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Phase diagram for a random mixture of competing Ising anisotropies
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We study a ferromagnetic system in which each bond can be either of the Ising type (cr'cr') or
of anisotropic Heisenberg (Ising cr cr' lik-e) type, at random with respective concentrations (1 —p)
and p. A global phase diagram in the temperature-anisotropy-concentration space is obtained
within the Migdal-Kadano8' approximation. For the paramagnetically ordered transitions, our re-
sults for the critical temperature as a function of p agree very well with those obtained experi-
mentally for Fei -~Co~C12 2820.

Magnetic systems with random anisotropies have at-
tracted a great number of experimental and theoretical
investigations over recent years. In these systems the cou-
pling between any pair of neighboring spins can have
O(n) symmetry (n 1, 2, 3 correspond to Ising, XY, and
Heisenberg models, respectively) with n being either n ~ or
n2~ ni at random. When the order parameters for the
pure O(n2) and O(ni) phases are not orthogonal [e.g., a
random mixture of Heisenberg and Ising or of XY
(S'S'+SOS") and Ising (S S")couplings[ there is a crit-
ical line separating the paramagnetic from a single or-
dered phase for any finite concentration of less symmetric
bonds [O(n i) symmetry] and accordingly, the critical ex-
ponents are those of the pure O(n1) system. ~ Also, the
critical temperature increases as the concentration of
O(ni) bonds is increased from zero, since the concentra-
tion plays the role of an effective anisotropy parameter.
These results agree 5 with those obtained from
birefringence measurements on the random mixture
Mn~Fei-sF2, which can be approximated by a random
Heisenberg-Ising mixture.

Qn the other hand, when the order parameters for the
pure O(nz) and O(ni) phases are orthogonal [e.g., a ran-
dom mixture of Ising (S"S")and Ising (S*S')couplings;
or of XY (S"S'+SOS")and Ising (S'S') couplings] there
is a critical line separating the paramagnetic from three
ordered phases which meet at a decoupled tetracritical
point. s As the concentration p of one of the components
of the mixture, say that of O(n1) bonds, increases one
finds the following low-temperature phases: O(n2), ob-
lique or mixed (in which the order parameter is at an an-
gle, different from 0 or n/2, with respect to the pure order
parameters) and O(ni). For this reason, one says these
anisotropies compere. Also, the critical temperature
T, (p) displays a (sharp) minimum at the tetracritical
point (see, e.g., Ref. 6). Several measurements on the
competing antiferromagnetic Ising-Ising mixture (Ref. 7)
Fe~ —~Co~- C12 2H20 agree with the above qualitative
predictions, especially with respect to the sharpness of the
transitions from both Ising phases to the oblique (mixed)
phase. In the competing random XY-Ising mixture, how-
ever, the low-temperature transitions involving the mixed
phase are smeared in some cases, ' which is attributed
to random-field effects9(b) or to a residual spin-orbit in-
teraction.

The purpose of this work is to investigate the problem
of competing random anisotropies of the Ising-Ising type
by a position-space renormalization-group (PSRG)
method. In this way, one is able to study the phase dia-
gram when one of the components of the mixture is de-
scribed by anisotropic Heisenberg couplings. This ap-
proach is then complementary to previous " e expan-
sion' studies in the sense that more direct comparison
with experimental data is possible.

We consider the following Hamiltonian (in units of
-kT):

g Kl [(1—b.")cr "cr".

(i,j)
+(1—[a;, ( )crfo,'+(I+a;, )o cr,'],

where the sum runs over nearest-neighbor pairs of spins
on a simple-cubic lattice and the cr's are Pauli matrices.
Eil and d;J are the exchange-coupling and anisotropy pa-
rameter, respectively, both taken to be random variables
governed by the following distribution

p(z;, ,~;,)- [pa(~;& -~)
+(1 -p)B(~;, —I)lb(X;, —Z), (2)

without correlation between bonds. One should note that
if only cr"o" and o'o' couplings were considered in (1)
the parameter space would not be invariant under renor-
malization-group (RG) iterations, since oror couplings
would be generated.

Within the Migdal-Kadanoff (MK) bond-moving ap-
proximation' '~ in three dimensions, a RG transforma-
tion by a scaling factor b 2 is generated by first combin-
ing two bonds "in series" (decimation), and then combin-
ing four decimated bonds in parallel, in such a way that
the partition function is preserved, that is, '

exp(P ii ) Tr2exp(P iz3), (3)

where &13 and Pi23 correspond to the Hamiltonian (1)
being written (with j=i+ I ) for chains with 2 and 3 spins
with respective pairs of cou~itngs (E' ',5 ' ) and (Ki,d,i,
/ 1,2) as given by (2); P ~~3 also contains the usual' ad-
ditive constant Eo&'»; Tr2 stands for the trace over the a2
variables and the superscript (s) refers to "series" com-
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bination. The use of b 3, while making the process of
configurational averaging much more time consuming in

numerical calculations, does not improve the results sub-
stantially.

The recursion relations are obtained' by first expand-
ing the left-hand side of Eq. (3)

exPP(3 cl +b(3o(o3+c(3cF(03+d(30'(o3, (4)

and comparing the two matrix forms of exp& (3 [one ob-
tained from (1) and the other one from (4), expressed on
the basis that diagonalizes EE~(c~), see Ref. 15 for details1
we relate analytically Kg~), K ', and h(' to a', bI3, cI3,
alld d(3'.

Ko" —,
' In[[(a' —bI3)'-(ci3+d I3)'1

lc [(a'+b I3) 2 —(c13 d (3) 'l1

3 r

(a'+&l3)+ e(3+ di3
ill

(o bI3) ~ c(3+'dI3,
(5b)

Qn the other hand, we also expand R(23 as

exp(((t((23) a+ g (b((o;"o("+.c,(cr; o(+d~(o,'o(r), (6)

where the sum runs over all sites of the three-site chain.
The relations between c(, b;(, etc. , and (K(,h(, l 1,2) can
be obtained following the same procedure outlined above
for exp(CE jg) but in this case it can only be done numerical-
ly. '3 Thus, taking (4) and (6) into (3) and performing
the partial trace one gets a' 2a, bI3 2b(3, cI3 2e}3,
and di3 2d(3, which through (5), defines the desired re-
cursion relations K )(K(,h(, l 1,2) and d, (')(K(,b(,
l 1,2) for the decimated bond.

The next step consists in combining four decimated
bonds in parallel the K(')'s simply add, giving rise to a
renormalized bond K for a given configuration of original
bonds (K(,h(, l 1,8); the renormalized anisotropy b,

turns out to be an "average" of the decimated 6 ' weight-
ed by the K")'s.

The above steps are followed for each configuration of
the eight original pairs (K(,()() in the cluster. Then, the
renormalized distribution, as given by's

averages are preserved:

&K"(1 —5"))p &K"(1 —b"))p, (( 1,2,
&K(1+8));-&K(I+8)&,

where the subscripts refer to averages weighted by the dis-
tribution functions given by Eqs. (7) and (8). Equations
(9) then define K', /L', and E(' as (implicit) functions of K,
6, and E(. There is certainly a degree of arbitrariness in

the choice (5); other choices were tried without major
qualitative changes in the resulting phase diagrams.

The RG equations (9) are solved numerically for fixed
points and exponents in the usual way,

' and the critical
surface can be obtained by iterating the RG transforma-
tion. We found the following fixed points (I/K, b, ,p*)
and exponents: (a) Isin -ZZ at (7.66, 1, 0) with vT

1.07 (cf. 0.63 by series s) and a negative crossover ex-
ponent &= vz/v&, (b) Ising-XX at (7.66, —1, 1) with the
same exponents, and (c) Heisenberg at (2.9, 0,1) with
v 1.39 (cf. 0.72 by series'9) and p 1.56 (cf. 1.25 by
series2o). Figure 1 shows the resulting phase diagram in
the temperature-anisotropy-concentration space. As one
crosses the critical surface of Fig. 1, the Ising fixed points
l(X) and E(Z) determine the critical behavior at each
side of the line CH, which in turn is dominated by the
Heisenberg fixed point H.

Cross sections of Fig. 1 for several values of the anisot-

ropy parameter are shown in Fig. 2. Near each "pure"
limit, the behavior is similar to ordinary dilution ' in the
sense that the critical temperature decreases upon dilu-
tion. We can understand this by noting that a small
amount of, say Ising-XX bonds embedded in a sea of
Ising-ZZ bonds, will inhibit the spread of ZZ correlations,
just as if they were absent. When XX' and ZZ bonds are
present in comparable proportions, however, competition
sets in and the behavior is different from dilution. This
competition is marked by sharp minima in Fig. 2 (i.e., the
point where, for a given 6, the three curves meet) corre-
sponding to the line CH in Fig. 1. While the temperature

P(K,Z) Q [dK(dh(E'(K(, a()lb(K —K)b(E —l3),

(7)

is no longer of binary form, and gets more complicated as
the numbc:r of RG iteratioos increases. To avoid this un-
controllable proliferation of b functions, one usually
resorts to a truncation scheme'7 that keeps the renormal-
ized distribution in binary form,

E"(K —5)- [E('b(E —~')

+(I-E ')b(E- I)lb(K-K'), (8)

with El', 5', and K' chosen in such a way that the following

FIG. 1. Phase diagram (schematic) in the temperature
(k((T/J) anisotropy. (d,), concentration; p, space for a compet-
ing random Ising-Ising mixture. Critical fixed points are denot-
ed by (+ ), and phase attractors by (a).
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FIG. 2. Sections of the phase diagram (Fig. l} for fixed

values of the anisotropy d. Numbers on the right-hand side
represent the values of 4 for each curve.

at which these minima occur hardly varies with 6, there is
a strong dependence of their location with the concentra-
tion: mixtures of Ising (ZZ) and weakly anisotropic sys-
tems (i.e., small

~
5 ), d &0) only sustain anisotropic or-

dering up to a few percent of Ising (ZZ) bonds.
In Fig. 3 we compare our results with experimental data

from susceptibility and specific-heat measurements7 ' on
the antiferromagnetic system Fe~ «CO«Clq 2H20; the
comparison is valid in this case, since there are no frustra-
tion effects in the latter. The transition between paramag-
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FIG. 3. Reduced critical temperature as a function of the
concentration of Ising-XX bonds: full curve, experimental re-
sults for Fc~ «Co«C12-2H20 (Ref. 7};dashed curve, present re-
sults vrith d —1; dash-dotted curve, present results witha- —0.8.

netic and ordered phases is very well described by our ap-
proach, indicating that no other mechanisms are responsi-
ble for this transition apart from those included in the
model. Since the experimental and theoretical curves are
normalized at p 0 (Ising-ZZ limit) one can attribute the
discrepancy in the opposite limit (p I) to different
values of the exchange couplings in these two limits.

Our results fail to agree with available predictions for
the low-temperature transitions. We did not find any
mixed phase separating the two Ising regions, which are
separated by a single curve instead. This unsatisfactory
result of our calculations can be traced back to the clus-
ters used, and not to the MK approximation or to the
truncation of the renormalized distributions. As pointed
out by Castellani, di Castro, and Ranningerz2 in the con-
text of the MK approximation, when three- and four-spin
clusters are decimated into a two-spin cluster (scaling fac-
tors b 2 and 3, respectively), the XY symmetry of the
ground state is lost; this behavior persists in a different
cluster approximation, reinforcing the idea that this
drawback is due to the scaling into a two-spin cluster and
not to the MK approximation. It is well estab-
lished, ' '22 z3 however, that this drawback only afl'ects the
low-temperature behavior, while critical surfaces attract-
ed by finite temperature fixed points are very reliable, as is
the case of the upper boundary in Fig. 3. Since the mixed
phase in the present case should be governed by a zero-
temperature fixed point corresponding to the simultane
ops ordering along X and Z (spin) directions, one cannot
expect a fair description of such an XZ ordering, similarly
to what happens for the usual XYordering. With respect
to the truncation of the renormalized distributions, we

would like to stress that the resulting phase diagram is
rather insensitive to which averages were preserved; this
indicates that the truncation scheme plays no significant
role in the absence of the mixed phase.

To sum up, we obtained a phase diagram for the com-
peting Ising-Ising random mixture which agrees very well
with experimental data for Fe~-«Co«C12 2H20 in what
concerns the paramagnetic-ordered transitions; this indi-
cates that these transitions are not influenced by random-
field effects or by off-diagonal couplings. Possibly the
presence of a mixed phase governed by a zero-temper-
ature fixed point could only be detected by a PSRG
framework that (i) distinguishes XY from isotropic
Heisenberg ordering at T 0, which as far as we know,
has not been set up yet and (ii) incorporates geometrical
features such as the "percolation" of XXand ZZ clusters.
We hope this work stimulates efl'orts along these direc-
tions. Similar results were obtained for an XY-Ising
mixture, and will appear elsewhere.
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