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Easily evaluated expressions for second and fourth moments
of resonant absorption spectra for spin systems
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%e present an ef5icient method to generate the second and fourth self-energy and Van Uleck
moments for NMR and EPR absorption spectra for systems ~ith bilinear spin Hamiltonians. The
results are helpful in obtaining analytic expressions for these moments and are in a form ap-
propriate for evaluation on computers. %e include a few' examples to illustrate the method, in-

cluding the nontrivial calculation of the moments of the correlation functions for the electric
quadrupole-quadrupole interaction encountered in the study of solid hydrogen compounds. In the
present work we restrict our attention to high temperatures.

I. INTRODUCTION II. METHOD

The calculation of moments of resonant absorption
spectra is a tedious task which must be confronted to com-
pare the results of experiment and theory in many appli-
cations of spectroscopy. Since its inception, the method of
moments has been the principal theoretical tool available
for characterizing NMR rigid-lattice absorption spectra.
While the moments by themselves can often be mislead-
ing, their careful use has been of great value in fields such
as NMR and other kinds of magnetic spectroscopy. Also,
it has recently been shown that information theory (the
method of maximum entropy) is a good technique for ob-
taining fits to spectra from a limited number of moments.
In the report we obtain easily evaluated expressions for
the second and fourth moments of Green functions needed
in NMR and EPR work. These expressions are vahd for
systems described by the large class of bilinear spin Ham-
iltonians.

H g &ttr(ij )Att(i)Ar(j ) .

We consider a general bilinear spin Hamiltonian [Eq.
(1)]. For purposes of obtaining information about the res-
onance properties of such a coupled spin system, it is use-
ful to obtain good approximations to the two-point
Green's functions of the type

where 8(t) is the Heaviside step function, and () denotes
an infinite temperature average on the canonical ensem-
ble. The tensor operators of Eq. (2) are in the Heisenberg
representation. We are motivated to study these functions
because if

GPt(to) „dte' 'G (t), " (3)

then the experimentally accessible line shapes are of the
orm

G'(to) -QG;;(to) .

In this and all future equations, greek indices denote irre-
ducible tensor operators' [A, for tt (L,M)] and Latin
symbols index sites on a lattice. The conventional method
for evaluating moments for Green functions is to either
evaluate the necessary nested commutators (which can be
excruciating for the fourth moment), or to employ di-
agrammatic representations of the moments using vertices
which represent the matrix elements of the Liouville op-
erator in the space dual to the Hilbert space of accessible
spin states for a system. Our method is based urn a gen-
eralization of the diagrammatic worg of Reiter.

Some examples of physical relevance are multipolar
spin-spin interactions. We have used the present tech-
nique to obtain the full second and fourth moments of the
electric quadrupole-quadrupole (EQQ) correlation func-
tions of interest in the study of mixtures of J 0 and J 1

molecules in the solid phases of the hydrogens. In the
present paper, we present the general formulas, and give
some examples of their use.

Also, quantities such as the spin-lattice relaxation time T~
and the transverse relaxation time T2 in NMR are readily
extracted from the G'. 3 From previous work, 's it is evi-
dently worthwhile to introduce a self-energy function g'
which is related to the Green's function by the relation

G (tn) i/[ to Z;(to) l,
where G and Z are in general, both complex-valued func-
tions of to, and the functions with a single-site index are
just the two-site functions summed on one-site index. The
reader may be more familiar with the self-energy method
in the equivalent, but different looking formalism of
"memory functions. " It has been shown elsewhere' that
G and Z may be completely characterized by their spectral
functions.

I;;(tv) - —Imx;;(to),

A, ( )to-ReG;;(to) .
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FIG. l. (a) Basic vertex from which M„and L„are con-
structed. (h) Graph from which second moment is obtained.

FIG. 2. (a) Corresponds to first term of Eq. (8); (h) corre-
sponds to second term of Eq. (8).

The moments of these functions are given by

L:(ij )- m" 'i,g(ro), n ~ 2,n-2 I

General considerations from analytic function theory im-

ply that knowledge of I (3) completely specifies Z(G).
Reiter and others have shown'2 that the moments M„and
L„are expressible as a sum of graphs constructed from
vertices of the type illustrated in Fig. 1(a). It has been
shown that the second moment can be represented as the
sum of all topologically distinct' graphs of the type indi-
cated in Fig. 1(b), where the internal-site indices must be
summed over. Note that we did not explicitly attach
operator indices to the internal lines: In applying Reiter's
method, it is necessary to write down and evaluate each
graph form [Fig. 1(b)1 producing each graph with distinct
operator labels separately.

While explicitly writing out all internal operator lines is
practical for some simple Hamiltonians, this becomes
quite laborious for complicated interactions, even for the
second moment, if the structure of the graphs is not
strongly constrained. To illustrate this point, consider the
Egg Hamiltonian. In this case, 30 distinct graphs must
be considered for the second moment for each Green's

I

function. There are very many more graphs for the fourth
moment. A simple way to alleviate this proliferation of
diagrams is to take a different point of view. It is possible

to construct the moments by writing out all possible
internal-site lines explicitly, and summing only on opera-
tor indices for the internal lines. The second moment can
then be expressed as

M~(ij) -L~(ij) -b,, g o.,„(tk)o.',„(tk)
"kPy

'"
+go,„s(ij)o,'pr(ij ) . (8)

In this and future equations, an asterisk denotes complex
conjugate. The first term of Eq. (8) corresponds to Fig.
2(a), the second to Fig. 2(b). While this approach is com-
pletely equivalent to Reiter's method, it enables us to ob-
tain such general representations for moments as in Eq.
(8). For the fourth moment we use the same method, but
the number of graphs involved is too great to reproduce
here. We will just observe that the self-energy moment
L4(i,j ) is made up of graphs of the variety depicted in
Fig. 3. We show examples of the bubble diagrams [Fig.
3(a)] and vertex corrections [Fig. 3(b)l. There are 8 dis-
tinct bubbles and 16 vertex corrections for the fourth mo-
ment. Adding up all of these contributions, we obtain the
following formidable looking expression for the fourth
self-energy moment

Lf (ij ) [(aPyij ) (Pbeik) (/haik) (agyij ) + (a yPij ) (Pbej k) (gbej k) (aygij )

+(ayPij )(Pebjk)($8ejk) (aygik) +(aPyij )(ybgjk)(ePbij )*(ceiik)

+(ayPij )(ybgik)(ebPij ) (as(ik) +(ayPij )(y(bik)(ePBjk) (a&eji)

+(aPyij)(yibj k)(ePbik) (ae&ij ) +(ayPij )(yibik)(ebPjk) (alki)e]bij.
+ (ayPij )(Pbejk)(ghejk) (ai;yij ) +(aPyij )(Pbeik)(&haik) (aygij )

+(ayPik)(Pebjk)((bcjk) (agyij ) +(aPyij )(Pbsik)(gebik) (ay&jk)

+(aPyik)(Pbeij )((ebij ) (a(yjk) +(aPyik)(ybgjk)(ebPik) (aPkj )

+ (cPyik)(y(bjk) (ebPij ) (cegjk)'*+ (ayPik)(ybgij )(ePbik) (agekj)'
+(cPyik)(ybgkj)(ePbik) (cgcij) +(aPyij)(ygbkj)(ebPik) (agekj)

+(ayPij)(y&bik)(cPbjk) (ae&ij) +(aPyij)(yg8jk)(ePbik) (cgeij)~

+ (cyPik)(ygbij ) (ebPj k) (ae&ij )~+ (ayPik) (yb&ij )(ebPik) «(ageij )~

+(aPyij)(ybgjk)(ebPij ) (aegjk) +(ayPij)(ybgik)(cPbij) (aeQk)

where for brevity (apyij )-=0 Ii„(ij ), and sums are implicit on p, y, b, e, g, k, and j in the dia
fourth moment is

gona1 part. The Van Vleck

Mg(ij ) Lg(ij )+AM) (ik)MQ(kj ), for Mfs(ij ) b J g (aPyik)(bPyik) +g(ayPij )(bPyij )
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FIG. 3. Schematic representations of graphs contributing to
the fourth moments. (a) Bubble diagram; (b) vertex correction.

A. Example 1: Heisenberg paramagnet for spin 2 .
The Hamiltonian reads

e-+J,,I(i) I(J) .
/, J
l&J

This is easily put into the form of Eq. (1). Since only
multipolar operators with L 1 appear, we abbreviate
c (1,M) by a M and

At this point the reader may wonder what advantage
has been obtained considering the ungainly Eq. (9). In
fact, these equations are useful for two reasons: (1) In the
form of Eqs. (8) and (9), it is very easy to code the mo-
ments and extract numerical results for computer simula-
tions of the dynamics of spin systems. This can be done
once and for all with the expressions above. The only
analytical work required is the evaluation of the vertices
0, which we discuss below. (2) The forms Eqs. (8) and
(9) also can facilitate the calculation of analytic expres-
sions for the self-energy and Van Vleck moments. For ex-
ample, in the solid molecular hydrogens, the dominant in-
teraction between J 1 molecules is the rather complicat-
ed anisotropic EQQ interaction. Application of the pres-
ent method makes the evaluation of the moments quite
straightforward: one just has to calculate the vertices
(these are already in the literature), s s and we find that
the diagonal part of our Van Vleck moments match those
of Harris and Hama, Inuzuka, and Nakamura.

gp„JIJ(bppbip —bplb-I„—b —lpga„l)/4 .

To obtain the second and fourth moments of I'(i,j) or
A'(ij ), we need the vertices Q. These are readily ob-
tained from Eqs. (10) and (11) and the spin- —,

' angular
momentum commutation relations which are compactly
expressed by

T [A„Ap] —b, i(bppA i+ Bp —IAp)

+b. I(bppA I+bpIAp)

+b,p(bplA1 —
Bp —1A —l) .

It is clear by inspection of the three aforementioned equa-
tions that the vertices are given by

ft pr(ij) J,J(abpp apl+ad )p)br, -p —.

Using the general formula [Eq. (8)] we see that

III. APPLICATIONS AND EXAMPLES

In this section, we consider two examples of the method
which illustrate the general approach. We first derive a
simple equation that the vertices Q,p„satisfy which will

be useful in the implementation of the method. To obtain
the vertices for a spin Hamiltonian [Eq. (1)],we note that
in frequency space

coA.(i)-g n.p„(ij )Ap(i)A„(j ),

form the Heisenberg equation of motion for A, (i) For.
the common case g,p gp„we see that

g O pr(ij )Ar(J)Ap(i)
P, x,J'

-2 g gp„(ij) [A.(I),A, (I)]A„(J) . (10)

So to find the vertices, we merely evaluate the single com-
mutator in Eq. (10), and make the obvious identifications
to specify Q. To make thinks clearer, we consider a few
examples. The first is intended to show the reader how the
IIlctllod ls llscd 111 a very slIllplc case—OIlc so sllllplc, ill

fact, that there is little advantage over the conventional
method. The full power of the technique is demonstrated
in example 2.

This is identical to the result of Ref. 2 when a 0. The
fourth moment is evaluated in a completely analogous
fashion. While the expression is unwieldly, it is simple to
code, or one could simply calculate the vertices and code
the Eqs. (8) and (9) once and for all.

8. Kxalnple 2: Electric quadrupole~uadrupole Halniltonian.

A nontrivial example of this method is the calculation
of the second and fourth moments for the EQQ Hamil-
tonian. As we briefiy indicated in the text, the site-
diagonal part of the Green's function G' are required for
a theoretical treatment of longitudinal relaxation in H2.
In this case there are five independent functions. Harriss
and Myles and Ebner have calculated the vertices Q.
They find that only two types are nonvanishing: QII,I,I„(i,j) and 021,1,2„(i,j). Equation (2) gives the diag-
onal second moment

Msl(ii) -g ~ n.py(il) ~
',

which matches Ref. 6. The fourth moment is particularly
tedious to calculate directly from the spin algebra commu-
tation relations. However, it is quite straightforward us-
ing the current method. Since most of the vertices are
zero, only a few of the terms of Eq. (9) contribute to the
diagonal part of 6 . %e find that
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o &Itt »2AtJ )o2v tt 2x(Jk) o2v »2g(jk) ot~»2„(tj) + ot~»2„(ij) oq„» ~(ik )of„,»2r(ik) o~~ 2„2„(ij)

+ o),2„,2„(ij )o», tyre(ik) o2„,tt„2„(ij)o t', 2„,2s(ik) + o (2„,,2„(tj )o )t.,g„,~(ij )o»,2„,2„(ij )o t' 2s 2„(ij )

+ o t,2„,2,(ij )o»,2„,2s(ik) o t't„,2„,2„(ij )o t g„2s(ik)

Mk (tt ) o2tn», »(tk) o11.,2v2x(tJ )olyr2v2z(tJ) o2m, lv2p(tk) + o2m, lk»(t J)o tl 2v2x(tk) olv2v»(tJ) o2m, tv, 2t(tk)

+o2~, »,»(iJ) o», &v~(J'k) of„,&,,2s(Jk) o2„»2„(ij)+ o2~, »»(ij) o2„,&, 2s(ik) o2„,»»(ij) o2~, &„,~(tk),

where sums are implicit on all indices other than i and nt,
and —2 ~ p, v,X, ri ~ 2, —1 ~ A„ tir ~ 1, and jask except
for the last term in each of the previous equations, where j
and k can be identical. Note that these expressions are
readily rewritten in analytical forms involving the func-
tion F „(i,j ) of Ref. 7. Further, it is simple to code these
expressions in the form of the vertices to obtain moments
for a given configuration of impurities: This is useful for
calculating Tt for random mixtures of ortho- and para-
Hq, for example. s

IV. CONCLUSIONS

We have obtained general expressions for the first two
nontrivial moments of resonant absorption spectra which

should be of interest for magnetic resonance work. The
method we have developed yields expressions convenient
for practical use with a minimum of detailed commutator
algebra W.e should also remark that this analysis is not
limited to spin systems: Similar equations must hold for
more general bilinear Hamiltonians.
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