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Transport coef5cients of Lennard-Jones Suids:
A molecular-dynamics and eiTective-hard-sphere treatment
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This study evaluates the shear viscosity, self-di8'usion coeScient, and thermal conductivity of the
Lennard-Jones (U) Quid over essentially the entire Lid range by molecular-dynamics (MD) com-
puter simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity,
homogeneous shear nonequilibrium MD (NEMO) is also employed and compared with experimen-
tal data on argon along isotherms. Reasonable agreement between GK, NEMO, and experiment is
found. Hard-sphere MD modi5ed Chapman-Enskog expressions for these transport coe5cients are
tested with use of a temperature-dependent e8'ective hard-sphere diameter. Excellent agreement is
found for shear viscosity. The thermal conductivity and, more so, self-diffusion coeScient is less
successful in this respect. This behavior is attributed to the attractive part to the LJ potential and
its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for
these transport coef6cients are derived solely in terms of the thermodynamic properties of the LJ
Quid. Also similar expressions for the activation volumes are given, which should have a wider

range of applications than just for the LJ system.

I. INTRODUCTION

This work involves an evaluation of the shear viscosity,
self-diffusion coefficient and thermal conductivity of the
Lennard-Jones (LJ) fiuid over a comprehensive range of
its phase diagram. In the main equilibrium molecular dy-
namics (EMD) is used to obtain these transport
coefficients (TC) using Green-Kubo (GK) formulas. '
However, the method of homogeneous shear nonequi-
librium molecular dynamics (NEMD) is also used for the
shear viscosity, ' on many of the state points to provide
corroboration. Favorable comparisons with experimental
values for the viscosity of argon are also made, using the
Michels I.J parameters. '

Another objective of this work is to test a model for
molecular ffuid transport coefficients based on an as-

sumed underlying hard-sphere quid. This model is de-
scribed in Sec. V. To predict all transport coefficients it
requires essentially only one semiempirical parameter
along each isotherm. Thus, for the LJ fiuid we require a
temperature-dependent efFective hard-sphere diameter.
We show that this has a sound physical basis for the
shear viscosity but, at low temperatures there are depar-
tures from this model for the thermal conductivity and at
high temperatures for the self-difFusion coefficien.

&L EQUATIGNS GF MOTION
AND IMPLKMKNTATI(ON

In this section the equations of motion used to deter-
mine the transport coefBcients are described with em-
phasis on the algorithmic implementation.

The equations of motion for zero total momentum and
constant kinetic energy X-molecule dynamics are

q =p /rn

p=m q' —aP,
S

EC = g P;/2m,

(2)

(3)

E =(Eo —K)/w, (4)

q„+l =q„+P„+~Z2h lm, ,

Pll + ~ yp
= A P& ~ yp+Btrt q+ it +0( it )

P+ = ( P+ i yg + 2 rrt q+ /t )C +0 ( lt ) (8)

de
qlll g (ql'J /A J')'

j=1
J+i

where

qJ ~

3 =1—ah /(1+alt /2),

Ko ——(3N —4)ks T/2 .

Here a is a Gaussian multiplier and m is the molecular
mass, which are all the same here.

Using q„as the generalized co-ordinate of a particle at
time t„=nb, where lt is the magnitude of the time step
Then the Verlet "leap frog" algorithm for these equations
of motion is
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8 =1—ah/(2+ah ),
C= 1/(1+ah/2),
a=D/(E+F),
D =2(v/2m+ p 6—/2r),
E=v hp—/2+hBI2r,

(12)

(13)

periodic boundary conditions. Again, omitting the parti-
cle subscript i unless necessary, '

(31)

(16)
q =P /teal +Pqy X, (32)

y=dq /dz .

The equations of motion (1) and (2) are replaced by
(15)

I" =[v hv(—p 8—/r)+h (III/4+Bv/4')]'/

p= X pm'qm ~

N
v= g p'„;/m,

(17)
P=fPl q —QI @

X —Ap,

a = (p ye+—(v 6) /—2r) Iv,
N

K= g p„~p„y, /m

p. =C[P. i/2+(mq. r—P.,X}h/2]

(33)

(34)

(35)

(36)

p~ =p~ ) y2+ 2
Nl q~ A

pn+1/2 pa —I/2™qnh

6=(3X—4}k Ts.
A better estimate of the true velocity at t„ is given by

V„=(aq„+,+bq„+cq„,+dq„2)/h,

(20}

(21)

(22)

(23)

p, v and 8 are defined in (18), (19), and (27), respectively.
Self-consistency between Eqs. (34)-(36) is obtained by
iteration with a initially equated to zero. As

p„=C(P„,/2 +mq„~h/2),

then a cannot be written in the closed form of Eq. (14)
when j'&0.

(25)

and substituting Eqs. (24) and (25) in Eq. (23), givtng
a = —,', b = —,', c —1, and d = —,'. Hence,

V„=(2P„~)/2+5P„)/2 —
Ppg 3/2)/6m+0(h ) .

(This step adds negligible time to the simulation because
the P„3/2 have already been evaluated. )

The system can be driven to a desired temperature T
by substituting in Eqs. (15)-(17)a new deSnition for 8 in
place of that given by Eq. (22), viz. ,

6=BOT„T/TI, (27)

where a„b, e, and d are constants obtained from the Tay-
lor expansion,

q ~k=q +V hk+1q hk+6q 4+0(hk}
where

III. SIMUI.M'IOX DKTAKS

The EMD and NEMD simulations were performed
with the algorithms supplied in Sec. II. The remaining
features of the EMD and NEMD FoRTRAN programs are
given in recent articles. ' First we consider EMD. The
self-diffusion coefftcient D is obtained from the mean-

square displacements and equivalent Green-Kubo formu-
la.'

I

D= —,
' lim f dt( V(t) V(0))f( ,II),

I ~ac 0
C

where the V, are defined by Eq. (26};strictly,

f(t, t, )=l tlt, . —

A route to D using essentially Eq. (38) that is economical
on computer memory is described below. '

Define

S
I = g ( —1)'V„, ,

80——(3N —4)ks T,

T„= z P„;/3m(E -', )kal, —
i =1

(28)
then

l'D=, lim g f dt(I (0)Ijt))f(t, t, ) .
3X

(29)

(40)

(41)

using Eq. (8) and

using Eq. (23) and (. . . ) denotes a local time average.

The factor of ( —1)' in Eq. (39) ensures that the cross-
velocity correlation function for finite N does not contrib-
ute to the I auto correlation functions; only the velocity
auto correlation function component contributes to
(I(0)I(t)). Tllc shear vlscoslty 1s dc11ved floII1 tllc off-

diagonal component of the pressure tensor, "

A constant strain rate y is applied to the system using
SLLOD homogeneous shearing and Lees-Edwards

V
lim f dt(P t3(0}P tt(t)) f(t, t, ),

kqT I,— o

where Vis the volume of the MD cell and

(42)
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P p
——— g mV;Vp;

ii =1

i=1 j=1
(j~i)

llllj Jplj d4
q,. dr

cc~P, (43)

and q; is the cr-Cartesian component of q;. The "true"
velocity components V; and Vp; are taken from Eq. (26).
The thermal conductivity A, is also obtained from a
Green-Kubo (GK) relationship'

, I dt&J (0)J (t))f(t, t, ), (45)
kp T2

9atj ~at qaj

N

'-=2V &
N N7xij9yij @,

j J giJ j j
(j~i ) (j@i)

( " ")Wxij 0zij
lj

IP iJ

(46)

The GK integrals are integrated using Simpson's rule.
This is essential for the large time steps chosen here.

dynamical processes are Gaussian at times comparable to
those required to assign the transport coefficients,
then

cr'E'[z(t)] & nt & z ) /(t„r)'", (53)
The conMence limits of the mean of variables in a MD

simulation can be evaluated taking into account the par-
tial correlation between values at successive time
steps. ' ' Consider a property X, which could be pres-
sure or stress for example, then the standard deviation of
the time average of X, cr, is defined by

(54)

where n =4 or 2 as given below and where

z(t)=a f'dt'&z(0)z(t')),
0

A is a constant and r is a correlation time (=21/G„).
For self-dilfusion,

&SD (&X2) &X)2)i/2

and the standard error, 0'~', by
' 1/2

~SE' ~So
(N, —1)

where N, is the number of time steps and

(47)

(48)

and

o [D (t)] &4t &D ) /(Nt„r)'",

D(t)= f dt'& V.(0)V.(t')) .

Similarly for shear viscosity, '

osE'[q(t)] &2t &q &/(t„.r)'j2 . (57)

(49)

where

o' =«X' &-&X„»''" . (50}

cr (rI}=(2pk T&rt)/Nt„)' y (52)

where t„ is the duration of the simulation. For exam-
ple, using p=1.0, T=2.0, q=3, j'=0. 1, %=256, and
hi=0. 02 one requires 5200 time steps to obtain 5%
confidence in the shear viscosity. The collective property
transport coeScients, Z, (=rl or A, ) are also evaluated
here by EMB using the Green-Kubo integrals. In this
case the error estimates are less well de6ned. If the
reasonable assumption is made that the signi6cant

X~ is the average of property X over N„consecutive
time steps (N„ is 200 time steps here). The sequence of
Nz time steps are contiguous. Therefore, the "true"
standard error, cr, for the shear viscosity in continuous
shear NEMD is given by

(rl)=o (P„)ly .

Another estimate for o (rl) by NEMD was derived by
Gillan'

Note that the standard error for rI(t) is independent of N.
The only advantage in increasing the size of the MD cell
is to eliminate X dependencies introduced by the periodic
boundary conditions. To obtain 5%%uo accuracy in rl using
t =0.5, v=0.2, and At=0. 02 I.J reduced units then
100000 time steps are required.

IV. SIMUI, ATION RESULTS

Using the methods described in Secs. II and III, com-
putations were performed on cubic MD cells containing
108, 256, 500 rnolecules and for the NEMD simulations
256 and 2048 Lennard-Jones (12-6) molecules at LJ re-
duced densities greater than 0.2 and temperatures 0.7
5 kT/e 5 10. The production simulations, during which
the viscosity and related properties were accumulated,
were conducted for Ca; 4&10, 1.5X10, and 1.5X10
time steps for X =108, 256, and 500 at equilibrium. The
NEMD simulations ran for approximately 8&10 and
2X 10" for X =256 and 2048. The time steps were 0.022
p/T'; a prescription incorporated within the MD pro-
gram. Derived quantities reported in this work are mea-
sured in LJ reduced units of z for energy, m for mass, and

crLj for distance. Hence for temperature s/kjr (kp is the
Boltxmann constant), o Lj(m /e )

' for time,
(m /e) ' /crLj for the shear rate, c, /o Lj for the pressure
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TABI.E I. Thermodynamic, mechanical, and dynamical aspects of MD simulated LJ states.

P
0.835
0.835
0.848
0.848
0.848
0.864
0.884
0.884
0.916
0.916

0.801
0.864
0.864
0.864
0.884
0.884
0.916
0.916

0.916
0.916

0.400
0.679
0.679
0.679
0.700
0.731
0.731
0.769
0.769
0.821
0.821
0.821
0.848
0.88
0.91

0.916
0.916
0.916

0.4000
0.4000
0.6000
0.6000
0.6000
0.7000
0.8000
0.8000
0.8600
0.9000

0.916
0.916

0.3000
0.4000
0.5249
0.5708
0.6178
0.7636
0.8630

0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72

0.81
0.81
0.81
0.81
0.81
0.81
0.81
0.81

0.90
0.95

1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06

1.1
1.1
1.2

1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35

1.4
1.4

1.4562
1.4562
1.4562
1.4562
1.4562
1.4562
1.4562

108
256
108
256
500
256
108
256
108
256

108
108
256
500
108
500
108
256

256
108

256
108
256
500
256
108
256
108
256
108
256
500
500
500
500

108
256
108
256
500
256
256
500
500
108

—4.99
—4.98
—5.08
—5.05
—5.05
—5.16
—5.31
—5.28
—5.51
—5.60

—4.54
—4.94
—4.92
—4.91
—5.06
—5.07
—5.57
—5.46

—4.94
—4.84

—1.37
—3.14
—3.13
—3.13
—3.27
—3.49
—3.48
—3.74
—3.73
—4.06
—4.04
—4.03
—4.18
—4.34
—4.47

—4.43
—4.39
—4.13

—0.72
—0.69
—1.98
—2.01
—2.01
—2.66
—3.23
—3.23
—3.52
—3.71

—3.64
—3.60

0.17
—0.52
—1.32
—1.62
—1.92
—2.81
—3.31

—0.17
—0.10
—0.00

0.14
0.12
0.35
().59
0.74
0.26
0.65

—0.05
0.85
0.96
0.99
1.25
1.12
0.44
0.75

2.90
3.07

—0.01
0.04
0.06
0.06
0.17
0.38
0.40
0.76
0.79
1.53
1.58
1.60
2.16
2.97
3.87

4.14
4.3 1

4.98

0.14
0.16
0.46
0.44
0.44
1.09
2.57
2.57
4.04
5.22

6.12
6.26

0.22
0.23
0.39
0.53
0.75
2.30
4.59

g f

22.6
22.8
23.8
24.1

24. 1

25.7
27.6
27.9
28.4
30.0

20.6
26.6
26.9
27.0
28.9
28.$
29.6
30.1

34.7
35.0

4.5
14.1
14.1
14.1
15.4
17.4
17.4
20.3
20.4
25.0
25.2
25.2
28.1

32.0
36.1

37.1

37.5
38.8

4.58
4.64

11.3
11.3
11.3
17.1
25.7
25.7
32.7
38.0

41.0
41.3

2.71
4.72
8.46

10.3
12.6
23.0
33.9

0.65
0.76
0.90
1.6
2.7

2.8
3.05
3.2
3.5
3.4
3.8
4.6
4.8

y 18.0
7.5

2.2
3.3
3.65
3.6
3.9
3.9

)30.0
2.3

5.1

4.9

0.37
1.1
1.1
1.1
1.2
1.36
1.3
1.7
1.7
2.2
2.3
2.4
2.67
3.3
4.1

4.1

4.2

0.39
0.37
0.80
0.79
0.84
1.2
1.9
2.0
2.7
3.2

3.6
3.7

0.30
0.48
0.64
0.78
0.89
1.6
2.5

0.65
0.75
0.87
1.6

0.031
0.031
0.026
0.029
0.029
0.023
0.018
0.019
0.012
0.013

0.045
0.028
0.029
0.031
0.023
0.022
0.002
0.003

0.021
0.023

0.31
0.11
0.12
0.12
0.12
0.089
0.091
0.073
0.079
0.055
0.059
0.060
0.052
0.042
0.035

0.030
0.033
0.040

0.38
0.40
0.20
0.20
0.21
0.14
0.090
0.094
0.063
0.048

0.047
0.050

0.69
0.45
0.28
0.23
0.21
0.11

0.066

6.4
6.7
6.7
6.9
6.5
6.8
7.2
7.4
7.4
8.2

5.8
6.9
7.0
7.6
7.5
7.7
7.1

7.7

8.0
8.4

1.9
4.1

3.9
4.2
44
4.75
4.95
5.6
5.5
6.8
6.4
6.7
7.0
8.0
9.2

8.8
8.9
8.9

1.8
1.8
3.5
3.4
3.4
4.6
6.4
6.3
7.7
8.4

9.1

8.9

1.45
1.8
2.6
3.0
3.6
5.95
7.6

1,8

6.3
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pc

TABLE I. (Continued).

0.8630
0.8630
0.8969
0.8969
0.8969
0.9112
0.9112
0.9380
0.9380
0.9380
0.9618
0.9832
0.9933
1.0017

0.916
0.916
0.916

0.2000
0.3000
0.4000
0.5000
0.6000
0,7000
0.8010
0.8010
0.8010
0.8724
0.9248
0.9248
0.9248
0.9659
0.9659
1.0004
1.0153
1.0153
1.01S3
1.0236
1.0290
1.0367
1.0391
1.0415
1.0438
1.0468

0.3000
0.5000
0.5000
0.6000
0.6000
0.8000
1.0400

0.916
0.916

0.3000
0.4000
0.5000
0.6594
0.7195

1.4562
1.4562
1.4562
1.4562
1.4562
1.4562
1.4S62
1.4562
1.4562
1.4562
1.4562
1.4562
1.4562
1.4562

1.5000
1.7000
1.7000

1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627
1.8627

1.95
1.96
1.99
2.0000
2.0000
2.0000
2.0000

2.1

2.3

2.45
2.5138
2.5138
2.29
2.5138

256
256
256
256
256
256
108
256
500
256
108
256
500
108
256
256
108
256
500
256
256
256
256
2S6
256
256

256
108
256
108
256
500
108

256
256
256
108
256

—3.28
—3.27
—3.44
—3.39
—3.39
—3.48
—3.43
—3.56
—3.49
—3.50
—3.53
—3.57
—3.58
—3.58

—3.35
—2.88
—2.84

1.44
0.83
0.21

—0.41
—1.03
—1.60
—2.11
—2.09
—2.08
—2.34
—2.49
—2.45
—2.43
—2.54
—2.46
—2.44
—2.53
—2.42
—2.42
—2.40
—2.39
—2.39
—2.38
—2.39
—2.38
—2.38

0.99
—0.26
—0.18
—0.79
—0.75
—1.77
—2.12

—1.84
—1.36

1.83
1.34
0.77

—0.56
—0.37

4.66
4.69
5.72
5.92
5.87
6.27
6.48
7.40
7.67
7.62
8.89

10.0
10,6
11.1

6.86
7.93
8.04

0.28
0,41
0.58
0.88
1.46
2.60
4.66
4.70
4.73
7.05
9.27
9.40
9.47

11.5
11,8
14.2
14.8
15.3
15.2
16.0
16.4
16.9
17.1
17.3
17.6
17.7

0.46
0.99
1.04
1.72
1.75
S.24

17.17

10.35
11.39

0.71
1.12
1.72
3.06
4.80

34.1

34.2
38.7
39.1
39.0
40.9
41.3
45.3
45.8
45.7
50.2
54.3
56.3
58.1

42.4
44.5
44.7

1.38
2.91
5.18
8.44

13.1
19.9
29.8
29.9
29.9
39.4
47.8
¹8.0
48.1

55.6
56.2
63.9
66.5
67;4
67.3
69.5
70.9
72.6
73.3
73.8
74.7
75.2

2.98
8.6
8.72

13.6
13.7
30.8
7¹.S
49.1

SI.O

3.31
5.99
9.83

18.7
25.1

2.7
2.7
3.3
3.3
3.3
3.7
3.7

44
4.4
5.0

6.3
6.75

2.1

2.1

2.1

2.9
3.6
3.6
3.6
4.7
4.7
5.8
6.3
6.3
6.3
7.0
7.3
7.9
7.95
8.5
8.5
8.4

1.15
1.4

2.7
2.7
3.0
3.3
3.3
3.3
3.6
4.0
4.0
4.25
4.7
5.6
6.5
7.3

3.5
3.3
3.7

0.3
0.35
0.47
0.61
0.88
1.2
1.9
2.0
2.0
2.7
3.2
3.44
3.45
4.2
4.3
5.35
5.9
6.2
6.4
7
6.7
7.4
7.4
7.5
8.2
8.0

0.35
0.62
0.62
0.85
0.85
1.8
6.3

3.2
3.3

0.42
0.49
0.67
1.1
1.3

3.3

3.6

4.3

5.3

6.3
6.8

0.83
1.2

1,9

2.7

3.5

44
5.7

6.2

6.4
6.9
6.9
7.3
8.2
8.2
7.9

0.36
0.48
0.65

1.4

0.071
0.069
0.054
0.062
0.059
0.051
0.058
0.043
0.047
0.050
0.038
0.033
0.031
0.028

0.053
0.061
0.061

1.3
0.78
0.53
0.37
0.26
0.184
0.12
0.12
0.13
0.095
0.06
0.071
0.072
0.052
0.056
0.049
0.038
0.043
0.043
0.044
0.040
0.03
0.035
0.037
0.034
0.033

0.81
0.36
0.40
0.29
0.30
0.15
0.036

0.087
0.099

0.97
0.77
0.46
0.25
0.23

7.9
8.3
8.5
8.9
9.0
9.0
9.6
9,8

10.3
10.5
10.7
11.3
11.2
11.3

9.1

9.4
10.0

1.3
1.5
2.1

2.6
3.4
5,0
6.7
7.0
7.4
8.9
9.9

10.2
10.0
11.2
11.8
12.1

11.7
13.1
12.7
12.8
12.9
14.0
13.9
13.9
13.4
13.4

1.6
2.6
2.6
3.6
3.7
7.2

12.8

10.4
10.4

1.6
2.3
3.0¹.75
6.1

1.7
2.9

3.8

7.3
13.2



DAVID M. HEYES 37

TABLE I. (Continued).

0.7653
0.8028
0.8028
0.8344
0.8344
0.8344
0.8344
0.8623
0.8623
0,8623
0.8873
0.9093
0.9093
0.9200
0,9200
0.9200
0.9200
0.9302
0.9302
0.9486
0.9665
0.9665
0.9665
0.9831
0.9986
0.9986
0.9986
1.0135
1.0135
1.0135
1.0397
1.0397

0.3000
0.4000
0.5000
0.5463
0.6374
0.6993
0.7469
0.7469
0.7856
0.8183
0.8468
0.8724
0.8951
0.8951
0.9159
0.935S

0.9534
0.9700
0.9900
1.0100
1.0100
1.0100
1.0300
1.0300
1.0600

1.1300
1.1300

2.5138
2.5138
2.4964
2.4884
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5008
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138
2.5138

2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974
2.6974

2.74
2.74

256
256
500
108
108
256
500
108
256
500
256
256
500
108
256
500
500
256
500
256
108
256
500
256
108
256
500
108
256

108
256

256
256
256
256
256
256
256
500
256
256
256
256
256
500
256
256
256
256
256
108
256
500
256
500
108

—0.55
—0.67
—0.70
—0.84
—0.79
—0.75
—0.74
—0.84
—0.81
—0.80
—0.83
—0.84
—0.84
—0.91
—0.85
—0.84
—0.84
—0.84
—0.87
—0.83
—0.89
—0.81
—0.81
—0.79
—0.83
—0.77
—0.74
—0.80
—0.73
—0.73
—0.72
—0.63

2.18
1.65
1.08
0.83
0.36
0.08

—0.10
—0.09
—0.23
—0.31
—0.37
—0.41
—0.42
—0.41
—0.43
—0.40
—0.38
—0.35
—0.30
—0.32
—0.26
—0.24
—0.18
—0.17
—0.22

0.43
—0.87

6.00
7.21
7.18
8.29
8.36
8.43
8.43
9.54
9.61
9.64

10.9
12.1
12.1
12.5
12.7
12.7
12.7
13.4
13.3
14.5
15.5
15.8
15.8
17.0
18.0
18.2
18.25
19.2
19.4
19.5
21.5
21.8

0.82
1.27
1.94
2.38
3.61
4.83
6.05
6.06
7.27
8.48
9.67

10.9
12.1
12.1

13.3
14.6
15.9
17.1
18.7
20.1

20.3
20.4
22.2
22.2
25.8

33.6
26.2

30.0
34.7
34.6
3&.9
39.0
39.2
39.1
43,3
43.4
43.5
47,8
51.8
51.7
53.5
53.9
53.8
53.8
55.9
55.7
59.8
63.2
63.7
63.7
67.5
70.8
71.2
71.4
74.6
75.0
75.1

81.7
82.2

3.47
6.22

10.2
12.6
18.6
24.0
29.0
29.0
33.6
38.1

42.3
46.S
50.6
50.7
54.6
58.8
62.7
66.5
71.4
76.0
76.4
76.5
81.9
81.9
91.9

1.6
1.9
1.9
2.1

2.1

2.1

2.1

2.45
2.45
2.45
2.7
2.9
2.9
3.1

3.1

3.1
3.1
3.2
3.2
3.5
3.8
3.8
3.8
4.1

4.7
4.7
4.7
5.3
5.3

0.78
1.07
1.3
1.5
1.5
1.8
2.1

2.3
2.6
2.8
2.8
3.1

3.3
3.6

FCC

1.8
2.0
2.1

2.1

2.1

2.1

2.3
2.3
2.4
2.6
2.95
3.0
3.0
3.2
3.2
3.2
3.2
3.1

3.5
3.7
3.8
3.95

44
4.6
4.6
5.0
5.0
5.2
5.95

0.44
0.53
0.66
0.79
1.06
1.2
1.5
1.5
1.7
2.0
2.2
2.2
2.7
2.8
3.0
3.4
3.5
3.5
4.1

4.6
4.5
4.S
5.0
5.2
5.6

1.6
1.9

2.1

2.7
3.0

3.0

3.2

3.6

3.9

4.1

4.6

6.0

0.79
1.02
1.3
1.5

1.8
2.0
2.3
2.6
2.7

3.0
3.2
3.6
4.1

4.2

5.3

0.19
0.18
0.17
0.15
0.15
0.15
0.16
0.14
0.14
0.14
0.12
0.12
0.12
0.10
0.11
0.11
0.11
0, 10
0.10
0.097
0.084
0.089
0.089
0.078
0.071
0.073
0.078
0.065
0.066
0.067
0.056
0.059

0.98
0.71
0.50
0.47
0.33
0.26
0.22
0.215
0.20
0.18
0.15
0.13
0.127
0.133
0.11
0.11
0.106
0.098
0.086
0.074
0.079
0.077
0.071
0.073
0.058

0.038
0.00

6.45
7.2
7.6
8.2
7.7
8.4
8.4
8.7
8.4
9.2
9.5

10.4
10.4
10.0
11.0
11.1
10.8
10.8
10.4
11.0
11.1
11.9
11.9
12.6
12.2
12.8
12.6
12.9
13.1
13.2
14.1
13.8

2.0
2.4
3.2
3.7
4.6

6.1

6.3
6.8
7.6
8.8
8.9
9.6
9.2

10.5
10.8
12.2
11.9
12.6
12.8
13.0
13.4
13.6
14.0
14.6

16.4
16.1
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0.916

yb

3.0 0.28 14.8

TABLE I. (Continued}.

57.3 3.1

0.5463
0.6374

0.3000
0.4000
0.5000
0.5463
0.6374
0.8183
0.8468
0.8468
0.8724
0.8951
0.9159
0.9355
0.9534
0.9700
0.9700
0.9900
1.0100
1.0100
1.0100
1.0300
1.0300
1.0600
1.0600
1.0600
1.1800

0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000
1.0400
1.0800
1.1200
1.1800
1.2200

5.85
5.85

6.0
6.0
6.0
6.0
6.0
6.0
6.0
5.9
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
5.88
6.0
6.0
6.0
5.96
6,0
6.0
6.0
6.0

10.0
9.98

10.0
10.0
10.0
10.0
9.68

10.0
10.0
10.0
10.0
10.0

256
256

256
256
256
256
256
256
256
500
256
256
256
256
256
256
500
256
108
256
500
256
500
108
256
500
256

256
256
256
256
256
256
256
256
256
256
256
256

6.31
6.23

7.58
7.17
6.82
6.69
6.50

6.63
6.48
6.73
6.83
6.93
7.04
7.18
7.30
7.32
7.47
7.25
7.65
7.66
7.85
7.75
8.01
8.17
8.18
9.99

13.8
13.6
13.7
13.9
14.3
15.1
15.6
16.9
17.6
18.4
19.8
20.9

8.38
9.51

2.45
3.82
5.74
6.88
9.76

21.3
21.0
23.4
25.3
27.3
29.2
31.2
33.1
33.1
35.6
37.2
38.1

38.1

40.9
40.6
44.8
45.3
45.3
67.8

6.68
9.87

14.3
20.2
28.3
39.2
52.6
60.8
6S.8
77.6
93.1

104.7

22.7
28.8

5.76
10.1

16.4
20.1

29.2

63.1

62.7
69.0

79.8
85.1

90.5
95.5
95.5

102.0
107.1
108.7
108.6
115.9
115.3
126.4
127.2
127.1
183.4

14,3
22.8
34.5
50.2
71.2
98.8

132.S
151.9
171.0
192.1
228.2
255.0

1.2
1.22

0.59
0.71
0.88
1.1
1.34

2.34
2.2
2.3
2.54
2.8
2.9
3.0
3.5
3.5
3.4
3.7
3.8
3.9
4.0
4.1

4.2
4.3
5.0
7.2

0,98
1.1
1.3
1.7
2.0
2,6
3.6
4.7
4.5
5.3
6.2
6.9

1.1
1.2
2.1

2.2

2.7
2.8
2.9
3.2
3.4
3.3
3.5

3.9

4.2

4.8

7.2

1.1
1.3
1.7
2.1

2.8
3.6
4.1

4.5
5.3
6.5
7.6

0.62
0.60

1.6
1.15
0.87
0.74
0.63
0.35
0.37
0.36
0.30
0.29
0.29
0.25
0.24
0.26
0.25
0.22
0.20
0.22
0.22
0.21
0.22
0.16
0.19
0.185
0.12

1.7
1.3
1.0
0.79
0.63
0.49
0.35
0.34
0.30
0.27
0.23
0.19

S.6
6.4

2.0
3.6
44
5.8
6.1

10.3
9.2

10.9
11.0
11.6
11.5
13.9
12.9
12.9
13.9
14.4
15.0
15.2
15.4
16.0
15.2
16.2
52.8
21.9

4.3
4.6
6.4
7.7
9.7

12.4
14.9
16.8
18.0
20.0
23.0
25.Q

'p, reduced LJ density is equal to No /V.
T, reduced LJ temperature is equal to kz T/a.

'N, number of'molecules in the cel) of volume V.
U, con5gurational energy per molecule.

'I', pressure.
'6„,infinite frequency shear rigidity modulus.
Ig„experimental value from argon, (Refs. 22 and 31}where

c/k& ——119.8 K and o =0.3405 nm.

"'llo, the shear viscosity from the Green-Kubo expression, Eq.
(42}.

'g+, the shear viscosity by NEMD, SLLOD homogeneous shear
and extrapolation to zero shear rate (Ref. 3).

'D, the self&iff'usion coelicient from Eq. (38) and the mean-
square displacement (Ref. 1}.

"iL,, the thermal conductivity from Green-Kubo, Eq. (&5).
'A,& from a homogeneous NEMD method (Ref. 41}.

and moduli tensorial components, and (me)'~ /rrLJ for
ihe viscosity. The methods for estimating the standard
errors of r) given in Eqs. (48) and (52) agree well for the
viscosities. In obtaining the Newtonian viscosity from a
single run it is necessary to choose a shear rate that is
small enough to eliminate shear thinning and yet large

enough to produce a statistically signi6cant nonzero
shear stress and hence shear viscosity from q= —I' ply.
The optimum choice discovered was in the range from
approximately y =0.3T' at p=0.2 to y =0.05T' at
p= 1,0.

Table I contains the system properties for the LJ state
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points considered in this work. The internal energy U,
presure P, and shear rigidity modulus G„are given.
These are derived from the pair potential components to
the internal energy and from formula, '

Three routes to the Newtonian viscosity are given. Using
the Michels LJ parameters: e/kii = 119.8 K and

eLJ ——0.340S nrn, then experimental viscosities on argon
can be converted into a "nearest-equivalent" Lennard-
Jones Quid. In addition, the Green-Kubo expression
gives i)(y~0) explicitly. The NEMD route requires an
extrapolation of i)(j } to zero shear rate, which was per-
formed graphically as seen in the examples of Fig. 1.
Note that a significant degree of shear thinning, evident
from the spanned density, temperature and shear rate
range is con5ned to a comparatively narrow portion of
the phase diagram at high density and low temperature.
No noticeable N dependence was observed for the
NEMD calculations. For viscosities «3 but less than
-S the Green-Kubo method did show a sma11 N depen-
dence but of a largely random nature as Fig. 2 reveals.
The viscosity increases by several percent on increasing X
from 108 to SOO, however, for viscosities & S. The self-
diffusion coeflicients and thermal conductivities increase
by roughly the same proportion. This is due to a dimin-
ished limitation on the long wave length density fluctua-
tions with increasing ¹ It is interesting to note from
Fig. 2 that although the normalized time correlation
functions show little evidence of an N dependence, the
derived GK integrals do show some ("random") N depen-
dence. Therefore the difference between the various N
values lies in the mean square values for the velocity,
shear stress and heat current, and not in their subsequent
time evolution. As is revealed in Table I the three
methods for obtaining the viscosity in the limit of zero
shear rate agree very well. Only for viscosities greater
than -4 do statistical uncertainties and a (small) un-
derestimation by GK cause noticeable differences be-
tween the three values. Even with these limitations the
data is believed to be sufKiciently accurate to test the mod-
el proposed in Sec. V.

The self-diffusion coefficients were obtained from Eq.
(41) using f (t, t, )=1 (same for ail the GK expressions).
The values obtained from the equivalent mean square dis-
placement, msd, expression were in agreement with these.
The msd formula' was employed by taking a single time
origin for each molecule, persisting for the whole simula-
tion. The rnsd route was not as statistically eScient as
the GK route, which took time origins every time step.
In Figs. 3 and 4 we show representative time correlation
functions and their integrals, which demonstrate their
state point dependence. As the temperature increases
these functions become more short ranged and there is
little problem in assigning a plateau value in the GK in-
tegral. As temperature increases, Fig. S reveals that the
normalized shear stress autocorrelation function becomes
largely density mdependent, in comparison with the ve-
locity and heat current autocorrelation functions. The
shear viscosity would appear to be the most readily in-
cluded within a simple mechanistic framework.

If the Newtonian viscosity is required and in LJ re-
duced units it is 53T, that is, it is not too close to the
Quid-solid phase change then the GK method is preferred
to NEMD because it only requires a single simulation (to
ensure linear behavior) and also all transport coefficients
can be obtained simultaneously. The NEMO method is
favored in the gas phase because the a~proach to linearity
is weakly shear rate dependent (-y ) and the GK ap-
proach is hampered by long relaxation times in the time
correlation functions. Both methods have problems close
to the (important} regime close to the fluid-solid transi-
tion. GK has an increasing N dependence and develops a
long-time tail in the ACF. The NEMO method, a1-

though it does not appear to have an N dependence, has a
disputed analytic form for the shear rate dependence of

If one uses the observation that linearity can be as-
sumed for y 50. 1 6„/i) then the ratio of standard errors
for NEMD to EMD is urip' T' from Eqs. (52) and
(57). It suggests that the EMD route would be favored in

this region. However, the error estimates based on Eqs.
(52) and (57) do not incorporate N dependencies in EMD
arising from the periodic boundary conditions. The rela-
tive merits of EMD and NEMO in this part of the phase
diagram have still therefore to be clarifled.

Below we investigate the possibility of reconciling
these three transport coefficients within a common
soundly based theoretical framework.

V. gee a,CTIVE HARD-SPHERE MODEL

There have been many serniempirical expressions relat-
ing the TC to the thermodynamic state variables; usually
the free volume. ' ' In this spirit we also relate the LJ
transport coeScients to the available free volume of an
underlying natural reference fluid —the hard-sphere fluid.
The transport properties of the hard-sphere fluid are
known almost exactly in terms of the free volume in the
region of the phase diagram of interest here, using MD
corrected Chapman-Enskog (CE) formulas. These
expressions can be applied to the LJ fluid by adopting a

temperature dependent effective hard-sphere diameter for
each LJ molecule. The reduced density of the LJ system
in terms of the hard-sphere diameter can then be em-

ployed in the equations for the hard-sphere transport
coeScients. The Dymond procedure for choosing the
effective hard-sphere diameter from the shear viscosities
is used. The CE formulas express the transport
coeScients as a product of a temperature and a density
dependent term. The same formulas can be applied to
the LJ fluid. (Although the density dependent term in-
volves a density scaled by the temperature-dependent
hard-sphere diameter, so it is not entirely temperature in-
dependent. ) This parametrization is readily extended to
give sample expressions for the constant volume and
pressure activation energies for shear viscosity, together
with the pressure viscosity coeScient and derived activa-
tion vo1ume in terms of the thermodynamics of the origi-
nal LJ fluid. (Similar expressions can be derived for D
and )t,.) Implicit in this solution is that one can isolate the
effects of temperature and pressure on the transport
coeScients of the simple liquid using the thermodynam-
ics of the underlying hard-sphere fluid. This suggests
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T =1.8627

'l.Q39'l

1.0004

0
FXPT

.0397
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FIG. l. Shear rate dependence of the LJ viscosity at densities along various isotherms. The reduced LJ number densities are indi-
cated on the Sgure. Key: (D are the largest N (END) values obtained from the Green-Kubo integral, Eq. (42), ~ are experimental
points for argon (Refs. 22 and 31). For argon, m =39.948 X 10 3 kg mol ', a/k ——119.8 K, and o =0.3405 nm. Interconversion fac-
tors from real to reduced units: p =23.78/( V /cm mol ')=5.951&10 p (kg/m3), where V is the molar volume and p is the
mass density. O are the values obtained by NEMD, N =256. (a) T =1.8627, (b) T =2.5138, (c) T =6.0, (d) T =10.0.
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that the hard-sphere Quid could be used as a reference
Quid in interpreting the efkcts of temperature and pres-
sure on the transport coeScients of more complicated
nonassociated molecular fluids. The details of the model
are described below.

Kinetic theory gives the TC of an infinitely dilute gas

k~T
Do ——

spo2 m'm
(58)

composed of hard spheres of mass m and diameter o at
temperature T.t 2 These quantities for self-diffusion, Dc,
shear viscosity, qo, and thermal conductivity, A,o, are

1 /2

Q.Q 5

O.OQ
Q

Q.'I Q

D

2 3

(o) 'I.Q

QQ'

F

t

QS ~Q

2

Q5--

I

I
r

!

Q
Q 3 I'

I

1.Q

2
OQ

(c)

0.5-

QU

FIG. 2. The N dependence of the normalized time correla-
tion funct1ons and their 7ntegrals {sho%vn as inserts) scaled using
the Green-Kubo expressions of Eqs. (41), (42), and (45) to give
the transport coef5cients. p=0.9248 and T =1.8627. Key:
N =108, 0 N =256, and + N =500. (a) The normalized [i.e.,
CI (0)= 1] velocity autocorrelation and self&i(fusion coeScient,
B. (b) The normalized shear stress autocorrelation function and
shear viscosity, I,c) heat Nux autocorrelation function and
thermal conductivity.

FIG. 3. Dens1ty dependence of (a) the normalized velocity
autocorrelation function and self-dig'usion coefFicient, (b) the
normalized shear stress autocorrelation function and shear
viscosity, (c) the normalized heat current autocorrelation func-
tion and thermal conductivity, for the T =1.4562 isotherm.
Key: @=0.5249, oooo p=0. 8630, and ++++
p=0.938; N =256.
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1 j2
mkBT

(59)

where kB is the Boltzmann constant. The reduced densi-
XQ j

l.

0.0

FIG. 5. The density dependence of the normalized time
correlation functions for T =10 and p=0. 8, oooo
p=1.0, and ++++p=1.18;X =256.

eI
i

ty p=(N/V)o, where N is the number of spheres in
volume V. The Chapman-Enskog solution of the
Boltzmann equation leads to density dependent self-
difFusion coefFicients, shear viscosities and thermal con-
ductivities, which will be denoted by DE, qE, and A,z, re-
spectively.

1
PDz/nDo =

g(o )

where g(cr) is the value of the pair radial distribution
function as contact of the spheres.

Similarly,

Q.5 '1.0

=g(a ) '+0.8bp+0. 7614g(cr )b ~p2,
90

(62)

where b =2no /3, is the excluded volume in the van der
%aals equation of state

O.5 1.Q
=g(cr ) '+ I 2bp+0 .755g(o .)b~p2 .

Aro
(63}

The equation of state of the hard-sphere Quid is related to
g(o } through,

(e) g(o)= PV

B
(64)

)Q gi
I~

if

where P is the pressure. A simple accurate equation of
state of the hard sphere Quid has been recently derived,

Q.Q Q.5

PV
&

bv

NksT (u —uo)2
'

where

(65)

u=V/N . (66)

I .5 1.CI

FIG. 4. As for Fig. 3 except that T=2.5138 and
p=0.7195, GOO 0 p=0.9094, and +++ + p=1.0135;
X =256.

The volume Uo is used to define an el'ective free volume
U —Uo. The value of Uo is not known exactly because it
can be considered to be an eff'ective occupied volume.
%e can place bounds on it however and it lies somewhere
between the close packed volume per particle,
uo=cr /2'~ and the volume of the sphere (m/6)o 3. It is
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pDx/pDo (Xi———1) /Xi

X'2+0.SCX,X', +0.7614C'X',

xx1 2

where X2 ——X, —1 and C =2m2'/ f /3.

X4+ i.2CX,X', +O.75SC'X',

XX1 2

(68)

(70)

Hard-sphere MD calculations give essentially exact
transport coefficients. " A comparison with the pre-
dictions of Eqs. {68)-(70)shows that these formulas agree
with the simulations up to densities -0.83 (or
u /uo 5 1.7). Above this density region (and at lower den-

sities for D due to vortex flows) corrections to Eqs.
(68)—(70) can be obtained. They are derived by
parametrizing the hard sphere MD data. Consequently,
for hard spheres

S»E
{)u»o»

pao
(71)

90
(72}

Simulation gives

pa =a+I.p+ep'+d p'+ep',
pa~

where a =1.035, b = —0.553, c =5 640, d = —7 639
and e=1.814. This is a fit to the available simulation
data for hard spheres. Similarly for the shear viscosity,
we use a literature expression,

convement to define, X=u /uo, X, = u /u, wh«e X, =fx.
The value of f =1.1491 gives good overall agreement
with simulation data for the equation of state of the hard
sphere Auid. Interestingly this is equivalent to a Uo value

half way between the designated bounds above. Substi-
tuting Eq. (65) in Eq. {64)gives an analytic expression for

g (o ) in terms of X, which can be used in Eqs. (61)—(63),

g(o )=X, /(1 —X, ) .

Consequently,

D'

kB Uo T ~ K 21 /2 1/3 1/2 && 1/2 i /3 (77)

k 1/2 1/2T 1/2

=2' n' —', 0.2195(x—1.384), (78)

k 3/2T1/2
=2' m' ~50. 1611(X—1.217), (79}

Eq. (78}is a particularly good approximation to Eq. (72}.
In order to apply the above formulas to the I.ennard-

Jones fiuid an efFective hard sphere diameter, 0, must be
associated with each molecule. This is temperature
dependent, but not density dependent to a good approxi-
mation. (As it is not density dependent it is not pressure
dependent under isothermal conditions. ) We use the
fitting procedure of Dymond to obtain o(T), which
equates rilp2/3 for the hard sphere and LJ systems and
then uses the ratio of the two densities,

(80)

where pz& (N/Vkrz& ——is the diameter in the Lennard-
Jones potential. Van der Gulik and Trappeniers have
argued that at temperatures below and close to the criti-
cal temperature the effective hard-sphere diameter is
different in the intermediate and high-density regimes.
The attractive part of the I.J potential has a greater
influence at high and very low densities (where it causes
clusters at low temperature). At intermediate densities
(2 u/uo 4) the attractive component of the pair poten-
tial acts efFectively as a uniform background, so that hard
sphere behavior would be expected with an effective di-
ameter which is not necessarily the same as that ap-
propriate to the two density extremes. Assigning this re-
gime as the most representative of "true" hard-sphere be-
havior it ~ould suggest that a temperature independent
effective hard-sphere diameter is required in Do, qo, and
A,o (at least for T 5 2}. The LJ diameter has been found to
be suitable for this. This modification will be con-
sidered in the discussion.

Dymond reductions of Eqs. (68)-(70) are different to
Eqs. (77}—(79) with this choice of intermediate density
hard-sphere diameter (i.e., o =aLi} for Do, bio, and A,o.
This modi6cation gives

wh«e f=0.990, g =0.160, Ii = —0.746, i =1.215, and

j= —0.558. Simplifications to Eqs. (71)—(73) were pro-
posed by Dymond over a limited region of
X(1.6 %X5 2.5) as follows on rearrangement,

= 1.02+ 15(X ' —0.35) 0.42 &X ' &0.575,

=1.02 X ' ~0.42 . (75)

Also, using literature values ' for A, /A, & we 5t„

=1.02+15(X ' —0.35) + 350(x ' —0.575)
QE

' &O.S7S,

Dm' 3 1.271

k 1/2T1/2 V 8 1/2
B 0

k 1/2 1/2T1/2
= —", n'' 0.2195(X—1.384),

k 1/2T1/2
= —,",~'"0.1611(X—1.217) .

(81)

(82}

(83)

=f+gv+I i +is +in There is much current interest in the temperature and

pressure dependence of transport coefBcients. Using an
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Arrhenius form we can ensure compliance with experi-
mental data by adopting a temperature and density
dependent activation energy and volume. These are
de6ned in

sphere Quid and a thermodynamic property of the LJ
ffuid, Po. A similar expression for Ep can be derived as
follows

2 (T)= 3 exp[E, (p, T)/ksT]

A (P) = A o exp(aP ),

lnA

T
(85)

Now,

Bind
aT x)

aine+ i', ()T

V, (T p)=a(T,p)ksT, (86)

where A =D ', g or I,. E, is an activation energy.
Also, ax,

aT p

BX)

BT y

aX, av
av

E~ /k' ——[a(ln A ) Ia( 1/T) ]p, (87)

where V, is an activation volume.
This treatment is applied even though single-particle

motion in a simple liquid is clearly not a simple or "Ar-
rhenius" activated process. ' 0 Therefore these equa-
tions have no obvious mechamstlc foundation but do pro-
vide a de6nition of "efFective" activation energies and
volumes, which are nevertheless very useful in appreciat-
ing trends. By definition,

=X)(p —po), (96)

where the expansivity of the LJ ffuid, P, is
r

av~= aT, (97)

Substituting Eq. (96) in Eq. (95) and using Eq. (88) we ob-
tain

Ep/ks =[a(lnA )/a(1/T)]p, (88)

the constant volume and constant pressure activation en-
ergies, respectively. Also by de5nition,

= —T
k~T

aine
(~ ~ )X

aine

(98)

As,

a=[a(in' )IaP]z . (89) As

Olney

alnAp0 and
aine

aT

Olney

aT

I'
Ey ——EI, —k~T 0-.

aT

a lnA aP
aP r aT (90)

(91)

we can conclude that Ez & Ez for all LJ state points.
The difFerence between the constant pressure and

volume activation energies follows from Eqs. (94) and (98)

2 a in'
Ep —Eq ———ksT PX)

BX]

Olney

and
Xi

Olney

ax,

If the LJ molecules can be represented by a density in-
dependent eff'ective hard sphere diameter o ( T) then

The pressure transport coeScient o. can also be related to
a hard-sphere ffuid which has the same transport
coe5cients as the LJ Quid. Again a second-order thermo-
dynamic quantity of the LJ Quid is required as follows.
Equations (91) and (99) give

aine
axi

Olney

aT

for the LJ Quid can be equated to that of the hard-sphere
Quid, which are known analytically. By de6nition,

r

' 81nA
(92)aT

a inca= —Px, ax,

alnA= —xXI X

ap
aT

(100)

do'
Vo ——3 cr (93)

where ~ is the isothermal compressibility,

(101)
is the expansivity of the close-packed volume and
Vo =DUO. Hence, using Eq. (49) in Eq. (44),

= —T (94)k~T
Bind
aT

Therefore E& for the LJ Quid has been written analytical-
ly in terms of the transport coefBcients A of the hard

It remains to evaluate (aine /ax, ) and (aine /aT)z
1

for hard sphere A =D ', g, and A, . These quantities for
the analytic representations of the hard-sphere transport
coeScients are given below. Let pDEo ——pDE/pao and

pDz, pD/pDF. Then——
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8 lnD
X =pDo(pDFopDz+p») pDE) }IpD

where where

)) inrun = re(nFor)z+ ri) re) ) Iri
1

(106)

pDFo (X——,
—1) IX, ,

d(pDso) 2(X, —1) 2(X, —1)

(103) (Xi —1)
)tEO

1

8
(X, —1)'

where 3 =0.8C, 8 =0.7614C, and C=2m2'~2f/3

d(pDE) ) ppa2 —— (b+2cp+3dp +4ep ) . (105)
dXi XI

Similarly for shear viscosity, let riEo
——r)E /bio and

i)z) ——rl/riz from Eq. (75). Then,

d(i)so) 2(X) —1) 2(X) —1)2

X) X,

28
X', (X) —1)'

(108)

d(nE))

=[—45(X ' —0.35) /X —1050(X ' —0.575) IX ]If X '~0. 575

=[—45(X ' —0.35) /K ]If 0.42 &X ' &0.575

=0 X '~0.42 . (109)

8 ink,

aX,

(X, —1)
Eo

1

=Ao(AEok2+ A, )AE) )/A, ,

D E
(X, —1)

where D = I.2 C and E =0.755 C

(110)

d(Xxo)

dX

2(X) —1)

2i

2(X, —1)

X)

Analogous expressions exist for thermal conductivity, if
Az) ——I, /A, z from Eq. (76) then,

r

1

3

TX &oT

T ' X —1384 3

X —1.384

X
(X —1.384)

(115)

(116)

(117)

given in Eqs. (77)—(79) or Eqs. (81)—(83). The
difference between these two series of equations is in the
choice for the hard-sphere diameter in pDo„re, and Ao.
For self-difFusion using Eq. (77) in Eqs. (94), (98), and
(100), respectively,

D 2E
X) (X, —1)

(112)

d())E) } p
A, z —— ——— (g + 2h p+ 3ip +4jp ), (113)

dX) X)

where g, I), i, and j are those defined for Eq. (76). For all
three transport coeScients,

Ey
kqT

l
X= —

—,
—PoT X —y

Also for shear viscosity and thermal conductivity,

(118)

(119)

a inc
Xi

(114)

The next step is to substitute Eqs. (102), (106), (11()), and
(114) into the expressions for the LJ E~, E~, and a, in
Eqs. (94), (98), and (100), respectively. An alternative
procedure which leads to simpler expressions for the I.J
Ez, E+, and a result from the linear 6ts to D, q ', and

L
(X —y)

(120)

X
ks T ' X —1384

(121}

andy =1.384 for g andy =1.217 for A, .
The corresponding relationships from Eqs. (81)—(83)

are, for self-diffusion,
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and

rx
' ' P'X -1.38~ +Po

8

X
384

(122)
a& ———0. 122 135, a3 ——0.034084, a& ———0.004 56, and
a&

——0.00021235, on taking the dense fluid hard-sphere
diameter to apply also for the dilute gas transport
coeicients and that T & 10.0.

VI. TEST OF THK KFFKCTIVK HARD-SPHERE MODEL

Also for q and A. ,

and

ksT ' (X —y)

TX= ——,
' —(po —p)

k~T z (X —y)

X
lX = K .

(X —y)

(124)

(126)

OHs/(Tie='0 i +Qz T+Qi T +04 T +Qg T2 3 4 (127)

where a, = 1.1726, a~ ———0.36099, a3 ——0.281 74,
a4 ———0. 10902, and a5 ——0.0159 53, on assuming that the
hard sphere diameter equals the LJ diameter in pDo, go,
and A,o and that T 5 2. 5. Alternatively, a i

——1.095 59,

TABLE II. The temperature-dependent efFective hard-sphere
diameters in the LJ reduced unit of distance, according to A,
the Gulik et al. method used in Eqs. {81), {82), {83), and
(121)-{126).8 applying the high-density elective diameter at
all densities and leading to Eqs. (77}-(79),and Eqs. (115)-(120).

0.72
0.81
1.0
1.06
1.2
1.35
1.4562
1.8627
2.5138
2.6974
3.5
45
6.0

10.0

1.0219
1.0151
1.000
0.9939
0.994
0.9817
0.9794
0.9653
0.9508
0.9477
0.935
0.915
0.90

1.0226
1.0171
1.005
0.9946
1.000
0.9794
0.9743
0.9580
0.9396
0.9360
0.925
0.905
0.880
0.8433

With the simple expressions of (116)—(126) we relate LJ
"second-order transport coefficients" [e.g., (8 Ini)/BT)i ]
through Ei, Fp, and a to LJ second-order thermo-
dynamic quantities, po, p, and ~. This is made through
the intermediary of the hard-sphere equation of state and
its density (and temperature) dependent transport
coeScients.

The temperature-dependent effective hard-sphere di-
ameter for the I.J molecules was obtained using the Dy-
mond matching procedure applied to the shear viscosi-
ties. The values obtained are presented in Table II. We
obtain also by a least squares 6t to this data,

In this section, the hard-sphere model described in Sec.
V is applied to the data of Table I, using the effective di-
ameters given in Table II for the LJ fluids and
parametrized in Eq. (127). First we consider the extent to
which the simulation data adheres to Eqs. (71)—(73), for
the exact hard-sphere transport coefficients, and the Dy-
mond simplifications given in Eqs. (77)—(79).

First, the viscosity of the I.J Quid reduced according to
Eq. (78) is compared with the linear relationship in V/Vo
from that equation (B) and that derived from the more
exact representation for the hard-sphere viscosity, Eq.
(72). In Fig. 6 it is seen that, over the temperature range
considered both expressions reproduce the LJ shear
viscosity within simulation uncertainties.

The linear relationship in V/Vo is probably good
enough for most practical applications of this hard
sphere based representation of the LJ viscosity, There is
a relatively minor trend for the hard sphere approach to
over estimate the viscosity for lower densities
(p=0.6—0.7 at T 5 3). We attribute this to "clustering"
phenomena arising from the attractive part of the poten-
tial. This feature is not apparent at higher temperatures,
at which the attractive part of the potential has a less
inAuential role in determining the molecular dynamics.
In Fig. 6(d) an example is considered of the proposed
viscosity reduction, which is implicit in van der Gulik et
al. adoption of a variable hard-sphere diameter for the
terms in Eq. (72). The relevant equations for curves 8
and A are Eq. (82) and Eq. (72). Comparison with Fig.
6(a) reveals that there is little improvement for the data
and this approach would appear to be an unnecessary
complication for the purposes of this work.

In Fig. 7 the corresponding curves for self-difFusion are
considered, Eqs. (77) and (71), and Eq. (81) for the van
der Gulik et al. method. Apart from temperatures below
about 1.35 and (therefore) close to the solid phase bound-
ary it is not possible to predict both self-diffusion
coefficients and the shear viscosity using the same
effective hard sphere diameter. The self-diffusion
coe%cient obtained by LJ simulation is less than the pre-
diction of the hard-sphere lines A and B. Again this
could be partly due to "clustering" caused by the attrac-
tive part of the potential. However, there must be anoth-
er source of this discrepancy because the extent of agree-
ment with the hard sphere curves decreases with increas-
ing temperature. The inhuence of pair, triplet. . . associ-
ations of molecu1es would be expected to diminish as the
temperature increases. It could be argued that it is by us-
ing the viscosity in the Dymond fitting procedure, that
the 6t is inevitably better for viscosity than self-diffusion.
However, this does not explain the good simultaneous fits
at high density and low temperature. Also, the thermal
conductivity curves [Eqs. (73), (79), and (83)] in Fig. 8 re-
veal an excellent agreement with the hard sphere predic-
tions at high temperature, using the same effective hard-



37

(a)

( rnksT)

g 2/3

0

(mksT) '

VI/3 )

5.6 I

~o~

T= 6. 0
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FIG. 6. Reductions of the shear fluidity as suggested by Dymond (Rcf. 23) and given in Eq. {78) (a) r =1.35, 0' =0„S/
OLJ=0.9794, (b) T =2.5138, 0 =0.9396, (c) T =6.0, o =0.88 for the temperature dependent u employed in go. (d) T =1.35
and o =0.9817 for 0 =1.0 employed in I)0, Eq. (82). Curve A is derived from Eq. (72). Curve 8 is from Eq. (78).

sphere diameters as for the viscosity. [Again, the
modification proposed by van der Gulik eI al. would ap-
pear to be unnecessary here, and an overcomplicating
feature. ] In this case there is an overestimation of the
thermal conductivity at low temperature by the hard-
sphere approach. This one would expect intuitively. The
attractive part of the potential acts as a heat sink and
hinders fast heat Aux transfer. This extra property of the
Quid, which is not exhibited by the "corresponding"
hard-sphere quid, becomes less important at high temper-
ature. The pattern established is therefore as follows.
The properties of the hard sphere quid account weH for
the viscosity at all temperatures and densities (at least
above about half the maximum Quid density at any par-
ticular temperature and also where a density is not ex-
cluded by being in the two phase region, i.e., at T' ~ 1.3).
This model is also useful for self-diNIasion below T =1.35
for Quid states on the Suid-crystal boundary. At lower
dcllsltlcs, Rlld at hlghcr temperatures Rt Rll dcnsltlcs, thc
self-diKusion coemlcient is seriously overestimated by the
hard-sphere model. This is presumably a consequence of
the softness of the pair potential. Figure 5 presents sup-
portlllg evidence foI' this. Thcrc ls R dI'Rlnatlc effect of
dcllslty on thc form of tllc vcloclty autocorrclatloIl fllnc-

tion for hard spheres. It exhibits a hydrodynamic long
time tail at intermediate densities, and a negative "back-
scattering" lobe at higher densities. These are incompati-
ble with the Enskog formulas, which have an underlying
exponential time decay for all the dynamical processes.
Although this deviation from the hard-sphere model dy-
namics is partially masked through the MD parametrized
(pD /pDz) term in Eq. (71},this information does clearly
illustrate the inadequacy of such a model to describe the
true dynamics of single particles in a hard-sphere quid at
densities of interest here. The shear stress and heat
current autocorrelation functions, in contrast, stay posi-
tive in the hard-sphere simulations. These correlation
functions are therefore more similar to the assumed ex-
ponential time decay for dynamical processes in the En-
skog theory. The poor account of single-particle motion
must cancel out when many-body functions are evalu-
ated. The LJ stress and heat current autocorrelation
functions are also positive at all times, as revealed in Fig.
5. Therefore any deviation from a hard-sphere potential
caused by a softening of the repulsive core, or by the ad-
dition of an attractive bowl to the potential, is likely to
have a greater effect on the self-dimusion coeScient than
on the shear viscosity or the thermal conductivity. This
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FIG. 7. As for Fig. 6 except that the self-diifusion coefficients are considered [Eq. (77) and (81)]. Curve A is derived from Eq. (71)
and curve 8 is from Eq. (77).

is observed from Fig. 7. The agreement with the hard-
sphere model decreases with increasing temperature. In
contrast for thermal conductivity, the agreement im-
proves with increasing temperature. The softening of the
repulsive core is not an important factor for il or A, but
for A, at low temperature the potential's attractive bowl is
an important factor in diminishing the efficiency of heat
transfer, and therefore reducing A, when compared with
that of hard spheres. 33

There have been many MD studies that have investi-
gated the effect of adding an attractive component to a
repulsive intermolecular potential. These include com-
parisons between repulsive and full LJ potentials,
and hard sphere and attractive square mell mole-
cules. These two system pairs give the same qualita-
tive behavior. Below the critical density and at low tem-
perature, the attractive bowl to the potential can
signi6cantly decrease the self-diffusion coeScient below
that of the repulsive reference Auid. Above the critical
density the same trend is evident but becomes less pro-
nounced as density increases to the solid transition.
In contrast, the behavior of the shear viscosity and
thermal conductivity shows little change on the addition
of an attractive component below the critical density.
For the viscosity the square well Quid manifests a gradual
increase towards the solid transition but this is very sensi-
tive to the width of the bowl. The thermal conductivity

exhibits a more modest decrease at low temperature and
high density. These trends are in excellent agreement
with the present work. It is worth noting that the most
important deviations from hard-sphere behavior occur at
densities lour than of interest for this work.

Now that the usefulness of a hard-sphere model for, in
particular, shear viscosity has been demonstrated we con-
sider the activation energies and volumes (from the pres-
sure transport coe%cients) that are analytically known
from Eqs. (94), (98), (100), and (115)—(126).

We will consider the shear viscosity only, although the
same treatments could be made for D and A,, but with less
justification. Figure 9 presents the density dependence of
the constant volume and constant pressure activation en-
ergies, E„and E~, for the T'=2 LJ isotherm. (We use
the temperature-dependent e8'ective hard-sphere diam. e-
ter in rio. ) This figure reveals that Ev is essentially zero
or negative for densities below 0.8. The viscosity in-
creases with temperature up to p'=0. 7, indicating that
the residual properties of the dilute gas are dominating
the shear viscosity up to quite high densities. In compar-
ison, the Ez are substantially positive over the entire quid
range. The origin of this difference comes from the ex-
pansion of the Quid with increasing temperature. This
tends to reduce the viscosity and overrides the kinetic
component to FI., which would tend to cause an increase
in q with temperature. Figure 9 reveals also that the "ex-
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act" expression for Ez and E„ in Eqs. (98) and (94),
agrees reasonably well with the Dymond simplifications
of Eqs. (119)and (118) and vindicates these simpli6ed ex-
pressions for Ep and Ei . They could be made use of for
other quasispherical molecular fluids.

The activation volume V, curve along the same iso-
therm is presented in Fig. 10. The activation volume per
molecule diminishes from 1 to 0.2 over the density range
0.5-1.0 This is consistent with the transition from a
communally accessible volume for a molecule to a local
"free" volume as the liquid approaches close packing. It
is interesting to note that both Ez and Ez are negative
over the entire Quid range at T*=10.0 indicating the
dominance of the purely kinetic component to the activa-
tion energies. The limit of V, at high density (p =1.1)
is 0.1. This rejects the closer approach of the LJ mole-
cules (effectively soft spheres here) at this supercritical
temperature. In Fig. 11 we coinpare E& at T =1.0 given
by Eqs. (94), (115), and (118). The Eq. (115) route, along
the lines suggested by the van der Gulik et al. treat-
ment, is in satisfactory agreement with the more exact
route of Eqs. (94) and (118) adopting the high density
a(T) in the expression for iso. This additional feature to
the Enskog formulation is therefore of no signi6cant ad-
vantage to satisfy the objectives of this work.

VII. CONCLUSIONS

Q.6

l I l l I

08

FIG. 9. Constant pressure and volume shear viscosity activa-
tion energies, EI and E& for a T=2 LJ isotherm are given.

They are produced from for Ev: Eqs. (94} and (72} (-—), the
"exact" expressions and Eq. (118}. For EI, : Kq. (98) and Eq.

It has been demonstrated that for simple fluids the
methods of equilibrium and nonequilibrium molecular
dynamics are practical alternatives to experiment in ob-
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Q6—

0.6
I I

0.8 &.0

FIG. 11. The constant volume shear viscosity isotherms for
Er at T= 1.0 using the "exact" model Eqs. (72), (94), (106), and
(114) (--). For the Dymond reduction, cr =1 in go (. . .) Eq.
(124) and for cr (T) in ri( ) Eq. (118)was used.

FIG. 10. As for Pig. 9 except that the activation volume V,
given by Eqs. (86) and (100) are considered. The relevant equa-
tions are, for the "exact" solution Eqs. (72), (100), and (106)
(-—). For the Dymond reduction Eq. (120) is used.

taining transport coeScients. The results from these cal-
culations are that, using accepted values for the I.J pa-
rameters to represent argon, the viscosities computed
agree within similar statistical uncertainties with experi-
ment across the fluid range. These viscosities, self-
diffusion coefficients and thermal conductivities obtained
by the Green-Kubo method were analyzed in terms of a
MD modified Chapman-Enskog formulation for the
hard-sphere fiuid transport coef6cients. A temperature-
dependent efkctive hard-sphere diameter enables us to
identify an arbitrary LJ state with its equivalent hard
sphere fiuid. Therefore one can predict the transport
coefficients of the LJ ffuid from its thermodynamic be-
havior. The application of this approach showed that the
MD shear viscosity agrees well with the model predic-

tions over all the Quid range above a density exceeding
half the solidification density. The thermal conductivity
had the next best overall agreement, difFering only
signi6cantly at high density and low density. The self-
diffusion coefficients were far from satisfactory in this
respect, showing only adequate agreement at low temper-
ature and high density. The deviations from hard sphere
behavior are attributed to the attractive part of the po-
tential and the softness of the repulsive core, in the latter
case.
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