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Correlations in the one-dimensional almost-half-filled band
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By a numerical study of finite-size lattices a picture is presented of the spin correlations around a
hole in the almost-half-611ed band Hubbard model. Using an efkctive Hamiltonian in the large-U
limit, systems with up to 15 sites have been studied. In the same limit the two-hole correlation has
been calculated and a weak attraction found between the two holes at finite, compared to infinite U.

I. INTRGDUCI'ION

Numerical diagonalization of the Hamiltonian matrix
for finite-size lattice systems has been used to study the
correlations in the Hubbard model. ' Recently there has
been renewed interest in this model for the case of the
almost-half-filled band, partly due to the proposal of the
two-dimensional model as candidate for the explanation
of high T, superconductivity. The calculation, however,
of correlation functions of the full Hubbard model by ex-
act diagonalization has been limited to lattices of the or-
der of six sites by the large dimension of the basis set.

In this work, by using an elective Hamiltonian in the
large-U limit, " the problem reduces to one of dimension
similar to the calculation of spin- —, chains and systems up

to 15 sites can be studied. In the same limit Takahashi
has previously explored the spin of the ground state for
some two- and three-dimensional lattices. The results
presented here form a qualitative picture of the spin
correlations in the one-dimensional (1D) model. Presum-
ably this picture is particular to the 1D lattice as the to-
pology of the lattice is crucial. From the work of Lich
and Mattis it is known that the spin in the ground state
of the 10 Hubbard model is quite generally the minimum
allowed, while by Nagaoka's work, for many three-
dimensional lattices at the infinite U limit and almost-
half-filled band, it is the maximum allowed. On the other
hand, the nature of' the ground state in two dimensions is
still under discussion.

In the following I first discuss the effective Hamiltoni-
an used in the numerical calculation, its symmetries, and
range of validity. Then the spin correlations around a
hole are shown and compared to the spin correlations of
the Heisenberg spin- —,

' chain. Finally the hole-hole corre-
lation function is presented.

II. EFFECTTj.VK HAMILTONIAN AND METHOD

I consider the Hubbard model on a one-dimensional
lattice with periodic boundary conditions

H= —r g(e; c;+, +H. c. )+Urn;&n;i, i =1, . . . ,N

where c; (c; ) are annihilation (creation) operators of a
fermion with spin cr = t, J, , n; =c; c;, M the number of

fermions, and X the number of sites. In the cases studied
M g X. In the large-U limit an effective Hamiltonian can
be derived to order (r/U) acting only between states
with M singly occupied sites and N —M empty sites.
Within it the number of empty sites (called holes) is well
defined as in the large-U limit double occupancy of sites
is only virtually allowed. The efFective Hamiltonian con-
sists of three terms: the kinetic energy of the hole

Th l Qcirrcl+ I a+H'c'

a Heisenberg spin- —,
' chain-type term

0 =(&'/U) g (cr o —1)

where the sum over sites excludes the empty sites (rr; are
Pauli spin matrices), and two terms involving next-
nearest-neighbor hopping of the hole, with and without
Hip of the intermediate spin

Tq ——(& /U) g(c; i oc;o)n; o(c;~c;+ , i)o
l, 0'

+(c~, c, )n, (et c, ~, )+Hc.
For even number of sites the Hamiltonian is electron-hole
symmetric and the results are valid for the doubly occu-
pied sites if M & N. This efFective Hamiltonian preserves
the translational and rotational symmetry of the Hubbard
model and so the eigenstates are characterized by their
total momentum K and spin S. Using the translational
symmetry, the Hamiltonian matrix is diagonalized in
every K rnomenturn subspace separately. The lattices
studied are divided in two sets: up to 15 sites with N —1

fermions (one hole) to calculate the spins correlations
around the hole and up to 12 sites with X —2 fermions
Italo holes) to calculate the hole-hole correlation func-
tion. In the first set the maximum dimension of the re-
duced basis set is 3432 (for 15 sites) while in the second
set it is 1386 (for 12 sites). Standard routines were used
to diagonalize the Hamiltonian matrix for small size lat-
tices and the Davidson method for the largest size ones.

To check the range of validity of the calculation I com-
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pared the energy levels obtained from the efFective Ham-
iltonian to the ones from the full Hubbard model for lat-
tice sizes up to six sites. In the range of coupling
0 &r/U ~0.25, the error is found to be of order (r/U)
or less than 10%. The results presented are in this range
and all the quantities are calculated for the ground state. 00

III. CORRELATION FUNCTIONS

The first set of results are for lattices with N =7, 11, 15
sites and X —1 fermions. They are chosen because they
have a nondegenerate ground state with spin S =0 and
total momentum X=0 for all t/U In .other cases, hav-

ing a degenerate ground state for U=0, there is some-
times crossing between ground states with difFerent spin
and momentum, cases not included in the Lieb and
Mattis analysis. Qualitatively, however, the correlation
functions behave similarly.

In Fig. 1 the ground-state expectation value of the hole
kinetic energy operator is presented for %=11 in the
range O~r/U~0. 25. In this range there is a reduction
of the order of 5% in the kinetic energy of the hole due to
spin fluctuations. It is remarkable, however, that this
reduction is practically independent of the size of the sys-
tem (of the order of one in a thousand between N =7 and
15 sites) suggesting that the screening of the hole is a lo-
cal efFect.

Next, in Fig. 2, the spin-spin correlation

g, (n) = &/, o;+,o', +„)
as a function of distance n from the hole for %=15 is
shown. The operator A, =(1 n, &

)(1 n; —l ) d—etermines if
the site i is empty. Again, as for the hole kinetic energy,
the results are, within a few percent, independent of the
size of the system. Also plotted is the &o';o';+„&)
correlation for the Heisenberg spin- —, chain with periodic
boundary conditions and &o;o'„) with open ends for a
lattice with 14 sites. The latter can be simply obtained by
setting the matrix elements of the hole kinetic energy and
next-nearest-neighbor hopping equal to zero. There is
short-range antiferromagnetic order with the spin corre-

FIG. 2. Spin correlation g, (n) = (A;o';+ ~a*;+„)for the lattice
~ith %=15 sites. The symbols are for t/V=0. 01; 0 for
t/U=0. 25; ———,—for a Heisenberg spin chain with

periodic boundary conditions and open ends, respectively.

lations almost identical to that of a spin chain with
periodic boundary conditions for r/U~O. As is shown
in the Appendix, the two systems would have identical
correlations in this limit if the next-nearest hopping was
not included. For t /U & 0 the hole becomes heavier and
the spin correlations resemble those of the spin chain
with open ends. They can be closely reproduced by a
Heisenberg spin chain model where the spins at the ends,
corresponding to i —1 and i +1, are linked with a bond
of strength J' =J[1 a( t /—U) ) for small r /U, with
o, =2.8.

This efFect can also be probed by looking at the
nearest-neighbor spin correlation

as a function of the distance n from the hole. In Fig. 3
this correlation is shown for the lattice with 11 sites and
compared with the value for the Heisenberg spin- —,

' chain:

FIG. 1. Hole kinetic energy (in arbitrary units} as a function
of coupling t /U for the lattice vnth N =11 sites (t = 1}.

FIG. 3. Spin correlation g2(n) = ( A; a ;*+„cr,'+„+,) for the lat-
tice with N = 11 sites. The symbols are for t /U =0.01; o for
t /U =0.25; —for a Heisenberg spin chain with open ends and
the straight line for periodic boundary conditions (pbc}.
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—( —;)(In2——,'). For r/U~O the values coincide while

for finite t/U deviations develop which decay away from
the hole. Increased antiferromagnetic order appears in
every second-neighbor pair. If the lattice eras deformable
a distortion probably would appear favoring the forma-
tion of spin singlets around the hole and increasing the
hole mass.

The question arises if the antiferromagnetic order ob-
served is favored by the even number of spins in the lat-
tices presented. For odd number of fermions the z com-
ponent of the spin in the ground state is —,

' and maybe a
ferromagnetic configuration is favorable for the spins
neighboring the hole. In Fig. 4 the correlation function

g, (n) is plotted for the lattice with ten sites and nine elec-
trons. The spin in the ground state is S=—,

' and the
momentum X=2(2ir/N). The correlation between the
two spins neighboring the hole remains antiferromagnet-
ic, while the nonzero z component of the total spin is ac-
counted for by a gradual turning of the spins around the
chain.

These results can be discussed in the context of the
theorem by Nagaoka that the ground-state spin
conSguration is ferromagnetic for many two- and three-
dimensional lattices in the limit t /U~0 This. is also the
argument for the formation of magnetic polarons around
vacancies' in solid He, for instance. The basis of the
proof is that all spin con5gurations in two and three di-
mensions can be reached by moving the hole around the
lattice. For a 10 lattice this is not possible. Although a
local ferromagnetic polarization around the hole is not
excluded, the numerical calculations above and the argu-
ment in the Appendix show that antiferromagnetic corre-
lations are favored.

Finally, in Fig. 5, I present the hale-hole correlation
function

g„„(n)= &A, A, +„)
for the 12-site lattice with ten fermions and coupling in
the range O~t/U~0. 25. For t/U=O the two holes

or Q35
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FIG. 5. Hole-hole carrelation g„„(n)= (A;A;+„) for the lat-
tice with %=12 sites. The symbols are for t/U=O; o for
t/U =0.25. In the inset the mean-hole distance (x ) (in arbi-
trary units) as a function of coupling t/U for the same lattice.

2
g (tt)=hh

2'
1 —cos n

There is a weak attraction between the holes due to spin
ffuctuations which can be quantified by plotting (in the
inset), the mean distance of the two holes

&x & = —g ng»(n), n = I, . . . , W/2
1

E
as a function of r/U, normalized to the number of sites

d r /U =O, & ) —,'+1/ '. I a o ld

note that turning o8' the third term in the eftective Ham-
iltonian, the next-nearest-neighbor hopping, reduces the
attraction between the holes. Because of the limited size
of the lattices studied in these numerical calculations it is
difficult to conclude if, at finite density, the holes form
bound states or what the properties of the hole liquid
may be.

behave as spinless fermions and the correlation function

g&b is given by
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APPENDIX

FIG. 4. Spin correlation g, (n) = (A';u';+, o', +„)for the lattice
with %=10 sites. The symbols are for t/U=0. 01; o for
I. /U =0.25; —for a Heisenberg spin chain with open ends.

In this section an argument is presented that shows
that the spin correlation g, (n), for a lattice with N sites
in the limit t/U~O and neglecting next-nearest-neighbor
hopping, is equal to the spin correlation of the Heisen-
berg spin- —, chain on X —1 sites. It is as if the spins on

sites i —1 and i + 1, around a hole on site i, are connected
with the same coupling as the rest of the spins around the
ring. The argument holds for (N —1)/2 odd which is the
case for the lattices studied.
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The starting point is the observation by Brinkman and
Rice that the hole kinetic energy operator Th repeated-
ly applied, starting from some arbitrary parent state (with
one hole and X —1 spins), moves the hole around the ring
and creates a subspace of M)&X distinct states with
M =X—1 in general. Every S applications, the hole re-
turns to the original position but the spins are in a
configuration translated by one site. This remark will be
used later in the argument. If the parent state has some
symmetry then M &(N —1); M is an integer. The com-
plete basis set is therefore divided in a number m of sub-
spaces by this procedure. The structure of the Hamil-
tonian in each subspace is like that of a 1D tight-binding
model of dimension M g N, with energy spectrum
e= —2t cosk, k =2@k,/MN; A, is an integer. Therefore,
for t /U= 0, the hole kinetic energy Hamiltonian has, in
the ground state m, degenerate eigenfunctions of momen-
tum k =0 and energy —2t.

To proceed, degenerate perturbation theory to order
t/U must be applied between these m states for the
second term H, in the efFective Hamiltonian. It should

be noted again that H, is a Heisenberg-type Hamiltonian
but on an X-site lattice with one empty site. The main
point of the argument is that 0„in the space of the m

degenerate ground-state eigenfunctions, has identical ma-
trix elements to the k=a. irreducible representation of
an (N —1)-sites Heisenberg spin- —,

' chain for (X —1)/2
odd. To construct the basis states in the k =m irreduc-
ible representation the translation operator is repeatedly
applied on a parent state. The number of states so creat-
ed is again m and by construction similar in structure to
the Th eigenstates, which concludes the argument.

For (N —1)/2 even, the ground-state momentum of
the corresponding spin chain is k =0. In this case the
spin correlations between the two systems are diferent
for t/U~O„ the efFective Hubbard Hamiltonian having
stronger antiferromagnetic spin correlations. For
(N —1)/2 noninteger, the spin correlations resemble, in

magnitude, those of (N —1)/2 odd but there exists no
study for the corresponding spin chain.

'Present address: Research Center of Crete, P.O. Box 1527, 711
10 Heraklio, Crete, Greece.

'H. Shiba and P. A. Pincus, Phys. Rev. 8 5, 1966 (1972); H. Shi-

ba, Prog. Theor. Phys. 48, 2171 (1972); A. M. Oles, G. Tre-
glia, D. Spanjaard, and R. Jullien, Phys. Rev, 8 34, 5101
{1986).

2C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B 36, 381 (1987)
and references therein; J. E. Hirsch, Phys. Rev. Lett. 54, 1317
(1985);F. Gebhard and D. Vollhardt (unpublished).

3P. %'. Anderson, Science 235, 1196 (1987); A. E. Ruckenstein,
P. J. Hirschfeld, and J.Appel, Phys. Rev. B 36, 857 (1987).

~A. B.Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).

M. Takahashi, J.Phys. Soc. Jpn. 51, 3475 (1982).
6E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).
7Y. Nagaoka, Phys. Rev. 147, 392 (1966).
G. Cisneros and C. F. Bunge, Comput. Chem. S, 157 (1984).

9J. C. Bonner and M. E. Fischer, Phys. Rev. 135, A640 (1964);J.
Borysowicz, T. A. Kaplan, and P. Horsch, Phys. Rev. B 31,
1590 {1985).

G. Montambaux, M. Heritier, and, P. Lederer, J. Low Temp.
Phys. 47, 39 {1982)and references therein.

"%.F. Brinkman and T. M. Rice, Phys. Rev. B 2, 1324 (1970).
' L. F. Mattheiss, Phys. Rev. 123, 1209 (1961).


