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Mooij correlation in disordered metals
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%e point out that the Mooij correlation follows naturally from a dynamically disordered tight-
binding Hamiltonian with random modulations of both the diagonal and the oN'-diagonal matrix
elements which are kno~n to act in opposition. The dynamic disorder is treated exactly while the
static disorder is incorporated approximately as an effective additional time-dependent disorder
affecting the diffusive electron. Such a time translation of static disorder is known to manifest it-
self in certain limits as a renormalization of the diffusion coeScient. The calculated conductivity
exhibits the Mooij corre'Iation at high temperatures, ~here quantum coherence associated with the
static disorder can be ignored.

Operationally, the metallic state is often characterized
by a positive temperature coefficient of resistance (TCR)
in the temperature range of interest. A change of sign of
the TCR is then taken as the transition from the metallic
to the insulating state. Perhaps a more fundamental view
is that the "metallic" resistance should extrapolate to a
finite residual resistance (RR) at the absolute zero of tem-
perature. Many random alloys show an anomalous TCR.
Mooij' was the first to observe on empirical grounds that
there exists a correlation between the sign of the TCR and
the absolute magnitude of the RR, i.e., p(r -e&~~p, implies
(dp/dT) r -a+0. This correlation is quite universal, hold-
ing for glassy and liquid metals, amorphous alloys and the
highly resistive A 15 compounds, both in bulk samples and
thin films. 2 The magnitude of p, is, however, not univer-
sal. 3 It can have values ranging from 30 to 400 ttA
cm. In certain transition-metal oxides values for p,
-(2-3)X103 pAcm have been reported. 4 A typical
value is 150/t Oem.

Most theoretical approaches3s 6 to the Mooij correla-
tion are based on quantum-mechanical coherence effects,
namely, the incipient Anderson localization. This is sug-
gested by the fact that the observed p, is not too far from
the value of Mott'ss maximum metallic resistance
pm, „-1000 pQcm, where incipient localization sets in
above the mobility edge. It has been argued that the
breakdown of the adiabatic approximation, even in the
metallic phase due to incipient localization, leads to
phonon-assisted tunneling and, therefore, to a negative
TCR.7 Using the scaling theory of localization, s Imry has
argued that just above the mobility edge the coherence
length g, which represents the length scale beyond which
conductance becomes Ohmic, determines the conductivity
which is given by a c(e //'t(). Here c is a constant and
(&L, the sample size. This is for T 0 K. At a finite
temperature, however, the inelastic scattering due to pho-
nons (or electrons) makes the quantum motion in-
coherent, suppressing the quantum interference necessary
for the incipient localization. Then the length-scale-
dependent localization effects are cut off beyond the in-
elastic diffusion length /; [or more precisely the Thouless
length Lr (/, /;) 'I

1 and, in the regime where /; & g, the
conductivity is given by cr c'(e //1/;). Usually /; is pro-

portional to T t't2, where p can assume any value be-
tween 1 and 4 depending on the temperature regime and
the dimensionality of the sample. This results in the in-
crease of conductivity as we increase temperature (nega-
tive TCR). It may be noted that p 1 as T Debye
temperature for all dimensions. The above treatment is in

the regime of marginal metallicity. In a highly metallic
regime, where the elastic mean free path /, ))tt, the in-
teratomic spacing, the conventional Boltzmann transport
takes over, leading to a positive TCR. Similar results are
obtained by Mott and Kavehs who consider diffusion
correction to the Boltzmann conductivity in a perturbative
calculation to the order of 1/(kF/, ) 2 & l.

The above theories assume /, & /;. Inasmuch as Mooij
correlation persists even above room temperature where /;

becomes quite small, it is not clear if the ideas based on
quantum coherence (localization) continue to hold at
these temperatures (see, however, Tsuei3). In this note
we point out that even without localization as a dominant
effect, Mooij-type correlation is possible at high tempera-
tures. This arises naturally from the competition between
the diagonal and the off-diagonal matrix element modula-
tions by thermal phonons for a tight-binding degenerate
electron system. The temperatures considered are high
(comparable to Debye temperature eD) to ensure sto-
chasticity, but low compared to the Fermi temperature TF
to ensure degenerac~. Our treatment is based on the ex-
act result known9 ' for the dynamically disordered sys-
tems. Static disorder is, however, treated in an approxi-
mate way.

We consider an electron moving on a lattice (L) cou-
pled to phonons. The appropriate Hamiltonian in a tight-
binding one-hand model can be written as

Ht. -Q J I n &&n+ b I +g v„~+s(t ) I n&&n + b'
I

N, 8 n, 8

+g(~„+.„(t)In&&nI .

J is the oA-diagonal matrix element connectin nearest
neighbors (8) separated by lattice spacing a and n& is the
nondegenerate Wannier orbital associated with the site n.
d„ is the random-site energy representing static disorder.
e„(t) and V„„+s(t)are, respectively, the diagonal and the
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off-diagonal matrix elements, evolving stochastically in
time and are c-number variables. Such a time dependence
arises from the random modulation of crystal potential by
thermal lattice vibrations (phonons). Thus in our treat-
ment we have replaced the dynamical degrees of freedom
(phonons) by classical c-number variables. A Gaussian
approximation is made for such variables, which is valid
at high temperatures T~ea. Statistical properties of
these random variables are taken as

& v„,„+,(r )& -&e„(r)& -o,
&V„,„+,(r) V„,„+,(r')&-2l, b(r —r'),
&e„(r)e„(r')&-2l ob(r —r'), (2c)

and all other correlations zero. For the static disorder we
take

&~„),-0, (3a)

2I ) rr AfkeT/12a m A),
where QD is the Debye frequency. The Hamiltonian in
Eq. (1) has been studied extensively9 '4 in the absence of
static disorder, the motivation being the current interest in
the problem of charge and energy transport 's in molecu-
lar solids and also the diffusion of light atoms'7 absorbed
on solid surfaces. Essentially, in all these treatments one
deals with quantum-mechanical dynamics of quasiparti-
cles (electrons, excitons, etc.) coupled to phonons. In the
absence of static disorder one can show analytically that
in the long-time limit the motion of the quasiparticle is
diffusive and an exact expression for the diffusion constant
Do is obtained through the calculation for the mean-
squared displacements '2

J2 2I )

I o+3I i

Note that the diagonal and the off-diagonal fluctuations
contribute to the diffusion constant in qualitatively
different ways. The strength of the diagonal fluctuations
I o appears only in the denominator of the first term in Eq.
(4), indicating that the diagonal fluctuations disfavor the
diffusion. That is understandable from the fact that these
fluctuations create mismatch of the nearest-neighbor site
energies which in turn reduces the tunneling and hopping
probabilities. However, the strength of the off-diagonal
fluctuations I ~ appears in the denominator of the first
term and in the numerator of the second. These fluctua-
tions not only disrupt the coherent band motion but also
accelerate the particle motion favoring diffusion. One can
readily appreciate the latter in the limit J 0.

&~„~„.), -2W'b„„. . (3b)

Here & ) and & ), represent ensemble averages over
all the realizations of the dynamic and static randomness,
respectively. I ~ and I o can be expressed in terms of pho-
nons'o'2 (mean-squared displacements) and deformation
potentials A~ and Ao.

21 o-ir'MkeT/12''~nb

Next we incorporate the static disorder in the above
treatment by the following physical Ansatz. If the static
disorder is weak compared to the dynamic disorder, we
expect the quantum-coherence effects to become unimpor-
tant except at short distances and times. In such a situa-
tion an electron diffusing incoherently will see the spatial
randomness 6„'s time translated as an approximately
Gaussian random process e„'(r) with

&e„'(r )) 0,
&e„'(r )e„'(r ')

& -2b, 'zb(r r—'),
(5a)

(5b)

where z is the transit time between the neighboring sites
and is of the order of 0/W. Here W is the bandwidth of
the system given by W 2ZJ, with Z the coordination
number. We will return to the physical basis of this An-
sarz later. We would like to point out, however, that this
does not necessarily require that the Debye temperature
be large compared to the bandwidth (or the Fermi ener-
gy). It, however, does imply large electron-phonon cou-
pling, i.e., large depth of modulation. Now we can incorp-
orate the effect of static disorder on the diffusion constant
by the replacement I o I"o+dzz in Eq. (4). Thus the
bare diffusion constant Do gets modified to D given by

J2 2I iD a +
I"o+~zz+31"i 5 2 (6)

This is our central result. Now the Einstein-Nernst rela-
tion between conductivity cr(T) and the difFusion constant
for a degenerate system is

e(T) e'D(dn/dE)F, (7)

where (dn/dE)p is the density of states at the Fermi ener-
gy and is given by6 (dn/dE)F 1.15&2/Wa 3 for a half-
filled band and simple cubic lattice. From Eqs. (6) and
(7), we get

e(T) -C 1 +2a)t
(2Z) '(b'+ uor+ 3air )

where C 3.5(ez/ha) and we have introduced the dimen-
sionless variables t keT/W the reduced temperature,
Bz hz/Wz representing the static disorder, uo I

o/Skag

T
and a~ I"~/hkeT. In our model I o and I i are linearly
proportional to the temperature.

In Fig. 1 we have plotted the normalized resistivity
p~( C/cz), as a function of reduced temperature for
some typical values of b. We have chosen ao a~ 0.5
and various values of b ( 0.05, 0.08, 0.12, 0.16, and
0.19). From Fig. 1 we can see explicitly the Mooij-type
behavior. Strictly speaking, the plots are meaningful only
in the high-temperature regime as discussed earlier and
the extrapolation to zero temperature is obviously suspect.
It is to be noted, however, that while the assumption of
white-noise stochasticity, i.e., delta-correlated random po-
tential modulations in Eq. (2) indeed requires T HD, the
results for the dc conductivity are more general and hold
even for colored noise that obtains for lower temperatures
when the correlation time for the stochastic force is finite.
In fact what enters the dc conductivity is essentially the
integrated strength of the noise auto correlation func-
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FIG. l, Plot of normalized resistivity pN against reduced tem-
perature for various values of disorder 82 and u 0.5.

tion. ' This amounts to redefining our parameter h.
What really limits the domain of validity at low tempera-
tures is the requirement that the inelastic mean free path
I; (or LT ) be less than the coherence length g. This hap-
pens typically for temperatures less than ea, extending
thus the domain of validity of the present treatment to
lower temperatures for the high resistivity samples for
which ( is expected to be large.

From the expression (7) we can evaluate the critical
value of the conductivity (or RR) at which TCR changes
sign, i.e., at which (der/dT)T-n 0 One gets.

a, (r 0) (3.5/2Z)(e /ha)Q2a1/(an+3ai) . (9)

This shows that the Mooij value depends on many pa-
rameters (not universal). For typical values of parameters
a 2 A, a1 ao, and Z 6, we obtain the Mooij value of
RR p, -500 pQcm. Again we have used Eq. (8) extra-
polated to zero temperature to evaluate critical residual
resistance p, at which TCR changes sign. In fact we
could have used a higher temperature (room temperature,
say) as a reference temperature for the discussion of
Mooij correlation. This would be operationally more ap-
propriate for comparison with experimental results. For
the purpose of this discussion of the basic ideas, however,

we have found it more appealing to present our results in
terms of the extrapolared residual resistance, which is
well defined.

It is interesting to note in passing here that for many
highly resisitive but metallic transition-metal oxides and
related systems' where the transport is by a small density
(n) of holes in the otherwise half-filled band (odd-electron
Hubbard insulator), the holes can form a nondegenerate
system at operating temperature. In such a case the
relation (6) is replaced by usual Einstein relation
a~e nD/kaT. This gives resistance saturation at high
temperatures. This explanation is, of course, not applic-
able to metallic alloys and other highly resistive systems
where the degeneracy temperature is much higher.

We now return to our treatment of static disorder.
Consider the Brownian motion defined by a bare diffusion
constant Dn. The effect of weak static disorder varying
slowly (i.e., weak dilute limit) in space is readily treated
in an effective field approximation leading to a renormal-
ized, smaller diffusion constant. The problem is
equivalent to that of diffusion in a fluid in the presence of
random potential (irrotational) fiow. ' In the present
case, however, the disorder is fiuctuating on the atomic
length scale and local bare diffusion constant is not
defined. Motion on this length scale is essentially con-
trolled by the transfer matrix element J (or bandwidth
8') giving rise to a local oscillatory motion on the time
scale r- 6/W, superimposed on the slow diffusive motion
controlled by Dn. Now, the local oscillation will make the
expectation value of the disordered site potential 6 itself
fiuctuate on the short time scale r-5/W. This will be
seen by the diffusing particle as an additional time-
dependent disorder of strength 52s which simply adds to
I"n. It is reassuring to see that the form of our expression
(5) is similar to that obtained by Belitz and Schirmach-
er2n so far as the temperature dependence is concerned. It
seems to us that our offÃiagonal modulation corresponds
to their phonon coupling to the electron momentum densi-
ty.

In conclusion, we have shown that the Mooij correlation
can arise entirely from strong electron-phonon interaction
provided that one takes into account qualitatively
different roles of the diagonal and the offMiagonal modu-
lations. The static disorder is incorporated approximately
as translated into the dynamic disorder due to the incoher-
ence caused by the electron-phonon interaction. The
treatment is appropriate to the high-temperature regime
and does complement the low-temperature behavior de-
scribed by the incipient localization effects. However, the
range of validity of our treatment of static disorder needs
a closer analysis, which is in progress.
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