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Using a first-principles total-energy pseudopotential method, we investigate the transition mecha-
nism for a pressure-induced martensitic transformation hcp~bcc which occurs in Mg at pressures
around 50 GPa. Two internal structural degrees of freedom are selected and one lattice is
transformed into the other by relaxing these two parameters continuously. One of the parameters
characterizes the relative displacement of the hexagonal layers and corresponds to a transverse pho-
non at the Brillouin-zone edge A in the hexagonal structure. The other characterizes the distortion
of the internal hexagonal angles and corresponds to uniform strain along one of the [0010]„,~ direc-
tions. The interaction between these two distortion modes causes important anharmonic effects in

the zone-edge phonon and provides a low-energy path for the structural transition. The small ac-
tivation barrier at the transition indicates that quantum fluctuations between the two structures
could be taking place.

I. INTRODUCTION

A large number of metals exist in close-packed phases
and under pressure or heat they transform into another
close-packed phase. These are called martensitic trans-
formations' and for more than 60 years they have been
subjected to thorough investigation.

The relationship between the transformed and the orig-
inal phases is identified by means of x-ray difFraction
techmques which show that in several cases there exist
definite crystallographic relations between the orienta-
tions of the newly formed and the parent crystals. These
relations suggest that the process of transformation can,
in general, be described by homogeneous deformations of
the initial lattice by contractions or dilations or shears
parallel to certain planes and directions. Typical exam-
ples of these transformations are the tetragonal distortion
which relates the bcc and the fcc structures, known as the
Bain strain, or the homogeneous shear of every pair of
hexagonal planes along the [1100]h,v directions which
transforms the hcp structure with ABAB. . . stacking
into the fcc phase with ABCABC. . . stacking along the
[111]t„direction.

Less known, however, is the relationship between the
hcp and the bcc phases which was first analyzed by Bur-
guers in Zr (Ref. 2). This metal exhibits a temperature-
induced bcc~hcp transition in which the hexagonal
crystal is formed with its (0001)„,v basal planes paraBel to
the (110)b„planes of the cubic crystal, with one of the
directions [0010]h, parallel to one of the [001]b„direc-
tions. This relationship between orientations suggested a
possible transition mechanism which can be described by
two strains: a uniform contraction along the [001]b„
direction and an internal shear of the (110)b„planes
along the [110]b„directions displacing every second lay-
er to the hcp position.

Although the relationship between the crystallographic
directions of these two phases is suggestive, the mecha-

nism that drives the transition is not easily identified. An
early theory suggested that the internal shear of the
(110)b„planes could be caused by a softening of the cor-
responding phonon mode. The lack of evidence for this
softening later led to the suggestion that the transition to
the high temperature stable bcc phase in many metals
was driven by an excess of entropy in the bcc phase
which had a phonon spectrum on the average lower in
energy than the hcp phase. From the point of view of
electronic structure, the high-pressure bcc phase has a
preference for electrons in the d statess since they partici-
pate more actively in forming bonds when nearest-
neighbor distances decrease.

More recently the temperature-induced bcc~hcp
transition was studied by assuming a free energy Landau
expansion in terms of these two strain components and
mapping the problem into a two-dimensional magnetic
analog with the martensitic transition symmetry. The
model was then investigated by using Monte Carlo simu-
lation and the results suggested that the transition could
be caused by strong anharmonicities. Although the mod-
el was simple, it motivated a total energy calculation of
such a transition in Zr (Ref. 7) in which the temperature
dependence of the phonon frequencies was treated using
a perturbative formalism.

An ideal way to study the mechanism of the martensi-
tic transformation is to investigate directly the shape of
the free energy surfaces with respect to the thermo-
dynamical variables including all internal structural de-
grees of freedom. At zero temperatures within the static
lattice approximation this can be achieved by using the
6rst-principles total energy techniques to compute the
structural energies of the pressure-induced martensitic
transition.

In this paper we investigate such energy surfaces at
zero temperature in Mg, where a typical martensitic
transformation hcp~bcc occurs for pressures around 50
GPa. This is done by using the pseudopotential method
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within the local-density-functional formahsm which has
been successful in studying various structural properties
of metals, semiconductors, and interfaces. This paper is
organized in the following way: Sec. II contains a
description of the hcp~bcc transition in terms of the
minimum structural degrees of freedom, which are the
parameters necessary to determine the energy path for
the transition. In Sec. III we give a brief account of the
calculational procedure together with the main results of
the hcp~bcc transition. The conclusions are presented
in Sec. IV.

II. DESCRIPTION OF THE TRANSilIQN

To understand the bcc~hcp phase transition and the
correct variables that describe it, it is helpful to examine
the two structures from the following perspective: Fig.
1(a) shows the bcc structure in which some of the (110)
planes have their distorted hexagons drawn with heavier
lines. These hexagons have two central angles 8=70.53'
and four others equal to 54.77'. The stacking of these
planes along the [110] direction is according to the
ABAB. . . sequence, which is similar to the stacking of
the hexagonal layers in the hcp structure. Each atom, for
instance in the A layers, lies on top of (below) a "bond"
between two second-nearest-neighbor atoms in the 8 lay-
ers (on "bridge" sites). In the hcp phase the atoms lie on
top of centers of triangles formed by three equidistant
atoms (on "hollow" sites). Therefore, the minimum ener-

gy path from the bcc to the hcp phase may result from a
simultaneous distortion of the angle 8, i.e., strain along

[001]~direction, and a displacement of the atoms in the
8 layers from the bridge to the hollow sites [see Fig. 1(c)].
From this perspective it appears that the values of these
two variables should be strongly correlated and as the
atoms of the 8 layers move from the bridge sites towards
the hollow sites, the second-nearest-neighbor atoms form-
ing the bridges in the A 1ayers are allowed to come
closer. This reduces the angle 8 approaching 60' and
eventually becoming Srst neighbors in the hcp structure.
Figure 1(b) shows the hcp structure with an embedded
body centered cube distorted according to the above re-
cipe.

Consider now the c/a ratio in the hcp structure which
results from this combination of shear and strain. Since
the distance between the (110)planes in the bcc structure
does not change by simply changing 8 and x, the final
c/a ratio is equal to the ideal &g/3. To see this consider
the bcc and hcp phases as particular cases of a general
triclinic structure which has'two basis vectors oriented as
indicated in Fig. 1(c), and the third one perpendicular to
these two vectors. In the bcc phase c corresponds to
twice the distance between the neighboring (110)&,
planes, i.e., ~2b where b is the lattice constant, while a is
equal to (v 3/2)b. This relation suggests that in an ideal
hcp~bcc transition, the c/a ratio, which is a possible
degree of freedom, should be approximately constant.
In this study most of the results were obtained without
relaxing this parameter since its largest departure from
the ideal value occurs in the hcp structure where
c/a=1. 623 and the changes in the total energies ob-
tained by relaxing it are insigni6cant compared to the en-
ergies involved in the relaxation of the degrees of freedom
x and 8.

IG. CALCULATIONS AND RESULTS

A. General asyects

FIG. 1. Structural relatiqnship bet@seen the hcp and the bcc
phases. {a)The distorted hexagons in the (110)planes of the bcc
structure. (b) Distorted body-centered cube imbedded in the
hcp structure. (c) Transformation of the (119)1„,plane into
(0001)h,„plane ~here the atomic movements are indicated by
arrovn.

The present calculation uses the pseudopotential total
energy method within the local density approximation
(LDA) (Ref. 10) to calculate the total energies per atom
of the solid in difFerent structures. We used a plane-wave
expansion corresponding to energies up to 12 Ry and
chose 112k points in the irreducible Briiiouin zone (BZ)
of the common triclinic structure, which corresponds to
48k points in the BZ of the hcp structure. To describe
the exchange correlation potential we used the %igner in-
terpolation formula. " The pseudopotential was generat-
ed from the same atomic configuration used in a previous
calculation however, a core correction is added to the
exchange correlation potential. ' This leads to a more
repulsive pseudopotential with respect to the previous
calculation and slightly increases the values of lattice
constants and bulk modulus. Our results are summarized
in Table I while the total energy curves, which are 6t to
the Murnaghan equation, ' are displayed in Fig. 2.
VA'thin the range of volumes and pressures studied the
calculated and measured c/a ratios are shown to be ap-
proximately constant.

Figure 2 illustrates the nature of the structural transi-
tion we are studying. Because the two structures have
similar structural energies along a considerable range of
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TABLE I. Comparison of the calculated structural properties of Mg with experiment and other cal-
culations.

c(A)

hcp

3.7'
3.5'
3.54'

3 18'

3.16

3.21

5 16'
5.09b

5.21'

3 5'

3.54'

P (GPa)

VT

V()

hV
Vo

hcp~bcc
transition

60'
50'
57'
50+6'

0.58'
0.56'
0.59+0.2'

& 1%'

=1%

Cohesion (e'4I'/pair)

1.61
1.623
1.62'
1.64
1.51

1.54'

'This w'ork (vrithout zero-point motion corrections).
bPseudopotential calculation (Ref. 12).
'Experiment (Ref. 16).
dExperiment (Ref. 17).
'GPT and LMTO (Ref. 5).
'Experiment {Ref, 15).

volumes around the transition, there is a small change of
volume involved in the transition. A small relative shift
of energies between the two phases can generate a rela-
tively large uncertainty in the transition pressure Pr or
transition volume Vr.

Table I shows that the calculated transition pressure is
a little larger than the experimental value while the tran-
sition volume is shghtly smaller. This suggests that the
bcc total energy curve should be shifted by a small
amount toward the hcp curve to give agreement with ex-
periment. This shift could be caused by the difference in
zero-point motion energies Ezp between the two struc-
tures. This difference can be estimated by using the Be-
bye model in which Ezp ———', k~ea, where ea is the De-
bye temperature. In the hcp phase this correction is 6
mRy/pair (eha"=400). Although for the bcc phase the
Debye temperature OD' is not known, we follow Friedel
and assume that the overall phonon spectrum in this
phase has lower energies, which are expected to scale
with the number of neighbors, i.e., 8 for bcc and 12 for
fcc and hcp, and hence the en' should also scale with the
same factor. We conclude that (Ezg Ezp ) =2—
mRy/pair at zero pressure and that a relative shift of the
two curves by this amount would bring our result for the
transition pressure in good agreement with experiment.
This argument has already been shown to be important to

explain the temperature-induced phase transitions in
Be.'8 At zero pressure and temperature the energy order-
ing of Be phases is (hcp, fcc,bcc), but it transforms into
the bcc at 1530 K. In this case the lower phonon spec-
trum of the bcc structure is responsible for an excess of
entropy in the bcc phase with respect to the other 12-fold
coordinated structures, and at high temperatures the
Gibbs free energy favors this phase.

8. The transition

The transition is studied by selecting the variables V, x,
and 8, which specify, respectively, volume, internal shear
of hexagonal layers, and internal hexagonal angle. The
shear corresponds to a transverse phonon at the zone
edge A in the hcp phase or N in the bcc phase. The angle
8 corresponds to strain along the [0010]h, or [001]b„
directions. To convert the variable V into nearest-
neighbor distances a„recall that a„"=0.866V' and
"' =0 891V'an
Figure 3 shows the total energy curves of the distorted

structures as a function of the variable x. Each dashed
curve corresponds to a dift'erent angle L9 as specified,
while volume is kept fixed and equal to 0.6VO, where Vo

is the equilibrium volume of the hcp structure. The value
x =0 corresponds to the hcp structure, while x =1 corre-
sponds to bcc. This figure displays strong correlation be-
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FIG. 2. Total energy curves of the hcp and bcc structures as
a function of the primitive cell volume. The inset shows the
similarity of energies between the structures around the transi-
tion which is indicated by the arrow.
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tween the two variables and for each angle, the layers dis-
place with respect to each other to minimize the energy.
This correlation between variables results in an opening
of the bonds forming the bridges in the A layers as the
atoms in the 8 layers move from the hollow to the bridge
sites.

The lower solid line corresponds to the energy barrier
between the two structures and is obtained by minimizing
the energy U(x, 8,0.6V&) with respect to 8 at specific x's.
The observed correlation between these variables causes
strong anharmonic sects in the zone-edge phonon under
consideration and provides a low-energy path for the
transition. It can be seen that at this volume the barrier
height is approximately 3 mRy/pair, which is smaller

1.63—

CQ

1.62—

V = 0.6 Vo

than the zero-point motion energy of both structures (at
this volume Ez'ii'=7. 0 mRy and Ezp =4.7 mRy in the
Debye approximation). Hence at this volume both struc-
tures seem to be accessible in terms of energy, and quan-
turn Auctuations could take place between them.

In Fig. 4 the c/a ratio which minimizes the energy at
V=0.6Vo is displayed. The points were obtained by

maintaining the parameter 8 constant and equal to that
which minimizes the energy at the ideal c/a ratio at the
respective value x. As expected (see Sec. II), this ratio
approaches the ideal value 1.633 when the layers move
toward the bcc position and x approaches 1.0. The relax-
ation of this degree of freedom decreases the energy by
less than 0.1 mRy/pair with respect to the ideal ratio.
This value is much smaller than the energy gained in the
relaxation of the parameters x and 8, therefore it is kept
equal to 1.633 in the rest of this study.

Figure 5(a) displays the shape of the barriers at three
different volumes around the transition, while Fig. 5(b)
shows the dependence of the angle 8 on the displacement
parameter x. These energy barriers correspond to the
upper-bound limit since relaxation of other degrees of
freedom, beside x and 8, could decrease them slightly.
They also reveal the overall lower phonon spectrum of
the bcc phase. As pointed out before, the zero-point
motion energies Ezp, at the equilibrium positions, are
larger than the barriers heights; therefore, there is a con-
siderable chance that the barriers are frequently tun-
nelled and the transition to happen back and forth. Al-
though we do not include Ezp in the computed free ener-

gies, we keep it in mind because it imposes a limit on the
predictions a static theory can make. The present study
indicates that the considered transition pushes the static
approximation to its limit and there is a large uncertainty
in the particles position. This behavior, together with
nonhydrostatic stresses, could be causing the pressure
range of coexistence between the two structures, a situa-
tion which is not particular for Mg but is a common as-
pect of many reports on pressure- or temperature-
induced martensitic transformations.

The similarities between the internal energies of the
two phases in a wide range of volumes around the transi-
tion indicate that pressure, which is the driving mecha-
nism of the transition, and volume are interchangeable

0.0 0.2 04 0.8

FIG. 3. Calculated total energies as function of the two pa-
rameters x and 8 which describe the lattice deformation:
8„,~=60, x„,~=0.0, Hb„=70.530, xb„=l.0. The volume is
Sxed and equal to 0.6Vo, where Vo is the equilibrium volume.

1.61
0.0 0.2 0.8 1.0

FIG. 4. Calculated c/a ratio as function of the parameter x
{see text).
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provided the coupling of the variables x and 8, as indicat-
ed in Fig. 3, are appropriately incorporated.

The above point is worth considering in detail because
similar expansions can be tried for other pressure-
induced martensitic transformations whenever equivalent
variables x and 8 can be identified. For example, the
fcc~hcp transition, typical of Co and Co alloys, can be
described by a successive displacement of every two ad-
joining (111)fgg planes toward the [112]r direction. Such
a displacement transforms the (111)«, plane with
ABCABC. . . stacking into (0001)h, planes with
ABC'S. . . stacking. Even though the two structures are
formed by perfect hexagonal layers with all internal an-
gles equal to 60', the angle whose bisector corresponds to
the direction of displacement must also deform during
the relative movement of layers, since bridges of second-
nearest-neighbor bonds are crossed during this move-
ment. The fcc~bcc transition can also be described by
relative displacement of layers in which (ill)&„, with
ABCABC. . . stacking, transforms into (110)b„, with
ABAB. . . stacking of distorted hexagonal layers. This
mechanism proposed by Nishiyama' is different from the
Bain tetragonal distortion typical of carbon steels and
usually invoked to explain the fcc~bcc transition. A
proper account of the correlation between the variables x
and 8 can be fundamental in determining the lowest ener-

gy path between the two structures and therefore the
mechanism of transition.

IV. CONCLUSIONS

FIG. 5. {a) Minimized energy difkrences as a function of the
parameter x indicating the relative stabi1ities and the energy
barriers between the hcp and the bcc phases around the transi-

tion; these volumes correspond to the following pressures: , 43
GPa; 8, 60 GPa; )&, 80 Gpa. 4,

'b) Dependence of the angle 8 on
the parameter x for the three considered pressures.

thermodynamical variables within this range. Therefore,
a direct calculation of the difference between the internal
energies U ( V', g; S =0) of the two phases corresponds
approximately to the di8'erence in the Gibbs free energy
6 (P', g T =0}. In these expressions g represents inter-
nal structural degrees of freedom, 5 =0 is the entropy at
T =0 and

V g=cte V= V'

(Ref. 19). This means that the energy barriers plotted in
Fig. 5(a) correspond to the Gibbs free energy at the fol-
lowing pressures: , 43 GPa; 0, 60 Gpa; &, 80 GPa.
From this perspective it can be seen as a typical-first or-
der phase transition in which pressure is the driving force
and x is the order parameter. If desired, a free energy ex-
pansion in powers of x could be attempted, similarly to
the Landau expansions which describe temperature-
induced transitions. These expansions can be successful

%e have performed a first-principles total-energy study
of a pressure-induced hcp~bcc martensitic transforma-
tion in Mg. This is done by selecting two internal
structural degrees of freedom and distorting one lattice
into the other by changing these two parameters continu-
ously. One of them characterizes the relative displace-
ment of the hexagonal layers and corresponds to a trans-
verse phonon at the zone edge A in the hcp phase or at N
in the bcc phase. The other characterizes the distortion
of the internal hexagonal angles and corresponds to
strain along the [0010]h,p or [001]b„directions. A strong
correlation between these two parameters is observed.
This causes important anharmonic effects in these zone
edge phonons during the transformation and provides a
low-energy path for the structural transition. This corre-
lation between the two structural parameters is possibly a
typical feature of the other martensitic transitions be-
tween closed packed structures, since similar displace-
ments of layers are involved in most cases.

A close inspection of the free energy surfaces reveals
that at the transition the activation barrier involved is
smaller than the zero-point motion energies of the two
structures. This suggests that, at this point, quantum
fluctuations between the two structures could be taking
place.
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Although the interchangeability of V and P around the transi-
tion, as displayed in Fig. 2, is clear only at gh, ~

——(x =0.0,
8=60.00 ) and fb„=(x =1.0, 8=70.53'), it is also true at
other intermediary g's. A direct calculation of U(V, g), as
displayed in Fig. 5, shows that the total energy curves as
function of volume for intermediary f's are also parallel to
the hcp curve, and the largest departure of parallelism occurs
in the bcc phase.


