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Exact results for the site-dilute antiferromagnetic Ising model on finite triangular lattices
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Exact analytical and-numerical results for the site-diluted antiferromagnetic Ising model on the
triangular lattice {AFIT) are presented. For in6nitesimal dilution the change in the free energy of
the system is related to the distribution of local Gelds, and it is shown that for a frustrated system
such as the AFIT, dilution lowers the entropy per spin. For lattices of 6nite size and dilution the
transfer matrix for the partition function is evaluated numerically. The entropy per spin shows a
marked minimum near a concentration of spins x=0.70, in some disagreement with earlier
transfer-matrix results.

I. INTRODUCTION

The antiferromagnetic Ising model on the triangular
lattice (AFIT) is a fully frustrated system which fails to
order even at zero temperature. %annier' has solved this
problem exactly by Onsager's method and calculates the
ground-state entropy per spin to S(0}=0.324 (Ref. 2) (in
this paper we take ka ——1). It is now generally accepted
that frustration is a necessary ingredient, along with ran-
domness, for a system to exhibit spin-glass behavior.
Therefore, when random quenched vacancies are intro-
duced into the AFIT, it is reasonable to consider the pos-
sibility that this system might freeze at suSciently low
temperatures.

While the general wisdom seems to be that the lower
critical dimension for spin-glass behavior is d, =3 (Refs.
3-6), Monte Carlo calculations of the distribution of lo-
cal fields for the AFIT show a pronounced "zero-field
hole" characteristic of the spin-glass state. In addition it
has been shown that for small dilution the entropy of the
AFIT decreases with dilution. This argument is repro-
duced in Sec. II.

One of the serious drawbacks of Monte Carlo calcula-
tions in a system such as this is the possibility that it will
be trapped for long times in metastable states, and for
this reason, it is useful to consider exact calculations of
the free energy. In Sec. III we outline an algorithm for
evaluating the partition function of the dilute AFIT, and
in Sec. IV we present the results of our numerical calcula-
tions. In Sec. V we discuss these results within the con-
text of spin-glass behavior.

II. FREE KNKRGY OF WEAKLY MLUTKD
ISING MODELS

The ordered phase of systems with random, quenched
impurities is a sutject of recent and current interest in
several Sclds. In this paper we consider the effect of ran-
dom, quenched vacancies on the free energy of a nearest-
neighbor Ising model.

The Hamiltonian for the dilute nearest-neighbor Ising
model is

%y

H, = gh, -S;- .
]I~

(3)

The double prime on the summation index in (3) indicates
that the sum is over vacant sites only, and h; is the local
exchange Geld at site i

h;=J g SJ

The partition function Z for the diluted lattice is

One can think of a vacancy as an occupied site to which
the exchange couplings are zero. These "ghost" spins are
completely free and contribute an entropy Xy ln2. There-
fore the trace over the spins on occupied sites can be ex-
tended for the entire lattice by multiplying the partition
function by the normalization factor 2

—pa sZ Z 2 ivy g —i i"
It 0

The ensemble average in (6) is taken with respect to the

where the prime on the summation index indicates that
the sum is over occupied sites only. N is the number of
lattice sites, and y is the fraction of those sites which are
vacant. Each site has an independent probability y to be
vacant (or occupied by a nonmagnetic impurity). The
Hamiltonian (1}is defined for a particular configuration
of the diluted lattice. If the summation is extended over
all the sites of the lattice, the Hamiltonian can be ex-
pressed as the sum of two terms 8 =Ho+H &, where 00
is the Ising Hamiltonian for the perfect lattice,

Ho ———J g S;S~ (2)
&i j }

and H, contains all the "missing terms" due to dilution,
which, ify « 1, can be written as
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Hamiltonian 80, and Z0 is the partition function for the
perfect lattice.

For su%ciently small dilution the vacancies will be well

isolated. So long as the separation between vacancies is
much larger than the correlation length we can invoke
the cluster property and replace the average of the prod-
uct in (6) by the product of the averages for single vacan-
cies. %e will in fact be interested in the limit y~0, in
which case the above argument becomes exact.

At this point we introduce into the trace (6) a resolu-
tion of the identity, 1= +„5(h —h, ), where 5(h —h, ) is
the Kronecker symbol. In the nearest-neighbor Ising
model the local 6eld takes on values which are integer
multiples of the exchange coupling J from —qJ to qJ,
where q is the coordination number of the lattice. The
partition function for a single isolated vacancy is then

o X (5(h —ho )(coshPh —SosinhPh })o,

where we have assigned the vacancy to site i =0.
The distribution function for the local field P(h) is

defined as

5
Bx

=1.593 .
x=1

This result disagrees with early numerical transfer ma-
trix calculations, ' but agrees well with the numerical re-
sults presented in Sec. IV,

III. THE TRANSFER MATRIX FOR THE PARTITION
FUNCTION

The Hamiltonian for the dilute AFIT can also be writ-
ten as

Assuming that P(h =0) does not vanish as T~D, we
see from (12) that the entropy of the AFIT is lowered on
dilution, and a similar conclusion holds for any Ising
model with local interactions and nonvanishing P (h =0).
Exact results for the AFIT at T =0 are known for the en-

tropy and P(h) (Ref. 9), which allow us to predict from
(12}that

P(h)=&5(h —h, )), .

In terms of P (h ), (7) becomes

Z, = —,'Zo QP(h)sechPh .
h

(8)

(9)

H= —J g x,x,S,Sk, J&0
&Ii &

where we now introduce new random variables x;
governed by the binomial probability distribution

P(x; ) =x5(1—x; )+(1—x)5(x; ),
As we have argued above, the contributions to the free
energy from a small fraction of vacancies Ny wi11 be addi-
tive in the limit y gg 1, and the free energy of the weakly
diluted lattice is

F =Fo+NyT ln2 NyT ln g —P(h)sechPh . (10)
h

In the case of a frustrated system, such as the AFIT,
the distribution of local Iields at low temperatures shows
a maximum at h =0 (Ref. 9), and this term will dominate
the sum in (10). Therefore we have

F =F +oNyT[l 2 —nlnP(0)] .

The entropy is given by

S = — =So —Ny[ln2 —lnP(0)]+NyT
BF B 1m(0)

0 T

where x is the mean concentration of spins on the lattice.
The partition function is given by

Z([x, ))=Tr e
' '("}', (16)

Since
PJx,.x.S,.S,

e ' ' ' '=coshpJx, x +S,S sinhpJx, x

where the prime again indicates that the trace is over oc-
cupied sites only. The trace can be extended over the en-
tire lattice if the partition function is normalized by a fac-
tor 2 ", where N, is the number of vacant sites. Thus
for a particular configuration of vacancies,

Z([x;])=2 u Tr e (17)

(12} the partition function can be written as
I

Z([x;) )=2 u g cosh(PJx;x )Tr g [I+tx;xjSS,],
&i j & &ij &

(18)

where tanhpJx, x =x,x tanhpJ =x,x t.
%e now consider a finite lattice of width X and length M. The product and trace operations are carried out in a se-

quence of steps. We begin by collecting all terms in (18) which arise from couplings between spins in a single row and
label each spin by its row and column (n, m ) and then define for the kth row

Zk(Sk „.. . , Sklv)= g (1+txk Jxk j+1Sk jSk j+1),
J

where His the number of sites in a row. Each spin Sk - is coupled to two spins in the next row Sk+, and SA. +, .
&, by

the factor

~k j (Sk+1j —1Sk+ I j &Sk j } (1+txk+1j —'lxkj Sk+ 1 j —lSkj }(1+txk+1 j xk j Sk+ 1 j k j } (20)
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Suppressing for a moment the dependence of each function on IS;J I, the trace in (18}takes the form

Tr ZM ~hf —1, 1 ~M —1,% Z2 ~1,1 ~1,% —1 ~1,XZ1

The trace can now be carried out one spin st a time starting with spin 5, ~. Let us define

~N(S2N —1&S2,NSl, i»' ' Sl,K —1 ) Tr ~1,N(S2, % —l&S2„N&S l, jv }Zl(S1,1 Sl,X )
1,%

Z2~1, 1
IsI

As each spin in row 1 is traced over, the variables from the first row are replaced by those from the second. Note that
while the Z's depend on N variables, the I"s depend on %+ 1.

Finally in the last step the trace over S, 1 gives

U2(S2 &
». . . S2 w ) = Tr W» (S2 x&Sz»S & t ) I t (S2 ) ». . . S2 tv&S &, ) .

1, 1

(24)

XZhl(SM I& ~ ~ ~, SN N } ~ (25)

Once the partition function for a particular fixed set of
vacancies has been computed, the free energy is calculat-
ed for several such distributions, and averaged, which we
denote by ( )„. Thus

p(F)„= (N—, )„ln2+ g—ln cosh(x;xipJ)
&i j & X

+[In( T I x, I )]„.

The product Z2 ——U&Z2 is again s function of the N spin
variables S2, , . . . , Sz s„and the trace over the spina in
the second row can now be carried out. %hen the penul-
timate row M —1 hss been traced over, the partition
function is given by

Z =2 u g cosh(x;x PJ) Tr
&i,j)

5nite site of the system and to the fact that we are not
evaluating the entropy at T =0. For example, the bulk
entropy per spin at T =0 is S(0)=0.324, while for the
10X 20 lattice at T/J =0.3, S =0.310.

The entropy continues to decrease with x until approx-
imately x =0.70 where a minimum is obtained. One ex-
pects that as the percolation threshold x =0.5 is ap-
proached, the contribution of 6nite clusters to the entro-

py will be large and the entropy will turn up again. Since
we are more interested in the properties of the largest
(percolating} cluster, we have "cleaned" the lattice by re-

0.40-

IV. EVAI.UM'ION OF THE FRKK ENERGY

BS
o 3J 1 61

OX
(27)

The slight discrepancy with (13) can be attributed to the

%hen the algorithm described in Sec. II is implement-
ed on an IBM 3081 computer, the evaluation of the parti-
tion function for a single choice of vacancies on a 10X20
triangular lattice takes roughly 9 s. Of course the width
of the lattice which can be studied by this method is lim-
ited by the length of the array 1'k which contains 2 +'
components. The length of the lattice M is limited only
by the largest snd smallest numbers which can be han-
dled by the computer.

In Fig. I we show the entropy per spin as a function of
concentration for T/J =0.3. The straight line passing
through x =1 is the theoretical result (13) and clearly
agrees quite well with the numerical results. The upper
curve is taken from Anderico, Fernandez, and Streit.
Numerically the derivative of S at x = 1 is

0.30-
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0.10-

0 Oy Oy 0
Oy 0+Q iyO

k I

0.50 0.60 0.70 0.80 0.90 1.00
X

FIG. 1. Dependence of tlte entropy per spin (s) on concentra-
tion for T/J =0.3 for a 10&20 triangular lattice. Straight line
through x =1 is the theoretical prediction (13). The upper
curve (0 ) is taken from Anderico, Fernandez, and Streit (Ref.
10).
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FIG. 2. Comparison of the entropy per spin (s) near percola-
tion. Upper curve (g') is lattice containing isolated clusters,
lower curve (~) is the entropy per spin of the largest connected
cluster only,

FIG. 3. Entropy per spin (s) as a function of temperature for
x =1.0 (S), x =0.90 (), and x =0.75 (O ). The solid curve is
the exact result for the in6nite lattice (Ref. 1).

moving all but the largest cluster. In Fig. 2 we show the
entropy per spin near percolation before and after clean-
ing. Figure 3 shows the entropy per spin as a function of
temperature for several values of the concentration. The
continuing decrease in the entropy with temperature for
the diluted lattices indicates a tendency toward order.

V. DISCUSSION

The transfer-matrix calculations presented here
demonstrate the strong tendency of the AFIT model to
order when diluted. These results support earlier Monte
Carlo studies of the distribution of local Selds and the
Edwards-Anderson order parameter q(t). There is a
growing body of evidence from high-temperature expan-
sions, ' numerical simulations, and scaling arguments

that the lower critical dimension for spin-glass behavior
is d, =3. However, a proof of this conjecture does not
yet exist. On the other hand, the site-diluted AFIT mod-
el does seem to exhibit some of the properties one would
expect of a spin glass. If indeed 2~d„ then a careful
study of systems which are in some sense close to being
spin glasses ought to help in clarifying the nature of the
spin-glass state.
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