and the
plus sign applies when i and j are both odd or both even,
the minus otherwise. Also in this case the two parame-
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TABLE I. Madelung constants adopted in the valence-bond

(VB) calculations of 6nite mixed-stack systems.

6
8

10
12
14

1.292 89
1.345 30
1.363 35
1.371 65
1.376 14
1.378 84

O'chains

1.16667
1.233 33
1.26905
1.291 27
1.30642

1.38629 1.38629

ters zo and e, [Eq. (4)] can be defined, a being the usual
Madelung constant. The Hamiltonian is solved for 6nite
rings and open chains adopting the a values reported in
Table I (they properly converge to 2 ln2 limit as iV~ ao ).
The results for the infinite stack are obtained through the

11extrapolation procedure previously described.

III. GROUND STATE IN THE ABSENCE OF
EI.ECTRON-PHONON COUpuNG: Ei-a-a;CT OF

EI.ECTROSTATIC INTERACTIONS

We have already shown" that finite size rings (point
group C~&z, ) behave in a very different way depending
on the JV/2 value. In odd rings (Ã/2 odd) the ground
state belongs always to the A, representation (i.e., it is

symmetric in respect to translation and re(lection},
whereas in even rings (JV/2 even) for z exceeding some
critical value, the ground state becomes antisymmetric in
respect to reflection (A2 representation). These results
were obtained for uncorrelated (e, =0) rings; the present
Ir-Coul calculations yield the same picture also for s,+0,
as shown in Fig. 1 where we report the energy per site
(measured as difFerence from the energy of the fully ionic
ring) of the lowest A, and Az singlets calculated as a
function of zo for an odd ring (IV=6) and for an even one
(IV=8) with various s, values. It is, therefore, not
surprising that also the corresponding singlet-singlet en-
ergy gap (5„)behaves in a similar way in uncorrelated
and correlated in6nite stacks. This is shown in Fig. 2,
where the h„(zo) curves obtained by lr-Coul calculations
are reported: for each e., there is a critical zo value, zo,
above which lL„vanishes. The physical origin of the
ground-state degeneracy found for zo ~zo has been ex-
tensively discussed in paper I. We only remind that the
nondegenerate (zo&zo } regime can be described as a
"neutral" one, i.e., a regime where fully ionic diagrams
do not contribute to the ground state, whereas the degen-
erate (zo ~zo ) regime is an "ionic" one, where no contri-
bution from the fuBy neutral diagram is found in the
ground state.

From Fig. 2 data we estimate the zo (s, } values, as
done in paper I for the uncorrelated stack. The results
are collected in the first column of Table II, together with
the corresponding mf values, obtained through the rela-
tion zo (e }=ze supe~ ~here ze =zo(0) and pe-0 63 's

11the ionicity of the uncorrelated stack at z, . In the same
table we report the corresponding data from Ref. 9: the

l I I I
I I I 1 11

—2 Q 2 —2 Q
Z +8+2

FIG. 1. Energy per site {8)of JV=6 and 8 DA rings (E.), as a
function of so+a., /2 and for various c, values (marked in the
upper left corner of each panel). The results refer to lr-Coul cal-
culations. Solid line: lowest energy A

&
singlet; dotted line:

1owest energy A2 singlet.

0.7
j I

i I l

I
I I l I

I I
1 i l I i 1 i 1 I

Q 2 —2 0
~c+&c/2

FIG. 2. Singlet-singlet energy gap (5„)of the infinite DA
chain obtained by lr-Coul calculations for various e, values
(marked in the bottom left corner of each panel).
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overall agreement between the three sets of data gives us
confidence in the obtained results. In particular it turns
out that the mf approach leads to sensible results at least
for not too large e, values (s, & 3.5). We observe that by
increasing e.„ the X-I boundary shifts towards lower

zo+e, /2 values and becomes more and more steep (Fig.
2), suggesting the presence of highly unstable states at in-
termediate loniclty (the SEW ls favored by Colll liltelac-
tions). This result is consistent with the analytic one ob-
tained in the e, -+Do limit (t~O), where the chain is
found to be unstable for 0&p & 1, the boundary occurring
at ID —A z

—Va, i.e., at zo+ s, /2=0.
In Fig. 3 we report, as a function of zo, the ground-

state energy per site (CG) calculated by the lr-Coul ap-
proach for the infinite stack at various e,, values. Also in
this case the N-I boundary, which can be identified as the
region where the curves change slope, is found to occur
at lower zo+s, /2 values as e, increases and at the same
time to become steeper. The curves in Fig. 3 allow us to
evaluate, without further calculations, the ground-state
ionicity of the system. In fact, by applying the
Hellmann-Feynmann theorem to the Eq. (1) Hamiltonian,
one has

Q8-
Q6—
Q d.

08—
Q6-
Q4

Q2--

f j I
1 1 I

l t I l
I

I I I
i i I I l 1 I I I l

0 2 -2 Cj 2
Zo'~c/~

zp

where the derivatives are evaluated at constant e, . The
p(zo) curves at various e,, values are reported in Fig. 4,
together with the mf results. " Since the CG(zo) curves
(Fig. 3) change abruptly their slope from —1 to -0 at
zp-zp, one correspondingly 6nds a steep p variation
from X to I values, supporting our interpretation of the
nondegenerate (zo &zo ) and degenerate (zo &zo ) regimes

FIG. 4. Efkct of c, on the degree of ionicity (p) as a function
of zp +c, /2. The c,, values are the same as Fig. 2. Lines and
triangles refer to mf and lr-Coul calculations, respectively.

as N and I ones. Moreover, it is seen that for c., greater
than a critical value (about 1.8-2.4) the slope variation in
the BG(zo ) curves becomes so abrupt as to originate a
finite di(ference in the left and right derivatives at zo,
suggesting the presence of a sudden, first-order phase
transition. This result agrees with the mf picture, "
where the self-consistent solution of the Eq. (3) Hamil-
tonian at large e, values leads to the appearance of for-
bidden ionicity regions. However, due to the large uncer-
tainties introduced by the di6'erentiation process, the N-I
interface will be better analyzed in the next section,
where we introduce the effect of e-mv coupling.

IV. e-mv COUPLING AND N-I INSTABILITY

i t I
i l I

i
t } i i

2 —2 0 2
Z +& //2

%e shall now investigate the effects of the electron-
phonon coupling on the solution of the purely electronic
Hamiltonian described in the previous section. We first
consider the phonons able to modulate the on-site ener-
gies (ID and A „),i.e., the D and A vibrations belonging
to the totally symmetric representation of the respective
molecular point group. Such a modulation is responsi-
ble for the coupling between electronic and molecular de-
grees of freedom and is generally referred as electron-
molecular vibration (e-mv) coupling. In a previous pa-
per we have shown that the interesting physics of e-mv
coupling can be described by expanding the electronic
Hamiltonian at the first order in the vibrational coordi-
nates, i.e., by introducing the following e-mv Hamiltom-
an:

FIG. 3. Ground-state energy (66) of the infInite DA chain
obtained by lr-Coul calculations for the same c, values as Fig. 2.

&,„=JV ' g( —1)'n; g +co g„g
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where i counts the molecular sites and y the totally sym-
metric vibrations of D and A molecules, g& being the cor-
responding coupling constant as usually defined. Q
and co~ are the equilibrium crystal normal coordinates (at
k =0) and the vibrational frequencies, respectively; the
purely vibrational Hamiltoman obviously is

2
—

I y(g 2+ 2g2 )

y

Since the perturbing Hamiltonian in Eq. (7) retains the
reAection symmetry of the electronic Hamiltonian, we ex-
pect that the e-mv interaction couples to the SEW and
that its contribution adds to that of e, in setting up the
on-site charge distribution.

The consequences of e-mv coupling on the vibrational
spectra of CT crystals have already been extensively in-
vestigated. ' In particular we have shown that for a
mixed-regular-stack system this coupling induces a shift
(generally a lowering) of the frequencies of the totally
symmetric molecular modes in respect to their unper-
turbed values. The squares of the perturbed frequencies
are found by diagonalizing the force constant matrix {F),
whose elements are given by

20

10--

10--

l j
I 1 I

a ~~a
1 1

OA 0.8

I
I
I
I
I

)

I

1

Pe 1

where 5rr. is the Kronecker 5 and X„ the electronic
response to the e-mv perturbation:

(9)

FIG. 5. Inverse of the electronic response of the e-mv pertur-
bation (g„) as a function ofp for different a, values (the same as
Fig. 2). Dashed and solid lines refer to mf and lr-Coul calcula-
tions, respectively,

~
G ) and

~

+) being the ground and excited electronic
states and coF the frequency of the

~
F )~

~

G ) transi-
tion.

In a previous paper ' we have analyzed the conse-
quences of Eq. (8) in the hypothesis that the system is
stable in respect to molecular distortions. On the other
hand, if the e-mv perturbation is strong enough, the F
matrix has negative eiegenvalues: the corresponding
modes (proper combinations of the Qr's} become, there-
fore, unstable in respect of a relaxation to a new equilibri-
um position. Since the equilibrium gr s are intrinsicaBy
related to the molecular charge, the coordinate relaxa-
tion actually implies a charge redistribution between D
and A molecules. The region where some of the F eigen-
values become negative, therefore, corresponds to a for-
bidden ionicity region, the instability condition being
given by

—i
ESP &X„ (10)

where e,~= g~gr /co is the small-poiaron binding ener-
gy, the gain in electronic energy (per unit cell) due to the
relaxation of the molecular coordinates when the charge
of the system changes from 0 to 1. '

The X„'(p,e, ) curves already obtainedi' through rnf
and lr-Coul calculations, and here reported in Fig. 5, can,
therefore, be interpreted as phase diagrams for the X-I
instability: putting on the ordinate axis the e,, values, the
only stable states of a given system are those described by
the points lying below the corresponding 7„' curve.

TABLE II. Neutral-ionic boundary (zo +s, /2) for mixed
regular stacks, as a function of the Coul interaction energy (c, ).

From h„curves
lr-Coul mf

From g„' curves
lr-Coul mf Ref. 9

0.00
0.71
1.41
1.77
2.36
3.54

0.42
0.26
0.20
0.18
0.14
0.09

0.42
0.33
0.24
0.19
0.11

—0.04

0.38
0.29
0.19
0.19
0.10
0.10

0.38
0.31
0.24
0.20
0, 14
0.03

0.21
0.17
0.13
0.09

These phase diagrams can also give information on the
N-I instability in the absence of e-mv coupling {e» ——0).
In such a case the allowed p values are those where X„' is
a positive, Snite quantity. The information is, of course,
the same as that conveyed by the p(zo) curves (Fig. 4),
but the borderline of the allowed ionicity regions is more
precisely de6ned. In particular in Table II we report the
corresponding zo values: they compare well with those
obtained in the previous section. Moreover we estimate
e,'-2.0, in good agreement with Soos' result.

Coming back to the most general case of a finite e,,
value, one has to consider the prop r e.p ——constant line,
searching for its possible intersections with the X„'(p,e, )

curve. As an example consider a system with e,, =0.7
(upper right panel}: for e, 51 the N Iinterface is c-on-

tinuous, any p value being allowed; otherwise an instabili-
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%,„=(1 —p)e» g ( —1)'n; . (12)

Following the same reasoning adopted in the mf treat-
ment of the electronic correlations, " this Hamiltonian
can be absorbed in the purely electronic one [Eq. (1)]by a
renormalization of zo:

g=zo —e»(1 —p) .

The problem has a self-consistent solution: from the
known p(zo, e„e, =0)=p(g, e, ) curves (Fig. 4) one can
evaluate zo =/+ e,»(1 —p) for each e» and then construct
the p(zo, e„e») curves. Examples of the resulting curves

are reported in Fig. 6 for a system with e, =l.g and

different values of e,~.
By increasing s», the p(zo) curve becomes more and

more steep, and when its slope becomes negative, the sys-
tem is driven into an instability region. It is not dif6cult
to realize that the stability condition (Bp/Bzo ) & 0
(equivalent to Bz@G/Bpz &0) (Ref. 11) actually reduces to
the condition reported in Eq. (10}. The efFect of e» on the
N-I interface is strictly analogous to that of e, : the S-
shaped p(zo) curves occurring for suSciently large e, and

E
p

values clearly indicate the presence of a 6rst-order X-I
phase transition characterized by a bistability region
where two stable states (Bp/Bzo &0) coexist with an un-

stable one (Bp/Bzo & 0}.
If one wants to apply the same procedure to ihe mf

solution of the electronic Hamiltonian, some problems
arise. In fact, as it has been shown in a previous paper, '

in such a case the e-mv Hamiltonian has to be multiphed

by the [1—e,J„(p, e, =0)] ' factor. Then it can be in-

cluded in the electronic Hamiltonian [Eq. (3)] by simply
renormahzlng z to

e»(1 —p)
0) ( 0) IF+e s'p

F-e v P» e=

ty range opens up, e.g.„at e, =2 the states with ionicity
in between pz -0.34 and pr -0.73 are not stable. On the

other hand, when c, &e.,' the X-I interface is always

discontinuous, e.g., if c., =2.4 at c,,z ——0, p&-0. 35 and

pr-0. 80; at s, =2.0, p&-0. 19 and pr-0. 82. Thus
both E and Esp contribute to widen the charge instability

region, favoring the SE%' formation; in other terms, by
increasing e, and/or e» the pi —pN difference becomes
more and more large.

In order to get a better insight into the role played by
the e-mv coupling in the N-I instability and a better
description of the corresponding phase transition, we

shall now approach the problem from a diferent side.
From the total Hamiltonian (sum of the lr-Coul electron-
ic, the e-mv, and the purely vibrational ones) it is easy to
get the equations of motion for the Q's and evaluate their
equilibrium position in the ground state:

( g ) ~1/2( 1 p )~-3/2g

In the adiabatic limit this ground-state expectation value
can be substituted in the e-mv Hamiltonian [Eq. (7)] to
give

I
I

0
z +8 /2+~2

FIG. 6. Degree of ionicity (p} vs so+ c,/2+ e,,~/2 for three

a,~ values (0.0, 1.0, and 2.0, indicated by solid, dashed, and dot-
ted lines, respectively) and a, = 1.8 (lr-Coul calculations).

(zo)eti=zo —e»/[1 —&.&.(p &.=0}]

e,s ——e, +e»/[1 —e,,X„(p, e, =0)] .

Thus in this case e,s actually depends on p through the

X„(p, e, =0) function; the stability of the system cannot
be investigated following the usual treatment since the
energy derivatives in respect to (zo),s at e,s constant can-
not be evaluated. For this reason, in the following we
shall always adopt the lr-Coul description of the N Iin--
stability.

V. e-lyh COUPLING AND r-d STACK INSTABILITY

%e now consider a second type of coupling between
electronic and nuclear degrees of freedom, i.e., that pro-
duced by the modulation of CT integrals by phonons.
The largest modulations are in general related to lattice
phonons (from which the name of e-lph coupling) which
are expected to induce the largest variations of inter-
molecular distances and/or angles. Also molecular
modes can give rise to such a kind of coupling, but their
contribution can generally be neglected. In the following
we shall limit our attention to the k =0 modes, as they
are the modes responsible for the stack dimerization
(BOW formation). " It is also worth explicitly observing
that the modes ( U„) able to modulate r are in general also
able to modulate the V;. 's which appear in the last term
of Eq. (1). On the other hand, due to the high syminetry
of the electrostatic potential in a mixed regular chain,
this modulation introduces a perturbative Hamiltonian
which is quadratic in the U„s. The corresponding 6rst-
order correction to the energy, also quadratic in the U, 's,
leads only to a renormalization of the unperturbed fre-
quences. The second-order correction, accounting for the
mixing of dilerent electronic functions, is usually respon-
sible for the so-called "vibronic e8ects, " but in this case
is quartic in the U 's and can, therefore, be neglected in
the harmonic approximation. As a consequence, by ex-
panding the electronic Hamiltonian [Eq. (1}]to the first
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order in the U, 's, one obtains the usual e-lph Hamiltoni-
an:"

&,~= —2JV ' g ( —1)'b; g Qcu~„U, , (14)

where i counts the JV inolecular sites, v the k =0 modes
able to modulate t, g being the corresponding coupling
constants as de6ned in paper I. U and ~, are the crystal
equilibrium normal coordinates and frequencies, respec-
tively, the purely vibrational Hamiltonian being
%„=2 ' g„(U „+ai„U„).As already reported in paper
I and analogously to the e-mv coupling case, the e-lph
coupling leads to a shift (in general a lowering) of the fre-
quencies of the involved modes. The squares of the per-
turbed frequencies are the eigenvalues of the force con-
stant matrix (F), whose elements are

I'~' =~v&vv' &a+—~&eg«gv ~

2 (15)

where Xb is the electronic response to the e-lph perturba-
tion (in order to simplify the notation, the following X&

definition differs by an JV factor from that of paper I):

/
(6

J g( —1)'b, f+) /'

(16)

&g &Lb (17)

where ez ——g gi/co„, the lattice distortion energy, mea-
sures the electronic energy gain (per unit cell) due to the
relaxation of the U„modes when the electronic density
on the bonds changes from that relevant to a regular
chain to that of a fully dimerized stack.

The phase diagram for the r @stack in-stability is,
therefore, given by the Il, (p, e, ) curves reported in Fig.
7: the states stable in respect to dimerization correspond
to the points lying below the Xb

' curve. The c, =0 dia-
gram differs from that previously reported: in the I re-
gime Xb is always zero, whereas small but f1nite values
were assigned to it in paper I. The trouble comes from
extrapolation procedures. In paper I the I& ' evaluation
for Snite systems has been performed by choosing as

~
6) a state [Eq. (16)] with the lowest energy, i.e., for

even rings in the ionic regime, an A2 state. This choice,
in principle correct, yields a very slow convergence and
large uncertainties in the extrapolated values. Due to the
degeneracy of the lowest A, and A2 singlet states of the
infI[nite stack in the ionic regime, it is also possible to
choose as

~

6 ) a state with the lowest energy state in the
A

&
subspace: 1Q such a way even rings 1n the 1onic re-

gime are characterized by negative X& values. By in-
creasing JV one finds that in the I regime the results for
odd rings and open chains and tllose for even rings tend
to zero from positive and negative values, respectively.
Even 1f the convergence 18 not faster than above, lt 18 not
diScult to realize that 7& vanishes in the N~ ao limit.

If the e-lph perturbation is strong enough, the softening
of the U, 's described by Eq. (15) yields a lattice relaxa-
tion, i.e., a stack dimerization. This happens when one of
the eigenvalues of F becomes negative, the unstable states
being characterized by the following condition:

0 Q2 04 Q6 08 Q2 04 Q6 Q8

FIG. 7. Inverse of the electronic response to the e-lph pertur-
bation (Xb ) as a function of p for difkrent c, values (the same as
Fig. 2). Dashed and solid lines refer to mf and lr-Coul calcula-
tions, respectively.

Therefore mixed regular stacks in the I regime are, at
zero temperature, intrinsically unstable towards dimeri-
zation, as already recognized by Nagaosa. ' However, as
discussed in paper I, physical intuition suggests an in-
crease of the stability of the regular stack for large-p
values (p~ 1). This point will be discussed in Sec. VII,

'

where preliminary results obtained for dimerized stack
systems are reported.

Figure 7 puts in evidence one more point which has
been overlooked in paper I, namely, the dependence of
the X& curves on e, . The reason for this rather subtle
and unexpected interplay between interactions belonging
to different symmetry representations can be understood
in terms of the mf picture. To such aim, we make use of
the asymmetry parameter P defined in paper I as

Odd

In terms of P the e-lph Hamiltonian [Eq. (14)] reads

m„= —JV&Zy y„(—1)'b, ,

so that

Xl, (p, e, )= —(8'@GIB/')p 0.

However, this e-lph Hamiltonian has been derived by as-
suming that only the t s are modulated by the U, 's. In
the mf picture, if C,&0, also z is actually modulated by
the U„'s via p [Eq. (4)]. The proper mf e-Iph Hamiltoni-
an, therefore, reads
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zz
%P, '=&,

p
—P'

z g ( —1)'&;,
Q i

(19)

where due to the symmetry of a regular chain in respect
of positive or negative P, the relation (Bz/B((t)o=0 has
been introduced. A little bit of algebra [based on Eqs. (4)
and (6)] leads to

8 6G(z)

1 —s, (Bp/Bz) Bz
0 5--

It ig not djScult to realize that

a'C, (z)

az az2
0.2

I
l

0.8

8 CG(z)
=X,(p, s, =0)—,=Xb(p, s, =0),

0
(21)

so that the second derivative of the ground-state energy
in respect of ((} gives

Xb(p, e, )= Xb(p, O)

s,X„(p,O) BX (p, O)
+(1—p)

1 —s,X„(p,O) Bp

The resulting Xb '(p, e,, ) curves are reported in Fig. 7 as
dashed lines, snd compare well with the corresponding
lr-Coul results (solid lines).

Equation (22) clearly shows that at the N-I interface,
where 1 —s,X,(p, O) vanishes [Eq. (10)], Xb~ oo and the
system becomes intrinsically unstable towards dimeriza-
tion: N-I and dimerization instabilities are not indepen-
dent. The physical meaning of Eqs. (19)-(22) is that the
electronic energy gain due to dimerization increases if the
charges on the molecular sites are allowed to reorganize
in consequence of the dimerization, leading to a divergent
behavior at the N-I interface.

The interplay found between Coul and e-lph interac-
tions suggests investigating also the possible role of e-mv
coupling in setting up the dimerizstion. To this aim the
adiabatic e-mv Hamiltonian [Eq. (12)] has to be added to
the purely electronic lr-Coul one [Eq. (1)]. As a conse-
quence a new term

—$2(B p/Bgz}os, p g ( —1)'n;

adds to %,~. A treatment analogous to that reported in
Eqs. (19)—(22) yields

(1—p)e,P„(p,s, )
Xb(p, e„s„)= Xb(p, e„o)+

1 —s,P'„(p, s, )

dXb(p, s„0)
X

Therefore, the Xb
' curves are further lowered by the

eFect of e-mv coupling, as shown in Fig. 8. Once more a
divergence in 7& occurs at the X-I interface where

s,~=X, (p, e,, ). The dimerization instability is affected
not only by the Coul interactions, but also by the e-mv
coupling, even if the Q~ modes cannot directly interact

FIG. 8. EfFect of c,p on the inverse of the electronic response
to the e-lph perturbation for a system with e,, =1.8 (lr-Coul cal-
culations). Solid, dashed, and dotted lines refer to c.,p =0.0, 1.0,
and 2.0, respectively.

with the U„ones due to their diFerent symmetry. The
lowering of the Xb (p) curves due to s,„clearly indicates
that the e-mv coupling favors the dimerization, in agree-
ment with early results obtained in one-electron models
of segregated stack crystals. The physical origin of
such a lowering lies in the ionicity variation due to di-
merization [X„(p,s, )(B/Bp)Xb(p, s„O}in Eq. (23) is equal
to 8 p/B((}z]: If the molecules are consequently allowed
to relax following the ionicity, the energy gain on dimeri-
zation increases. As in the case of the effect of s, on the
dimerization, such a gain is very large at the N-I inter-
face, A second result is worth noting: at the X-I inter-
face the stack is intrinsically unstable towards dimeriza-
tion even on the N side. This result appears now rather
obvious: at p& the system gives an in6nite response to
any perturbation (in this case the dimerization) able to in-

duce ionicity variations.

VI. ZER(0-TEMPERATURE PHASE DIAGRAM

Before dealing with the complete phase diagram ac-
counting for both N-I and r-d instabilities we brie6y sum-

marize the results so far reached for each of them. For
what concerns the X-I interface, if e., and c, are large

enough, one Ands a usual 6rst-order phase transition,
characterized by a bistability region (cf. Fig. 6},where the
system can choose between two stable states with
diFerent ionicity, and, at the same time, cannot assume
intermediate ionicity values. By lowering c, and E p

the

instability range shrinks until it vanishes: the N and I
phases merge. The S-I boundary can, therefore, be de-
scribed ss a Srst-order boundary with a critical point. As
a matter of fact the N and I phases are conveniently dis-
tinguished in the entire parameters space. By remember-

ing that the N and I phases are identi6ed from a micro-
scopic point of view as the phases with a nondegenerate
and a degenerate ground state, respectively, " the %-I
boundary csn be continued beyond the critical point as
the line separating intrinsically stable and unstable states
towards dimerization.
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FIG. 9. Construction of the complete phase diagram for a
mixed-stack CT crystal vnth e, =1.8 and c,,~=1.3. The dashed
area between pz and pl indicates the forbidden p region (for a
regular chain); the areas between p+ and pz and between p& and
pl* correspond to the bistability regions (see text).

The dimerization instability is characterized by a sym-
metry lowering driven by low-frequency lattice phonons
and is expected to give rise to a continuous, second-order
phase transition. It is easy to draw a parallel with the
Peierls-type distortions usually observed in segregated
stack systems. As already discussed in the previous
section, at the N-I interface the dimerization instability
arises from the easy charge reorganization, or, in other
~ords, from the "frictionless" motion of the electrons
which follow the molecular displacements. In such con-
ditions the dimerization is strictly analogous to the pure
Peierls transition implying the translational degrees of
freedom of the electrons. On the contrary when p= 1,
the dimerization instability, arising from degeneracy of
the lowest Ai and A2 singlets which differ only in the
spin distribution, can be easily assimilated to the spin
Peierls instability. To put it in other terms at p=1 the
system is analogous to a U= ao half-filled segregated
stack: its charge and spin degrees of freedom are decou-
pled and the system can be described as an Heisenberg
antiferromagnet. In between these two extremes both the
charge and spin degrees of freedom will contribute to the
instability jving rise to the sowalled generalized Peierls
instability. '

In order to understand what happens in a real system
where both N-I and r-d instabilities coexist, one has to
construct a complete phase diagram. This is done in Fig.
9 where, in the lower panel, the usual X& '(p, s„e,~) curve
is drawn as a function of p for a system with z, =1.8,
c, =1.3. As we have already discussed, if one puts on
the ordinate axis the ez values, this curve represents the
boundary between stable (X&

' p ez ) and unstable

(X& &ez) states in respect to the dimerization. In the
upper panel of the same figure we report the zo(p) curve
calculated for the same values of c, and c, From this
curve one can define the forbidden p region (in between

p~ and pi }and the bistability region (in between p~ and

pI }. Tliese two fegiolis ale tliell pro)ected ill the lower
diagram which now represents a complete phase dia-
gram. The shaded area indicates the forbidden ionicity
region. In the I regime both in the bistability
(pi &p&pi) alid stability (p&pz) ranges the regular
stack cannot exist, being intrinsically unstable towards
dimerization. In the N regime (p &p~) instead, depend-
ing on the e& value, both regular or dimerized phases can
be observed.

In the N stable regime (p &p~), if ez crosses the X&
'

curve one expects a pure dimerization transition: a
second-order phase change from a neutral regular chain
to a neutral dimerized one. At this point, however, one
has to ask if the expression "neutral dimerized stack" has
some physical meaning, i.e., if N and I phases can be dis-
tinguished in dimerized chains. It has in fact been re-
cently claimed that "the charge transfer (i.e., the ionicity)
is usually not a good quantity to distinguish the two
phases, "'" and that one has rather to rely on the degen-
eracy of the ground state. Since in dimerized chains the
ground state is always nondegenerate, the N-I
classification seems to become meaningless. However, mf
calculations for a chain of isolated dimers, interacting
only through the electrostatic potential, actually indi-
cate that if e, and e.,z are large enough, the X and I
phases are separated by a forbidden p region analogously
to what occurs in regular stacks. The behavior of a
dimerized chain will be obviously intermediate between
that of the regular stack (/=0} and of the chain of isolat-
ed dimers (P = 1), so that there is an s„e,~ range where
the N-I transition is a discontinuous, 6rst-order one. The
two phases are, therefore, distinguished on the basis of
the quantitative difference in the p value, in much the
same way as the liquid-vapor phases are usually dis-
tinguished. On the other hand, beyond the critical point
the two phases merge, and they cannot be macroscopical-
ly distinguished anymore. However, it is convenient to
keep the N and I classification by referring to a micro-
scopic analysis analogous to that valid for regular stacks:
E dimerized chains are those in which the fully ionic
configurations do not contribute to the ground state,
whereas I chains are those where no contribution of the
fully neutral con6guration to the ground state is found.

Another important observation concerns the variation
of ionicity due to dimerization. The mf solution for the
fully dimerized (P=1}chain indicates that the ionicity
increases with P and, at the same time, that the instability
and bistability ranges become progressively narrower.
Therefore, if the dimerization occurs in the regime of sta-
bihty for the N stack (p&p~) the corresponding dimer
will have a greater charge but will be always in a p stabili-

ty region. In particular if c, and c, are large enough to
give rise to a forbidden p region also in the dimerized
chain, the dimer will be in the N side. In conclusion, for

p &pz at e&
——X& one expects a second-order dimeriza-

tion instability. As a 6nal observation, we remark that



37 ZERO-TEMPERATURE PHASE DIAGRAM OF MIXED-STACK. . . 5757

due to the charge and nuclear relaxation, the energy of
the dimerized states might lower, giving rise to a three-
minima potential. Accordingly, one could observe a
slightly erst-order dimerization, occurring before the set-
ting up of the second-order phase change.

Let us now briefly investigate the phase transition
when the crossing cd ——g& occurs in the X bistability re-
gion (pz &p ~p~ ). In such a region two stable states are
available to the regular chain, a X snd an I one. At p&-

the X state has the lower energy, but the energy
diN'erence between the two states lowers by increasing p,
until it vanishes at a point which could be evaluated
through the Maxwell equal area rule; after this point,
until pz, the I state has the lower energy. Depending on
the external "noise" (i.e., the temperature, the defect con-
centration, and other experimental conditions) the N-I
transition mill occur when the two states have the same
energy (Maxwell convention) or at p~, where the N state
becomes unstable (delay convention). 3' By adopting the
Maxwell convention one could say that if ed crosses the
Xb

' curve before the vanishing of the S-I energy
difFerence, a second-order dimerization transition will
occur. However, this statement is not correct: the I state
is, in fact, unstable towards dimerization, and, therefore,
one actually has to consider a three-minima potential. If
the dimerization makes the energy of the I states lower
than that of the N one before the onset of the second-
order phase transition, one will observe a first-order
phase change3 from a neutral regular stack to an ionic
dimerized one. Of course this is also the kind of transi-
tion expected if ed crosses the Xh,

' curve when the I state
has lower energy than the N one. However, if the noise is
low, also N metastable states can be reached (delay con-
vention), and one could also observe a soft mode. In gen-
eral, it is diScult to precisely state the evolution of the
phase transition; however, the presence of many (at least
three) diff'erent equilibrium positions (minima in the ener-

gy curve) with comparable energy values strongly points
towards a first-order phase change, very sensitive to the
external conditions snd characterized by the coexistence
of different phases.

VII. COMPARISON KITH RKAI. SYSTEMS

A very large number of quasi-one-dimensional mixed-
stack CT crystals is known, and the great majority of
them is characterized by a regular stack and low-ionicity
values (p 50.3). ' As far as we know, only two sys-
tems exhibit intermediate ionicities (0.35pS0.7), and
both have a dimerized stack structure. ' Finally, the
few CT crystals lying in the high-ionicity region are
characterized by a regular stack structure at 300 K. '

Apart from the well-known case of TTF-CA, which
will be discussed below, in general the temperature does
not induce phase transitions in systems with low or inter-
mediate ionicity (we are not concerned here with
disorder-order or orientational phase transitions). On the
other hand, by lowering temperature the highly ionic
compounds undergo an r-d stack transition without re-
markable ionicity variation.

This general behavior can be understood on the basis

of the above described 0 K phase diagram. The analysis
of optical data of several CT crystals allows one to esti-
mate the variability ranges of the various parameters
occurring in the phase diagram (Refs. 13 and 21):
1.05', 52.0; 0.55@., 51.5; 0.055@,d 50.25. On the
basis of these data, Figs. 7 and 8 clearly show that low-
ionicity CT crystals are indeed expected to exhibit a
regular-stack structure at all temperatures, whereas ionic
systems will always be dimerized at sufficiently low tern-
peratures. On the other hand, Fig. 5 indicates that inter-
mediate ionicity systems are very unlikely to be found
due to the presence of forbidden ionicity ranges (we re-
mind that such ionicity gaps may occur also in dimerized
stack systems).

The reason why intermediate ionicity CT crystals are
already dimerized at 300 K, whereas the highly ionic
ones dimerize only at low temperatures, can be qualita-
tively understood as foBows. In the previous section we
have discussed how near the N-I interface the r-d stack
instability is analogous to s pure Peierls instability,
whereas for p-1 it can be assimilated to a spin-Peierls
one. It is well known that the 6rst kind of instability in-
volves a much larger energy gain than the second one, so
that the transition temperature is expected to be higher in
the pure Peierls than in the spin-Peierls transition.

In order to give a sounder basis to the above statement,
we have performed calculations on dimerized stacks to
evaluate, for a given e,d, the equilibrium position of the
distorted system and the consequent energy gain. We
have considered both an uncorrelated system (e, =0)
and, via lr-Coul calculations, a correlated one (e, =1.8);
in any case we have assumed c.,~=0, ad ——0. 15. The re-
sults are shown in Fig. 10, where in the upper panels we
give, as a measure of the equilibrium dimerizatio, the
corresponding P, whereas in the lower panels the energy
gain (dE) on dimerization is reported. Left and right
sides refer to the e, =0 and to the e, = 1.8 results, respec-
tively For e.ach e, value, both P and dE are at a max-
imum near the N-I boundary, and rapidly decrease on N
side. On the I side the decrease is slower, and P and d,E
vanish only at p = 1. The dE decrease on the I side clear-
ly indicates that the dimerization temperature of ionic
mixed-stack crystals wi11 progressively lower by increas-
ing p towards 1, in good agreement with experimental ob-
servations.

Now we turn the attention to the TTF-CA system, the
only one known to undergo a Xr-Id phase transition by
lowering the temperature or by increasing the pres-
sure. " The microscopic parameters characterizing
TTF-CA at 300 K have been evaluated as c,—1.8,
a, —1.3, and ad -0.1-0.2 (t =0.21 eV). 34 Since temper-
ature and pressure cause a lattice contraction before the
transition, t presumably increases, thus decreasing c,
and c, . Considering also the uncertainty in the parame-
ters estimate, the TTF-CA phase diagram is probably in
between those reported in Figs. 9 and 11. The ionicity of
the crystal varies between 0.2 and 0.3 before the phase
transition; ' in any case the system lies in the bistability
region. Thus it is very dimcult to precisely state the evo-
lution of the phase transition: we can say that it is most
probably a 6rst-order one and that it mill be very sensitive
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FIG. 10. Extent of dimerization (expressed by the asymmetry
parameter ((i) and electronic energy gain upon dimerization

(LE) as functions of p. Left panels: c, =0.0; right panels:

e, =1.8; cz ——9.15 and a,~=0.0 always.

to the experimental conditions (purity of the crystal, de-
fects, temperature, etc.). It is then no more surprising to
find di8erences between the results obtained in various la-
boratories or to observe a di8'erent evolution of
temperature- and pressure-induced phase transitions.
On the basis of Figs. 9 and 11 phase diagrams, one would
expect the ionicity of the Id phase to be between 0.7 and
0.8, somewhat larger than that experimentally observed.
However, this p value is relevant to the regular stack; cal-
culations performed on the fully dimerized chain indicate
that on the I side the ionicity tends to decrease with the
dimerization.

It is instructive to compare the TTF-CA phase
diagram with that of dibenzotetrathiafulvalene-
tetracyanoquinodimethane (DBTTF-TCNQ), a crystal
which under pressure undergoes a different kind of phase
transition, Nr-Nd (p varies from 0.2 to -0.4). ' At am-

bient pressure the microscopic parameters of 13BTTF-
TCNQ have been estimated as s, -1.4, e, -0.6,
p&-0. 1-0.2.3 The corresponding phase diagram is re-

ported in Fig. 12. Due to the low e., and e., values, the
system is stable in respect to the E-I transition: a slight
increase in p induced by the pressure will cause a crossing
of the r dinstab-ility curve before reaching the bistability
region. A pure (probably second-order) dimerization
transition is expected, accompanied by a slight increase
of p, in agreement with the available preliminary experi-
Glental data.
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FIG. 12. Phase diagram for a mixed-stack CT crystal with

s, =1.4 and e,~=0.6 (e.g., DS't t F-TCNQ).

FIG. 11. Phase diagram for a mixed-stack CT crystal with
e., =1.4 and a,p=1. 1.

VIII. CONCLUSIONS

In the present paper we have investigated the ground-
state properties of mixed-regular-stack CT organic solids.
VB calculations have allowed us to deal with a quite com-
plete model where the electron-electron and electron-
phonon interactions, required to achieve a realistic
description of these systefns, are accounted for. The on-
site electronic interactions, which are at least one order
of magnitude greater than the other energies relevant to
the problem, have been assumed in6nite by excluding
from the beginning the states with doubly ionized sites.
The intersite electrostatic interactions have been intro-
duced as a sum of unscreened Coulomb interactions be-
tween point charges at the molecular sites. In any case,
the results seem not to be strongly dependent on the ex-
plicit form of the electrostatic potential, as they generally
compare well with those obtained in mf approximation.
A perturbative, adiabatic approach on the basis of the
electronic correlated functions has then been adopted to
account for the e8'ects of both e-lph and e-mv couplings.
This allows us to get a first sound understanding of the
subtle competitive-cooperative interplay between the
various parameters of the theory in setting up the X-I
and di61erization instabilities.

The four-dimensional zero-temperature phase diagram
which results from the model predicts the occurrence of
only three stable phases: Nr, Xd, and Id. The Ir phase is
not found since the X-I boundary actually coincides with
the line where the regular chain becomes intrinsically un-
stable towards dimerization due to the degeneracy of the
ground state. In spite of this coincidence, the S-I bound-
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ary retains a physical meaning of its own: it corresponds
in fact to a first-order boundary with a critical point.
This is a remarkable observation since it holds also for
dimerized stacks and, therefore, allows us to make a
physically meaningful distinction between N and I dimer-
ized chains, even if their ground states are abvays nonde-
generate.

In addition to investigating the stability ranges of the
various phases, the proposed phase diagram can also be
analyzed to gain insight into the nature of the various
phase transitions observed in mixed-stack CT crystals. In
particular, we have found that dimerization transitions
starting from the N side may occur; they are likely
second order, and in general imply a small-ionicity in-
crease. On the contrary the N I(act-ually ¹-Id)phase
transitions are most likely 6rst order and are expected to
be very sensitive to the experimental conditions. More-
over, the requirements for the occurrence of a N-I phase
transition appear rather stringent, as a subtle balance of
the various parameters is needed to drive the systems into
the N-I bistability range. It is then not surprising that
TTF-CA is to date the only CT crystal conSrmed to un-
dergo such a kind of phase change. Finally„calculations
of the energy gain upon dimerization support the inter-
pretation of the dimerization transition observed in ionic
mixed-stack CT crystals as a Peierls-type one: a pure

Peierls near the X-I boundary which turns to a spin
Peierls as p~ I.

Refinements of the present model would imply the in-
clusion of the intercbain electrostatic interactions, which
are responsible for the largest interchain coupling, and
the relaxation of the adiabatic approximation introduced
in dealing with the phonons. Moreover the model has
been worked out for a perfect crystal, so that neither the
structure of defects, nor their possible role in setting up
the instabilities has been investigated. We believe, how-
ever, that the model in its present form is quite adequate
in off'ering a comprehensive and general view of the phase
diagram of mixed-stack CT crystals.
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