
PHYSICAL REVIEWER B VOLUME 37, NUMBER 10 1 APRIL 1988

Numerical studies of Ising spin glasses in two, three, and four dimensions
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%'e present the results of numerical simulations on Ising spin glasses in zero magnetic field with

nearest-neighbor interactions on hyper-cubic lattices in two, three, and four dimensions with both

Gaussian and +J bond distributions. Finite-size scaling is used to analyze the results. In two di-

mensions (d=2) we agree with earlier work that the transition temperature is at T, =0, and obtain

the correlation-length exponent v, and the exponent g, at the zero-temperature transition for the kJ
model. In d=3 dimensions we concentrate on results for the Gaussian distribution, since our re-

sults for the kJdistribution have been presented earlier. As expected, we find similar results for the

two distributions, namely a nonzero T, but evidence that d=3 is close to the lower critical dimen-

sion. In a four-dimensional spin glass with Gaussian bonds we find that only a modest amount of
computer time is required to show that T, is nonzero with a long-range-ordered phase below T, .
Our estimates for critical exponents in d=4 dimensions agree weB with results from recent high-

temperature-series expansions.

I. INTRODUCTION

Spin glasses present a great challenge for numerical
simulations. The effects of frustration and disorder lead
to slow dynamics, with a roughly logarithmic time depen-
dence, so simulations must be run for many time steps.
Furthermore, quenched in disorder gives rise to large
sample to sample Agctuations making an average over
many samples necessary to obtain accurate results.
Nonetheless, simulations have played an important role'
in understanding basic issues in spin glasses (such as the
existence of a phase transition in short-range models and
the lower critical dimension). This has been possible be-
cause of special purpose computers, ' high-speed
general-purpose machines such as the Distributed Array
Processor at Queen Mary College, London, ' and tech-
niques such as 6nite-size scaling which allows one to
squeeze the maximum information from data on small
systems. In fact, we shall see that using a finite-size-
scaling analysis on data obtained with on1y modest com-
puter power one can obtain interesting results, such as
d =4 being aboue the lower critical dimensions, d, (rather
than d, =4 which was widely accepted for a long time).

In this paper we present the results of our simulations
on Ising spin glasses with short range interactions in di-
mension d =2, 3, and 4 in the absence of a magnetic field.
%'e have studied both a Gaussian distribution of bonds
and a binary or +J distribution to check the expected
universality of behavior when the transition temperature
T, is nonzero. Indeed, the critical exponents which we
estimate from our results presented here for the Gaussian
distribution in d =3 are consistent with those obtained
previously for the binary distribution, and our four-
dimensional results with a Gaussian distribution agree
with a recent high-temperature-series analysis for +J

bonds. The transition in d =2 is at T, =O, where the +J
distribution gives different results from a continuous dis-
tribution because it has a large ground-state degeneracy
with 6nite entropy. Our finite size scaling approach gives
results in agreement with previous large scale work for
the two exponents, g and v, which describe this transi-
tion.

Our earlier work on the three dimensional +J model
did not clearly show whether or not the spin-glass order
parameter was finite below T, . Despite inclusion of
larger sizes and lower temperatures in the finite-size-
scaling analysis from subsequent runs by A. T. Ogielski,
this question has remained unanswered. However, in
d =4 dimensions a similar analysis clearly shows order-
ing. A possible explanation is that ordering also occurs
in three dimensions but that corrections to finite size scal-
ing, which are important close to d& mask the effect for
the small lattice sizes studied. Similar effects are also
seen in power-law one-dimensional (1D) models as the
power is increased and the model becomes short range
with no transition.

The plan of this paper is as follows. Section II de-
scribes the model used and discusses the relevant quanti-
ties that we have chosen to calculate. A good deal of
thought has gone into ensuring that our simulations are
run for long enough to be in equilibrium. %e discuss in
some detail our techniques for doing this in Sec. III. Our
results and analysis for d =2, 3, and 4 are given in Secs.
IV —VI respectively, and our conclusions are summarized
in Sec. VII.

II. THE MGDKL

The standard model of a spin glass is described by the
Hamiltonian
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Xso= ~ g (S;SJ )r.
1J SV

where the ( ) z denotes a thermal (time} average for a
given realization of bonds J;~ and [ ],„a bond average.
N=L~ is the number of spins. In the paramagnetic
phase, Xso is related to the nonlinear susceptibility (the
coefficient of the i'I term in the expansion of magnetiza-
tion M = ( g,. S; )r in powers of the apphed field, h). In
an inwit@ system

(3)

H = —Q J)S;SJ
&ij &

where the exchange interaction J," between the spins S;
are treated as quenched random variables. In general S;
can be n-component vectors; however we consider only
the Ising case, where S, =+1. Further, we restrict our-
selves to distributions of interactions which have no net
ferromagnetic or antiferromagnetic tendencies. For this
pure spin glass case the J; are equally negative and posi-
tive; consequently [Ji~],„=0 where [ . ],„ indicates an
average over the bond distribution. Following Edwards
and Anderson, realistic spin glasses [randomly posi-
tioned localized moments in metals interacting with an
oscillatory Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction ~ r;i, or site diluted spina in systems where the
interaction is short range], are often modeled by spins on
a lattice with short range (usually nearest neighbor) in-
teraction described by a speci6ed probability distribution
P(J,J ). Two distributions have been used most common-
ly:

P(J; )=-,'[5J,J J)+5(J—;, +J)]
known as the 2J distribution, and

—J,"2JP(JJ)= e
2mJ

or the Gaussian distribution. In both cases the energy
scale Is chosen such that [J,.],„=1. In mean ffeld theory
the transition is at T, "=z ~z, where z is the coordina-
tion number of the lattice. We will consider
d-dimensional simple hypercubic lattices with nearest
neighbor interactions (only}, so z =2d, with the above
two distributions.

The spin-glass (SG) transition for zero magnetic field is
characterized by a divergence of the spin-glass suscepti-
bility when approached from the high-temperature
(paraniaglictlc) pllasc:

and, by hyperscaling,

P= —(d —2+g)
2

where d is the physical dimension of the system.
Thus, for a nonzero T„there are two independent stat-

ic exponents in spin glasses, just as ln uniform systems.
Below the lower critical dimension di, the low-

temperature behavior is governed by a zero-temperature
critical point, as if the system had a transition at zero
temperature (T, =0). In this case, there is an additional
relation' between the exponents prouided the ground
state is nondegenerate (aside from symmetry related
states):

2 —g=d (T, =O)

y=dv (T, =O) .

Consequently, there is only one independent static ex-
ponent if T, =0. This is not true for the +J model where
the ground state is extensively degenerate.

In Monte Carlo simulations, it is convenient to replace
thermal averages by time averages, and a natural quanti-
ty to study is the spin auto correlation function

q(t) = Q—S;(r, )S;(to+ t)
1

av

(12)

where the initial time to is an equilibration time (see Sec.
III}. Note that t in Eq. (3), and all subsequent equations,
is the time measured after the equilibration time to. For
any finite system in zero external field, q(t)~0 as t ~ oo,
because of ffips of the entire lattice. Unlike the ferromag-
net, however, for spin glasses there does not appear to be
a simple method for clear separation of the ensemble
averaged time scales for equilibrium within one free ener-

gy minimum and between minima (including lattice ffips}.
Another relevant quantity is the time-dependent four-

spin-correlation function:

(13)

(-(T—T, )

For r ~~(, f (r /g) - exp( r/—g).
The Edwards-Anderson spin-glass order parameter

below T, is given by

Xso-(T —T, )

where v is the exponent of the spin glass correlation
length g for T ~ T„and i) describes the power law decay
of the correlation at T, . Thus:

wllclc g diverges as

which is easily shown to converge to the spin glass sus-
ceptibility XsG [Eq. (3}]in the I ~ oo limit.

In fact, q(t) and XsG(t) are just the first two moments
of the distribution of the overlap

(14)

( —1 & Q(t) & 1) and it is useful to study the probability
distribution of Q(t) in the t~oo limit. In practice we
compute this distribution for times larger than to after
the initial equilibration„ thus
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1 0

P(q)= g &lq —Q(t)l
%0 to+ 1 t

(15)

are known exactly.
In addition, at a critical point, the entire overlap distri-

bution PL (q) is expected to scale according to

has the same distribution as Q(t) in the t~ao limit
(since the second system may be considered as a realiza-
tion of the first after a long time) so P (q) is also given by

0

P(q)= —y—5Iq —Q'(t))
7

av

(17)

Clearly, ps& may be obtained as the second moment of
P(q):

Xso=E f q P(q)dq

'0

QS,'(t, +t)S,'(t, +t) '
f=1 t av

(18b)

It is particularly interesting to look at the dimension-
less parameter

(19)

where ( )—:J ( )Pt (q)dq where Pt (q) is the
overlap distribution, defined by Eq. (17) for a system of
linear dimension L. In the paramagnetic phase for
T ~ T„ the spin glass correlation length ( is finite, so for
sizes L ~~(, PL(q) tends to a Gaussian around q =0 of
width -N '~ -L so g ~0. On the other hand, for
T g T„where the infinite system develops a nonzero-
order parameter, g ~1 as L ~ Oo. The temperature
range about T, in which g varies between 0 and 1 van-
ishes as L ~ ao so g is a step function at T, in this limit.
More precisely, the variation of g is given by the finite
size scaling ansatz

gL (T)=g(L "'(T—T, )),
where g is a scaling function, dependent on L and T only
in this combination. Equation (19) assumes that for large
enough sizes, L /g is the only relevant parameter. It pre-
dicts that gL(T, ) is independent of L so that curves for
different L must all cross at T„with gL(T) a decreasing
function of L above T„and an increasing function of L
below T, . Furthermore, the exponent v may be extracted
from the slopes of the gL(T) curves at T, for difl'erent L,
or by determining the v for which the data for di8'erent L
and T are best fit by the scaling form, Eq. (19). This pro-
cedure was found to give good results for the infinite-
range Sherrington-Kirkpatrick" model where T, and v

where ro ( & to ) is the number of steps which are simulat-
ed after the equilibration time to, and the sum starts at
t = to as discussed in Sec. III. It is also useful, as we shall
see in Sec. III, to calculate P (q) from two identical copies
of the system, tS (t) I and IS; (t) j, with the same realiza-
tion of bonds J, , running independently in parallel.
Then the instantaneous mutual overlap

P, (q)=Ltt'"P(qLt'") (T =T, ), (21)

where P is the order parameter exponent in Eq. (9) and P
is a scaling function with no dependence on L other than
that; which enters in implicitly through the argument of
P. The spin-glass susceptibility Xs& has the finite-scaling
form

Xso L ——"X(L' '(T —T, )),
where X is the scaling function, so that at T,

X'sG-L' " (T=T, )

(22)

Hence the exponent g can be determined either by requir-
ing that all the data for Pt (q) at T = T, can be collapsed
on to the scaling form, Eq. (21), or, more simply, from a
log-log plot of Xso against L for T= T„using Eq. (23).

III. EQUILIBRATION

It is very important to ensure that the results obtained
describe equilibrium J7uetuations One p.roblem is that we
will always be interested in temperatures below the tran-
sition temperature of the pure system, the "GriSths'
phase", where the spectrum of relaxation times tends to
infinity; there is long time tail in the dynamic correlation
functions. '3 Thus in principle one always makes an error
in a simulation of the infinite system which is over a Snite
time. However, the weight in the long time tail is small
so that in practice the error turns out to be very small and
can be less than statistical errors for simulations of only
moderate length provided one is some way above the spin
glass T, (but still in the Griffiths phase). Furthermore,
the spectrum of relaxation times is always finite in a finite
system so one can theoretically run the system for longer
than the longest relaxation time and so be truly in equi-
librium. In practice, though, one needs a criterion which
determines whether any error made in being not quite in

equilibrium is acceptably small (for example smaller than
the statistical fluctuations). We know of no rigorous such
criterion but we have found that the following procedure
works well in practice.

For each set of bonds, we simulate two independent set
of spins for to steps to equilibrate followed by v.

o further
steps, where ~0& to, to perform the averaging. The ques-
tion is then whether to is large enough. %e have already
noted that the overlap distribution can be computed two
ways, firstly using time-dependent correlation functions
for a single set of spins, Eq. (15), and secondly using two
independent sets of spins with the same interactions ac-
cording to Eq. (17). If t is very small, then Q(t) in Eq.
(15) is close to unity, so P(q) from time dependent corre-
lations is strongly peaked near q =1 and the correspond-
ing spin-glass susceptibility will be =X, much larger than
the equilibrium result. On the other hand, we start our
two sets of spins in initially random configurations so
that if t is small, Q'(t)- I/X'~, so P(q), derived from
Eq. (17) is a Gaussian of width X ', and Xso-l.
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Hence, if to is smaller than the time to equilibrate within
the desired accuracy then 7s& from the two replicas is
smaller than the equilibrium value while +so from the
time-dependent correlation function is too large. %e
evaluate Xso (and gL) these two different ways with
~o=tQ, and to given successively by the logarithmic se-
quence 10,30,100,300,1000, . . . , etc. As expected, we
6nd that our two estimates for ps& approach each other„
the replica result increasing monotonically and the result
from time-dependent correlations decreasing monotoni-
cally. Further, once the two estimates agree for some to
they continue to agree for longer times and remain con-
stant aside from statistical fluctuations showing that this
is the equIIibrium value, see Fig. 1. In Fig. 2 we see that
the corresponding two estimates for gL also approach the
equilibrium value from opposite directions.

For each value of T and L we only accepted the results
of the run if the two estimates had converged within the
errors bars. Otherwise we ran, if possible, for a longer
time to try to achieve convergence. If it was not possible
to achieve convergence within reasonable computer time,
we ignor'ed this value of T and I. in the analysis. We em-
phasize that it is much better to test for equilibrium by
requiring that two results agree than by simply looking to
see whether one result is time dependent. Since relaxa-
tion takes place slowly, roughly logarithmically, results
can appear to be independent of time even when equilibss
rium has not been reached.

The monotonic approach of the two estimates for IsG
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FIG. 2. Same as for Fig. 1, but for g&.

or g to their equilibrium values from above and below can
be physically pictured as the monotonic rise of the equi-
librium correlations from the uncorrelated case (infinite
temperature) obtained from the randomly initialized re-
plicas, and the monotonic fall of the autocorrelation from
the perfectly correlated (r =0) limit. For the models,
sizes, and temperatures studied, within our statistical
fluctuations, the two functions appear to be monotonic,
and consequently converge to each other at the equilibri-
um value. However, it should be borne in mind when ap-
plying this procedure, that it is possible in certain more
complicated models the behavior may be nonmonotonic
and near convergence of the two may not imply that the
in6nite time limit lies in between the two results. A pos-
sible example could be systems with two widely separated
length scales. In such a case, establishment of equilibri-
um over the shorter length scale may give the appearance
of near convergence of some time-dependent correlation
function which is relatively insensitive to the longer
length scale, whereas another quantity which depends
primarily on the large length behavior may be far from
equilibrium. Keeping such special cases in mind, we feel
that the procedure described above is more reliable than
others used in the literature, that we are aware of. In
particular, we have found it reliable or both short (Figs. 1

and 2) and long range spin glasses, with no evidence of
the pathological scenario discussed above for these sys-
tems.

FIG. 1. Plot of gsz for the four-dimensional model with
Gaussian interactions at T =1.4 for L =4, averaged over 100
sets of bonds. %e compute gsz both from the overlap between
t~o replicas and from spins of one replica at two dilerent times,
as described in the text, as a function of equilibration time to.
One sees that the replica value increases to the equilibrium
value monotonically whereas the "two-time" value decreases
monotonically. Once the takeo estimates agree, they do not
change on further increasing to showing that this is the equilib-
rium value.

IV. RKSUI.TS IN T%Q DIMKNSIQN5

Our results in d =2 are for the +J distribution only,
which has previously ' ' been shown to have a zero
temperature transition. The behavior of the mode1 with a
+J distribution di8'ers from that of a continuous distribu-
tion because it has a finite ground state entropy per spin.
This high degeneracy gives a power law decay of correla-
tions at T=0, so ii&0 according to Eq. (6) whereas any
continuous distribution has a unique ground state so
q=0. One interesting question is the value of g for the
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y=4. 620.5 (+J) . (26)

This is somewhat smaller than the high-temperature re-
sult of Singh and Chakravarty who find y=5.3+0.3,

+Imodel.
Figure 3 shows data for gL for various lattice sizes

averaged over between 64 and 512 bond con5gurations
chosen at random, independently for each size and tern

perature. The point at T =0 for I. =4 is obtained by ex-

act enumeration of all states for a similar number of bond
realizations, rather than by Monte Carlo techniques. We

see that the data for difFerent sizes come together only

when the value of g seems to have saturated to the zero

temperature limit [which is diFerent from unity because

of the large ground-state degeneracy so P(q) averaged

over ground states is not just a single 5 function at g = 1j.
This behavior is precisely what is expected at zero tem-

perature transition. A scaling plot of gL against L ' "Tis

given in Fig. 4 for 1/v=0. 38. From Eq. (20), all the data
should collapse on to the same curve if T', =0 and v is

chosen correctly. We see that this indeed occurs, though
not perfectly, presumably because of systematic correc-
tions to finite size scaling. Choosing different values of v

we estimate

v=2. 6+0.4 (kJ) . (24)

which agrees with earlier estimates' ' for the kJ mod-
el. Incidentally, the Gaussian distribution seems to have
a larger value of v (Refs. 18-21) indicating that the hJ
model, which has a ground-state entropy, is in a difFerent
universality class when T, =O.

Analogous plots for Iso are given in Figs. 5 and 6,
where tl =0.2, 1/v =0.38. Requiring that the low-

temperature data scales severely constrain g and we Snd

rl=0. 2+0.05 (+J) .

This is lower than Morgenstern and Binder's result,
ri =0.420. 1 but agrees with McMiiian' who finds

ri =0.28%0.04 and with a recent calculation of Bray and
Moore who get rl=0. 20+0.02. From the scaling law,
Eq. (5), the nonlinear susceptibility exponent is found to
be

1.0
d=2, +-J

0.8-
8
0
0
0 12

0.2
2

TL'38

though the error bars do overlap. %e emphasize that
these calculations cannot definitely rule out a very low T,
but, bearing in mind that T, "=2 and our data certainly
rule out a transition with T, 0.3, we concur with earlier
work that T, =0 beyond reasonable doubt. %'e also point
out that the error bars giuen are estimates that demarcate
the region beyond which the data do not scale mel1, given
the statistical errors; they do not allow for systematic errors
due to corrections toPnite size sc-aling. This is implicit in
results in Secs. V and VI as well.

V. RESULTS IN THREE DIMENSIONS

%e have carried out simulations on both the +J and
Gaussian distributions to test whether they have the same
critical behavior. Our earlier results for the +J model,

1= 2,-+J

FIG. 4. A fit to the data in Fig. 3 to the Anite size scale for-
mula, Eq. (20), with T, =0 aud 1/v=0. 38 for the kJ distribu-

tion in d =2.
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FIG. 3. Plot of gL against T for various sizes in d =2 for the
+Jdistribution. The lines are just guides to the eye.

FIG. 5. Plot of1s& against Tin d =2 for the +J distribution.
The lines are just guides to the eye.
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d=2, +J
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FIG. 6. A At to the data in Fig. 5 to the Anite size scaling for-
mula, Eq. (22), with T, =0, i) =0.2, and 1/v=0. 38.

o.a
0.50 1.00 1.50 2.00

FIG, 7. Plot of gL against T in d =3 for the kJ distribution.
The lines are just guides to the eye.

which were averaged over between 100 and 1000 samples,
showed evidence for a transition at T, =1.2, in agree-
ment with other simulations. ' Recent series expansion
results concur with both the transition temperature and
the exponents above T, . However, the curves of g for
different sizes (in Ref. 5) did not splay out below T, as ex-
pected if long-range spin-glass ordering occurs. Rather,
they stick together as if all temperatures below T, were
critical. However, Fisher and Huse and Bray and
Moore argue that the correlation function 62(r) in Eq.
(6) does not decay exponentially with r to its long-
distance value, q, below T, but rather approaches q
with a (small) inverse power of r This m.eans that below
T, the system would seem to be critical up to some
characteristic size and only for larger sizes would one see
ordering. It is therefore probable that our data below T„
which was for a small range of sizes I. & 8, was infiuenced
by this strong finite-size effect and that ordering does
occur. Recently Ogielski has calculated gL for a larger
range of sizes than we could, using the Bell Laboratories
special purpose Ising computer. In Fig. 7 we combine his
results with ours and see that the expected splayIng out
belo~ T, still does not occur. If indeed the low-
temperature phase has long-range order, we expect that it
~ould do so for larger sizes, but envisage little possibility
of demonstrating this directly by Monte Carlo simula-
tions because the equilibration time rises very rapidly
with size. A scaling plot is shown in Fig. 8, using
T, =1.2, v=1.3, consistent with our earlier values of
Tq = 1.2 0'2, and

d=3, +J

0,6-
24)

0.4-

below T, .
Of course, one could always argue that the data is con-

sistent with T, somewhat lower than 1.2 and that the
critical region is very narrow. However, one then has to
understand why the same estimate is obtained from large
(essentially infinite) size systems ' and high-temperature
series expansions.

Attempting to make the gL(T) data scale with T, =0
does not work with any value of v. The "best fits, " ob-
tained with very large values of v, show systematic devia-
tions from the scaling form as shown in Fig. 9 with
1/v=0. 13. One may argue again that the scaling region
has not been reached. However, our results for d =2,
which beyond reasonable doubt, has T, =0, do seem to
scale in the same region of T/TM".

There are other difFerences between our d =2 and our
d =3 results. For one, our gL (T) curves in d =2 do not
quite meet down to the lowest temperatures where we

v=1.3+0.3 (kJ),
i) = —0.3+0.2 (+J) .

(27a) 0.2-

Note that the data seems to scale well above T, but not
below it, presumably due to the 6nite-size corrections dis-
cussed above. Thus adding data for gz from larger sizes
docs not signi5cantly change our estimates for T or v
but neither does it resolve the problem of lack of scahng

0 2

(T-1.2}L '

FIG. 8. Scaling plot of the data in Fig. 7, fitted to Eq. (20),
with T, =1.2, and 1/v=0. 77.
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FIG. 9. Attempted scaling plot of the data in Fig. 7 accord-
iiig to Eq. (20), with T, =0 and "best fit" value of I tv=0. 13.

could equilibrate (T=0.4) which is 20%o of T, ". By
contrast, in d =3, the height T data seem headed to cross
at an actual T, of about S0% of T, ". Furthermore, in

d =2, as the curves of gt (T) for difFerent sizes approach
each other, their T dependences also diminishes, so the L
dependence and T dependence go hand in hand. This
does not appear to be so at low T in 31. The T =0 limit
of gl appears to be less than unity in d =2, consistent
with a model which has T, =O and degenerate ground
states (finite T =0 entropy), whereas the data for the +J
model in d =3 are consistent with g = 1 at T =0.

It may be argued that some of the unusual behavior
seen in the kJ model below T, is because this distribu-
tion is far from the fixed-point distribution. For this
reason, and also to check whether the kJ model is in the
saIIle ulllversallty class as a Illodel WIth a continuous dis-
tribution when T, is finite, we have made a similar study
for the case of Gaussian bonds. Results for gt (T) are
shown in Fig. 10, each point represents an average
SOO-2000 samples chosen independently for each I. and
T. Without the use of special purpose computers and be-
cause of the somewhat lower T, we were limited to sizes
with linear dimension I. &6. For these sizes, the results
look rather similar to the kJ model. The gt(T) data
come together at a critical temperature T, -0.9—1.0 and
are found to scale well with

v= 1.6+0.4 (Gaussian ),
see Fig. 11, depending upon the T, chosen (lower v for
higher T, ). These results are in good agreement with the
results of McMillan on the same model ( T, = 1.0
+0.2,v=1.8+O. S) but Bray and Moore obtain a con-
siderably larger v, namely, v=3.3+0.6. Thjs discrepan-
cy remains unexplained. Again, the data below T, do not
fan out as expected, despite the relatively strong variation
with T (more than the +Jmodel).

To obtain the exponent q we have also calculated L&z
and show a scaling plot for q= —0.45, v=1.25 in Fig.
12. Note thai Xso scales better with a rather smaller
value of v than used for gL I Figure 11. Thts possibly

FIG. 10. Plot of gL, against T in d =3 for the Gaussian distri-

bution. The lines are just guides to the eye.

I) = —0.420.2 (Gaussian), (29)

which is consistent with our values for the kJ model in
Eq. (27).

Our data for d =3 are therefore consistent with the RJ
and Gaussian distributions being in the same universality

1.0

d = 3, GRUss18A

0.8-

0.6-

0.4-

0.2-

0.0 I

(TA.Q)L
'

FIG. 11. Scahng plot of the data in Fig. 10, fitted to Eq. (20),
~ith T, =0/9, and 1/v=0. 65.

refiects corrections to scaling and the diN'erence may be a
measure of uncertainty in the exponent. It is reassuring
that the (presumably) more accurate value obtained from
the much more extensive work on the kJ model is
spanned by the two estimates of v in the Gaussian case.
Notice also that the I.=2 points do not scale well, indi-

cating that this size is too small. Our overall estimate for
'g 1s
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FIG. 12. Scaling plot Of Xso for the Gaussian distribution in

d =3 Stted to Eq. (22), with T, =0.9, rl= —0.45 and 1/v=0. 8.

FIG. 14. Scaling plot of the data in Fig. 13, fitted to Eq. (20),
with T, =1.75 and 1/v=1. 25.

class at the Suite T„though the error bars are somewhat

large, particularly for the Gaussian case.

In order to clarify whether the apparently marginal be-
havior we find for T g T, in d =3 is generic to the low-

temperature phase of short-range spin glasses or is special
to three dimensions, we have performed simulations for a
Gaussian bond model in four dimensions. Our results for

gl ( T) for 2 &L & 6 are shown in Fig. 13 where each point
is an average of 200-800 samples. The curves indicate
T, =1.75+0.05 and they do fan out below T, showing
that long-range spin-glass order occurs below the transi-
tion. Note that the mean-field estimate for the transition
temperature is TM"=v 8=2.83. Except for L =2 the
data scales both below as well as above T, as shown in

Fig. 14 where we have used a correlation-length exponent

v=O. 8. In three dimensions too, L =2 did not scale well;
we suspect this is perhaps because periodic boundary
conditions cause double connections for this size, and
only this size. We estimate the range of v allowed by our
data to be

v=0. 8+0. 15 (Gaussian) . (30a)

l3ata for ps& are plotted in Fig. 15 while the scaling plot
is shown in Fig. 16. These imply

q = —0.3+0.15 (Gaussian),

wliich coiilbiiled with Eqs. (30a) and (5) gives

y=1.8+0.4 (Gaussian) .

(30b)

(30c)

The above value for y agrees well with a recent estimate
of y=2.0+0.4 obtained for a +J distribution from high
series expansions. 7 Although the error bars are large, the

1.0

0.8 "

d = 4, GBUsslafl &03
i

d = 4, Gaussian
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FIG. 13. Results for gL against T in d =4 for the Gaussian
distribution. T, is estimated to be 1.75+0.05 from the intersec-
tion of the curves. The curves for diferent sizes splay out below
T, showing that the spin glass order parameter is nonzero. The
lines are just guides to the eye.

2.0 3.0

FIG. 15. Data for +~6 in d =4 for a Gaussian distribution.
Note the logarithmic scale.
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in d =2, where the transitions is at T,'=0, the kJ and
Gaussian distributions have difFerent critical behavior.
However in the higher dimensions, d =3 and 4„where T,
is nonzero, they appear to be in the same universality
class. Our Snite-size scaling results show that conven-
tional long-range ordering takes place below T,

' in d =4.
This may also be true in d =3, though a simple finite-
size-scaling analysis of our data remains at variance with
this result. A plausible explanation is the existence of
large corrections to finite-size scaling in d =3 owing to
the proximity of the lower critical dimension of short-
range Ising spin glasses.
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VII. CONCLUSIONS

We have carried out a fairly comprehensive study of Is-
ing spin glasses on hypercubic lattices with nearest-
neighbor interactions in two, three, and four dimensions.
Using finite-size scaling of data obtained via Monte Carlo
simulations on a toide range of lattice sizes, we find that
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