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Reentrant phase transitions in a quantum spin system with random fields
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The transverse Ising model with random Selds has been studied swithin the mean-field approxima-
tion extended to include quantum effects. ~en applied random Selds are bimodal {sum of t~o 5
functions) and transverse fields I are not too large, tricritical points exist. In these cases, reentrant
phenomena can be seen for appropriate ranges of I and random Aelds ho.

I. INTRODUCTION

The random-6eld Ising model has been investigated,
especially, regarding the problem of the lower critical di-
mension. ' One of the other problems is how the form of
random fields a8'ects the structure of phase diagrams.
From the latter point of view, the random-Beld Ising
models with different types of random fields have been
studied within the mean-field approximation. The transi-
tion for the Gaussian random field distribution is second
order. 2 A tricritical point exists for the bimodal distribu-
tion. A more complex phase diagram appears when ran-
dom fields are trimodal (sum of three 5 functions). On
the other hand, a quantum spin system with random
fields at T=0 hss been studied by the e expansion. The
quantum-classical crossover is suppressed by the ex-
istence of random 6elds. As in classical systems, it is ex-
pected that the transition properties are affected by the
shapes of random fields.

In this paper, the transverse Ising models with Gauss-
ian and bimodal random 6elds are investigated by the
combined use of the replica method for random systems
and the extended mean-field method for quantum sys-
tems. Full phase diagrams are obtained. In the Gauss-
ian case, all of transitions are second order. On the other
hand, in the bimodal case, tricritical points exist when
transverse 6elds I sre not too large. For larger values of
I, transitions becorpe second ord.er. 4'hen random 6elds

are bimodal types, reentrant phenomena occur if I and
random fields Ito are within appropriate ranges. This
may be attributed to the competition between quantum
efFects and the randomness. When the temperature is
lowered from above, quantum effects dominate and the
transition from the disordered phase to the ordered phase
is more characteristic of quantum spin transitions than
the following one. And when the temperature is lowered
further, the randomness dominates relatively, and the
reentrant transition to the disordered phase could take
place.

II. MODEL AND METHOD

A quantum spin system considered here is described by
the following Hsrniltonian:

%=—J g o';tt,' —1 go"; —+It;tT'; .
(i j') i

The summation in the 6rst term is taken over nearest
neighbor pairs. I is a transverse 6eld, which represents
quantum effects, and h, is a random external field. The
quenched partition function of this system can be rewrit-
ten as the corresponding partition function for the
(4+1)-dimensional classical spin system by using the
Suzuki-Trotter formula. Here d is the original dimen-
sion of the quantum system. Then the partition function
becomes

Xexp' g g S; S, + —,'ln coth
m=1 (ij &

where m is the index for the Trotter direction and N is the total number of spins. Free energy can be calculated by the
replica method as follows. The replicated partition function is given by
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where u is the replica index. This quantity is averaged over random 6eld distributions.

(Z"&„=f Ida, ) gp(a, )Z",

where p(h; ) represents distributions of random fields. Gaussian distributions are expressed by

1p(h;)= —e
2770'

Bimodal distributions can be represented by

p(h; )=—,'[5(Ii; —ho)+5(h, +ho) j .

(5)

Although following explicit calculations will be performed for Gaussian distributions, the extension to other distribu-
tions is straightforward. In this case, (4) becomes
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(7)

1= f dg. 5(S.. @. )= f dq. f'" dIC ex)p(S. e . )It

Using this identity, (7) is rewritten as follows:
nMW /7.

(Z"&„= lim —sinh
1 . 2PI
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The mean-~eld aPProximation extended for quantum systems is applied to this model. The key point in the extended
mean-6eld method is to take account of the finiteness in the Trotter direction by solving the one-dimensional problem
along the direction and hence quantum effects are included satisfactorily in mean-feld approximations. Generally
mean-field aPProximations correspond to take saddle points in the steepest-descent method. The following identity is
used to apply the steepest-descent method:

—g g gK; 4; +QWO(K, ) . (9)

Here Wo(E, ) is defined by

~o~ j;
8 ~™

Is,. =+& I
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Then sadd1e-point conditions become
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where the asterisk represents the value at a saddle point. If saddle points are assumed to be independent of i, a, and m,
(11)becomes

BWo(K; ~ )

BE;

At saddle points, (10) becomes

(12)
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Here inside the brace is the partition function for the Ising chain in external fields with the periodic boundary condi-
tion. This can be solved by the transfer-matrix method. Using the eigenvalues of the transfer-matrix A, + and A, , (13)
can be rex'ritten as

0 ds e
—s /2(gM+gM)n

wo&sc '] l ~ z

&Zm

Here A, z are expressed by

(14)

A, += coth
PI"

1/2

cosh E'+ k coth sinh K'+ + tanh
aPs PI . 2, aPs PI

(15)

Hereafter, the mean-field approximation for (Z")» is expressed by (Zo )». Using the second equation of (12), (Zo )»
ls g1ven by

& Zo )» —— lim —sinh
1 . 2PI'
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The mean-6eld approximation for the free energy per spin I'0 becomes

&i~o &»

pN pN n o

=dJ4 ——lim f ds e ' ln —sinh
1 1 " —s'n 1 2PI
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The averaged magnetization is obtained by solving the equation

f ds e ' tanhIP[(21J@'+as) +I ]'
&2m —~ [(2dJ4'+ as ) + I ]' (18)

Among solutions, the real magnetization minimizes the free energy (17). In the case of bimodal random field distribu-
tions, similar equations can be obtained, so (17}and (18) are generally written as

I'o =dJ4' —f dh p (h) in( 2 c—osh[P[(21J@n+h )2+ I 2]'~~) ),
@'=f dh p(h) tanhjp[(21J4'+h) +I i]'r

) .
[(21J4 +h } +I ]' (20)
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where the dimensionless parameters

r ~0

PX2dJ 2dJ' 2dJ

are used. If transitions are second order, f (0}=1represents transitions. Possible tricritical points can be read from
the following third derivative off(4') at the origin:

36 (4H —6 ) (H +6 ) 36 (6 —4H ) 2 (H +6 )f (3)(0)
(H2+ 6 2)7/2

tanh
T

sech
T(H'+ 6')'

126'H', (H'+6')'" (H'+6')'"
sech tanh

T(H2+ 6 2)5/2

4a' (H2+ 6 2)1/2
+ sech

T (H +62) (23)

To investigate the biinodal case for some extreme values of parameters, the right-hand side of (20) is defined as
f(4'). The possibility of the existence of tricritical points can be examined by expanding f(4') in O'. The first
derivative off(4* ) at the origin is given by

62 (H2+62)1/2 H2 (H2+62)1/2
(21)(H'+6')'" T T(H'+6')

Candidates for tricritical points correspond f' '(0)=0
with f'(0) = 1. Next, three cases are examined explicitly.

In the case of T=0,f '(0) and f ' '(0) are given by

This quantity can be proved to be negative for 0&6 & 1.
So, the transition is second order in this case.

III. RESULTS

( H2+ 6 2)3/2
'(0)=

36 (4H —6 )

(H2+62)7/2

So the following point could be a tricritical point:

(24)
Phase diagrams will be obtained by solving (20) numer-

ically. Among the solutions, the real magnetization mini-
mizes the free energy (19). Phase diagrams for two types
of random field distributions are obtained.

A. Gsussian distributions

(26}

f'(0)=—sech
1 p 0
T T

6 (4 )3/2
53/S

The second case is G=0. From (21) and (23), f'(0)
and f ' '(0) are given by

'I

In Fig. 1, the phase diagram for Gaussian random Seld
distributions is given. Here the same notation as the bi-

f' '(0)= sech3 2 H
Tz T

3tanh ——1
2 H

T

By using these quantities, a tricritical point could appear
at the following point, which is same as the one obtained
by Aharony:

T= ,', H =—,'arctanhi/1/3 —.

H =0 is the last case, in which f '(0) and f ' '(0) are
given by

1 6f'(0) =—tanh —,6 T ' (30)

f (0)= — tanh +— sech(3) 1 6 3 2 6
63 T TG2

(31)

On the secondmrder transition line, (31)can be wiitten as

f"'(0)=, 1 — —6'
TG2 arctanh6

FIG. 1. The phase diagram for Gaussian random field distri-
butions. Dimensioniess parameters defined in Eqs. {22) are used
except for H. Here 8 is de6ned by o./2dJ. The ferromagnetic
phase includes the origin. All the transitions are second order.
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FIG. 2, The phase diagram for bimodal random 6eld distri-
butions. Dimensionless parameters de6ned in Eqs. (22) are
used. The ferromagnetic phase includes the origin. First-order
transitions occur at the shaded surface. At other parts of the
surface, transitions are second order.
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modal case is used for H=—o/2dJ. The ferromagnetic
phase includes the origin. All the transitions are second
order.

B. Bimodal distributions

The phase diagram for bimodal distributions is shown
in Fig. 2. The ferromagnetic phase includes the origin.
First-order transitions occur at the shaded surface. At
other parts of the surface, transitions are second order.
Looking at the phase diagram in a H-T plane for a fixed
6, a tricritical point exists for 6 & (~4) / from the results
of (26). On the other hand, no tricritical points appear
for 6y( —', ) . Reentrant phase transitions can be seen

explicitly for appropriate values of G. Three examples
are shown in Fig. 3. Figure 3(a), 3(b), and 3(c) correspond
to 6=0.6, 0.678, and 0.72, respectively. Solid lines
represent second-order transitions and broken lines
represent 6rst-order ones. %hen the temperature is
lowered from above, disorder to order transitions occur
at first. Reentrant phenomena can be seen by lowering
the temperature further. The origin of reentrance is not
so clear, but may be thought of as follows. Both quan-
tum CS'ects and the randomness prevent ordering, but the
two CSccts do not aFect in the same manner as is seen
from (20). The transition in which the randomness dom-
inates has the tendency to be first order. Quantum eFects
tend to make it second order. So, when the temperature
is lowered from above, the randomness docs not work rel-
atively at 6rst and thc tI'ansltion is morc charactcnstlc of
the quantum spin transition than the succeeding one.
And if the temperature is lowered further, the random-
ness contribute mainly and the reentrance to the disor-
dered phase may take place. Further investigations are
needed to clarify the mechanism of the reentrance transi-
tion including the reason why lt cannot bc scen in thc
Gaussian random Seld distributions.
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FIG. 3. Three examples which exhibit reentrant phase transi-
tions. Dimensionless parameters de6ned in Eqs. (22) are used.
(a), (b), and (c) correspond to 6 =0.6, 0.678, and 0.72, respec-
tively. Solid lines represent second-order transitions and broken
lines represent Arst-order ones.
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The mean-6eld method extended for quantum models
has been applied to the random system successfully by us-

ing the Suzuki-Trotter formula and the replica method.
Quantum efFects are included by solving the one dimen-

sional problem along the Trotter direction. In the case of

Gaussian random field distributions, no tricritical points
exist. On the other hand, a tricritical point appear for
6 &(—', ) in the bimodal case. In this case, reentrant
phase transitions, which may be caused by the cofnpeti-
tion between quantum effects and the randomness, occur
for appropriate ranges of ho and I .
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