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EfFective-Seld renormalizstion-group study for the diluted Ising model
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An elective-Seld renormalization-group method which improves the result of the mean-6eld

renormalization-group method is proposed to study the diluted Ising system.

I. INTRODUCTION

Recently the mean-6eld renormalization-group
(MERG) method has been proposed for computing criti-
cal properties of lattice spin systems. ' This approach is
based upon a comparison of the behavior of clusters of
different sizes in the presence of symmetry breaking
boundary conditions which, in a mean-field way, simulate
the effect of surrounding spins in the infinite system.
The MFRG method has been successfully applied to the
study of critical properties of ordered and disordered spin
systems. In contrast with the Migdai-Kadanoff (MK)
method ' or the decimation techniques, ' ' the MFRG
method overestimates the interactions among the spins
and consequently gives an upper bound for the critical
temperature and a lower bound for the critical concentra-
tion. The critical coupling, the percolation threshold,
and other critical components calculated by use of the
MFRG method are different from the exact or series re-
sults. Lately a two-step renormalization-group (TSRG)
method, combining the MFRG and decimation methods,
has been presented and has been applied to diluted Ising
system. ' ' In the present paper, we use a new type of
eff'ective-field theory with correlation'~ instead of the
mean-field theory. The theory substantially improves the
standard molecular-Seld approximation and has been ap-
plied to a variety of interesting problems. '~ ' The
efFective-field results for smail clusters of spina are com-
bined with renormalization group ideas to propose a
new approximate scheme. The effective-field
renormalization-group (EFRG) method will improve the
results of the MFRG method. In order to illustrate the
EFRG approximate method, we study herein the bond-
diluted Ising model on a square and a simple-cubic lat-
tice.

II. BOND-DILUTED ISING FKRROMAGNKT
ON A SOURCE LATTICE

The effective Hamiltonian is

P%= —g K; S,S

), ),=G, (K',p')b'+0(b'), (4)

6
~
(K',p') = —,'p'"( tanh4K'+2tanh2K')

+3p' (1—p')( tanh3K'+ tanhK')

+6p' (1—p') tanh2K'

+4p'(1 —p') tanhK' .

In the eff'ective field for the %=2 cluster (EF 2), the spins
s, and s2 interact directly via a coupling K and both s,
and s2 interact with three nearest-neighbor sites whose
spins are fixed to the value b. The Hamiltonian for the
two-spins cluster is

P&z ——K,zsisz —si g Ki s.—s2 g Kz.z. .
j+2 j~]

The average magnetization

We consider two finite clusters with jhow' = 1 (s, ) and X =2
(s, and si) spins, respectively. For a ferromagnetic Ising
system, each boundary spin is fixed to b' and b for the X'
and X spin clusters, respectively. In the effective field for
N'=I cluster (EF1), the spin si interacts with z=4
nearest-neighbor sites via a coupling E'. Each external
site j contributes with a symmetry breaking field
K',Jbj =K',Jb'. According to the exact Callen identity, '

the magnetization

(s, )t=(tash Z K't(S('
j+]

z
[cosh(Dh" t+s(s(nh(DK'(])tanhPn

j&l

(3)

where D:—8/Bx is a difFerential operator. ' In a
quenched random-bond system, the disorder lies in the
exchange bonds, and, hence, it is necessary to take the
random average ( )„over all possible bond
con6gurations. One gets

where i,j are nearest neighbors and coupling K, =pJ, . is
an independent random variable with probability distri-
bution

—P'Ff
2

—Pi'Y2(s, ),= Tr s, e '/ Tr e
(51,$p ) (S I,S~ )

exp D E
&

.s +D /2jsj z,y
j&2 j~1 x =y=0

p(KJ. )=p5(K; —K)+(1—p)5(K, ) . (2)
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Where D'—:B/By is also a differential operator, the func-
tion f(x,y ) is given by

tanh(x +y )
(x,y 1+e cosh(x —y)/cosh(x +y )

tanh(x —y )+ 1+e cosh(x +y )/cosh(x —y )

Averaging over the random-bond configurations and not-
ing that in the vicinity of the critical temperature b-+0,
we can only take the linear terms of b:

«~, &, &„=G,(K,p)b,

Gi(K,p ) =3[p'A
&
+p'(1 —p )(3A, +28, )+p'(1 —p )'(3A„+63,+ A6)

+p (1—p )'( A, +63,+33 )+p'(1 —p ) (2A, +33 „)+ (1—p )'A „]
+ —,'p3(tanh3K+tanhK)+3p (1—p)tanh2K+3p(l —p) tanhK . (10)

These coeScients A i
—A ]2 are given in Appendix A.

Combining EF 1 and EF 2 with the rescaling assumption,
one gets the recursion relation,

namely

Gi(K', p')=G2(K, p) .

The fixed-point equation associated with (12) for p'=p is

G i (K„p ) =G2(K„p ),
where K, is the critical coupling for a given value of p.
For the pure Ising system p'=p =1, the critical coupling
is calculated by the EFRG method Ka"ao=0.3579. It
can be compared with other results: KM» =0.69 (MK de-

cimation), K, =0.346, K, o=0.536, and the series

value K; "=0.441.' Our method also allows the calcu-

lation of a finite percolation threshold for K,~ 00. The
result is p'=p =p ~G=0.4345. It should be noted that
the present EFRG method gives substantial improvement
for the result of the MFRG method p, ""o=0.333, and it
can be compared with p, =0.618, pp"o=0.475 and
series value p,

' "=0.5.'

&(., », „=G;(K,p)b,
where

(14)

III. BOND-DILUTED ISING FKRROMAGNKT
ON A SIMPLE CUBIC LATTICE

Similar procedures can be carried out to study the crit-
ical behavior of the bond-diluted Ising ferromagnet on a
simple-cubic lattice. The average magnetization for two
clusters can be obtained

Gi (K',p')=
,6p' (tanh6—K'+5tanh2E'+4tanh4K')+ —",p' (1—p')(tanhSK'+3tanh3K'+2tanhK')

+ —",P'"(1—P') (tanh4K'+2tanh2K'}+15p' (1—p')3(tanh3E'+tanhK')

+ 15p' (1—p') tanh2K'+6p'(1 —p')5tanhK',

Gi (K,p ) =Sp "8i+p "(1—p )(208, +258, )+p'(1 —p )'(308, + 1008,+508, )

(15)

+p (1—p) (2087+1508s+20089+508io)+p (1—p) (58ii+1008i2+3008i3+2008,4+258i5)

+p (1 p) (258~6+2008~7+3008is+1008i9+5820)+p (1 p) (508qi+2008i~+150823+208i4)

+p, (1—p ) (50825+100826+30827)+p (1—p ) (258qg+20829)+p (1—p ) (583O)

+p (1—p)[ —,', (tanhSK+3tanh3K+2tanhK)]+p (1—p) [—',(tanh4K+2tanh2K)]

+p (1—p) [—", (tanh3K+tanhK)]+p (1—p) (10tanh2K)+p(l —p }'(StanhK) . (16)

The coef5cients 8i -830 are given in Appendix B.
By the use of the recursion relation for the coupling

constants and the corresponding fixed-point equation, we
can obtain the critical coupling K, " (p =p'= 1)

=0.2061 and a finite percolation threshold

p, " =0.2589. These results considerably improve the
results for critical properties, compared with other real-
space renormalization group, MFRG, and TSRG
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methods that are used: It., =0.261, E, " =0.203,
E, " =0.246, snd series value E,'""'=0.221;
pMK 0 28 pMFRG 0 20 p

TSRG

p,'""'=0.25. It is worth mentioning that the EFRG
method can be used to obtain very good estimates for the
critical coupling and critical concentration.

In conclusion, we have presented an efFective-6eld
renormslizstion-group method and applied it to the
bond-diluted Ising model. It leads to considerable im-
provements over other frequently used real-space renor-
malization group snd MFRG methods, and can be corn-
pared with the TSRG method without involving many

more computational works. It should be noted that the
EFRG method is very powerful and can be applied to
other disordered systems and surface problems, etc.
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APPENDIX A

We present the coeScients A
&

—A, 2.

A, =
t coshDK cosh2D'K sinhD'K+cosh3D'E cosh DK sinhDK jf(x,y )

~ „
g z

—
I cosh2DK cosh D'K sinhD'K+ cosh O'K cosh DK sinhDK jf(x,y ) j „

A 3
—

t cosh DK coshD'K sinhD'K+ cosh O'K coshDK sinhDK jf(x,y )
~ „

A4 ——
I coshDK cosh2D'K sinhD'K+ coshD'K cosh DK sinhDK jf(x,y)

~ „
A, =

I cosh'DK coshD'K sinhD'K+cosh O'K coshDK sinhDK jf(x,y)
~ „

36= I cosh DK sinhD'K+cosh O'K sinhDK jf(x,y )
~ „

A„= I cosh O'K sinhD'K+cosh DK sinhDK jf(x,y)
~ „

As = IcoshDK coshD'K sinhD'K+coshD'K coshDE sinhDK jf(xy) j „
A 9= {cosh~OK sinhD'K+ cosh O'K sinhDK jf(x,y)

~ „
A,o= —,

' tsinh2D'K+sinh2DK jf(x,y )
~ „

3„=I coshDK sinhD 'E +coshD 'E sinhDK jf(x,y )
~ „

A, 2
——tsinhD'K+sinhDK jf(x,y )

~ „

APPENDIX 8

We present the coeScients 8, -830.

8, =
I
cosh'DK cosh O'K sinhD'K+ cosh O'K cosh DK sinhDK jf(x,y )

~ „
Bz ——

I cosh DK cosh D'K sinhD'K+ cosh O'K cosh DK sinhDK jf(x,y )
~ „

3 =
I cosh DK cosh O'K sinhD'K+cosh O'K cosh DK sinhDK jf(x,y)

~ „
8& ——Icosh DK cosh O'K sinhD'K+cosh O'K cosh DK sinhDK jf(x,y)

~ „
85 = Icosh DK cosh O'E sinhD'K+cosh O'K cosh DK sinhDK jf(x,y)

~ „
86 =

I cosh DK cosh D'E sinhD'K +cosh D'K cosh DK sinhDK jf(x y )
~ „

87 =
I cosh DK coshD'K sinhD'K +cosh D'K coshDE sinhDK jf(xy )

~ „
Bs =

I cosh DK cosh O'K sinhD'K+cosh O'K cosh DK sinhDK jf(x,y ) j „
89=

I cosh DK cosh O'K sinhD'K +cosh O'K cosh DK sinhDK jf(x,y )
~ „

B,o =
I cosh DK cosh O'K sinhD'K+ cosh O'K cosh DK sinhDE jf(x,y )

~ „
8» ——I cosh DK sinhD'K+ cosh'O'K sinhDK jf(x,y)

~ „
B,z ——

t cosh DK coshD'K sinhD'K+ cosh D'E coshDK sinhDK jf(x,y )
~ „
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8„=I cosh'DE cosh'O'K sinhD'K+cosh'O'E cosh DE sinhDK jf(xy)
~ „

8 iz
——j coshzDK cosh O'K sinhD'K+ cosh O'E cosh DE sinhDK jf(x,y)

~ ~

8,~
=

I coshDE cosh O'E sinhD'K +coshD'K cosh DK sinhDE jf(x,y )
~ „

8,6= Icosh DK sinhD'E+cosh O'E» nhDE jf(xy)
~ „=y=o~ 8i7= ~3~ 8is = ~2

8» ——IcoshDE cosh O'E sinhD'K+coshD'E cosh DK sinhDK jf(x,y)
~ „

82o —tcosh4D'K sinhD'K+cosh DK sinhDK jf(x,y)
~ „

8zz ——[cosh2DE coshD'E sinhD'E+cosh O'K coshDK sinhDK jf(x,y)
~
„—y —(ja 823 ~4

8&~ ——
I
cosh3O'K sinhD'K+cosh3OK sinhDE jf(x,y)

~ „=~ o,

82~ ——A 9, ~26 ~ 8~ 827 ——3 7, a„=g„, @29=x„, 830=a„.
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