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Using a combination of Monte Carlo and analytical techniques we present an analysis of the
random-walk problem of a particle diffusing in a system with energetic disorder. The particle is al-
lowed to hop anywhere in the lattice and the rates vary exponentially with distance. We consider
the number of new sites visited, the average energy, and diffusivity as a function of time and temper-
ature. Deviations from mean-field theories are most pronounced at low temperatures when the re-
laxation can “freeze” at dead ends and deep traps. The Monte Carlo data can be summarized in
terms of generalized analytical relations with a wide range of applications.

I. INTRODUCTION

An inherent feature of a glass is that both the ground-
state energies as well as the excitation energies of its con-
stituting elements are subject to a distribution much wid-
er than one would expect for a system in thermodynamic
equilibrium. Both the structure of the glass itself and the
electronic excitations of its basic units are therefore sub-
ject to relaxation, towards equilibrium. The relaxation
rate depends on the energy distribution of the sites in-
volved in the diffusion process and the strength of inter-
site coupling.

The relaxation process can involve single-particle
motion, the diffusion of two-level systems in glasses,‘
multiparticles, or spins such as in spin glasses,' for exam-
ple. Even when the process does not involve many parti-
cle transitions or processes involving groups of atoms, the
final equilibration dynamic can often be modeled in terms
of an effective single particle undergoing random walk in
a spatially and energetically disordered network. The
connection between energy relaxation, random-walk, and
spin-glass relaxation has been discussed recently in the
paper by Larsen.?

In this paper we focus on the question of how fast an
electronic excitation, an exciton or a charge carrier, gen-
erated at time ¢ =0 at an arbitrary site of a glass loses en-
ergy by moving incoherently within the density of states
(DOS) distribution of site energies. In doing so we draw
heavily on previous work, both experimental** and
theoretical,’~® establishing the existence of two types of
relaxation regimes distinguished via the ratio of the
spread of the site energies relative to kT. For a disorder
parameter 0 /kT $6, o being the width of the DOS, as-
sumed of Gaussian shape, relaxation is aided by occasion-
al thermally activated jumps of the excitation. The site-
specific contribution to its total energy decay as

3

—Ae~Int with a tendency to saturate at
(8e),==—0?/kT.% For o /kT >>6 thermally activated
jumps are eliminated.

Therefore, a particle may be unable to escape from an
even moderately deep state within the DOS. Relaxation
is slowed down and has been predicted to follow a
Ae~Inlint law.® Both relaxation regimes have recently
been discussed in relation to carrier hopping with the ex-
ponential distribution of tail state of amorphous inorgan-
ic semiconductors such as a-Si.”> The “nonactivated re-
laxation” (NAR) mode, often termed the regime of pure
hopping down motion, is realized at short times, while at
a moderate degree of disorder particles enter the regime
of “activated relaxation” (AR) after a critical time, called
the segregation time tg. For t >tg excitations redistri-
bute by thermal excitation to transport states and subse-
quent recapturing in deeper states.

An exponential DOS realized in amorphous inorganic
semiconductors!® allows for approximate yet simple
analytical treatments of the transition between both
transport modes.!! Unfortunately, its replacement by a
Gaussian DOS, more appropriate for organic glasses,'>!®
renders the problem intractable in any simple terms.
Movaghar and co-workers™»’ have applied an effective
medium approach (EMA) to treat the case of moderate
disorder and extracted an asymptotic solution from an
exact analytic calculation of the NAR relaxation case’
without, however, being able to combine both relaxation
regimes and the transition among these by an unified
analytical approach. Bearing this difficulty in mind we
have conducted a Monte Carlo (MC) computer study to
unravel the complexities of excitation transport within a
Gaussian DOS. Special emphasis will be placed on the
rate of relaxation and transport as a function of site con-
centration, focusing on the question whether or not dilu-
tion of a hopping system leads to freezing in of the relax-
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ation process, i.e., an AR—NAR transition, as does tem-
perature reduction. A discussion of the results in terms
of an extension of previous analytic approaches will lead
to a unified description of diffusion and energy relaxation
in disordered hopping systems with an arbitrary degree of
disorder.

II. SIMULATION TECHNIQUE

The simulation system was a lattice of cubic symmetry
with lattice constant @, consisting of (101) point sites;
see Ref. 14 for computational details. Dilution has been
modeled by labeling the sites randomly as transporting or
nontransporting sites via their energy. Imposing an ener-
gy difference of 3 eV between both restricts excitation
transport to the former. A Gaussian DOS for the ener-
gies of the hopping sites has been established by picking
random numbers from a Gaussian distribution of random
numbers of width o. After generating an excitation at
random within the DOS the random walk is followed as a
function of time. The motion is governed by an intersite
jump rate

(Ej—e")
kT

voexp(—2yR;;)exp | — y Ej>E;,

veexp(—2yR;;),
Rij= |Ej—§i| ’

€; <&,

where v, is a prefactor, and y denotes the inverse decay
length of the localized wave function, the time scale of
the computation is set by #,=1[veexp(—2ya)]~! which
is the residence time of an excitation at an arbitrary site
of an energetically degenerate system. Equation (1) im-
plies intersite coupling via the exchange interaction, valid
for triplet excitation in molecular solids and charge car-
riers. The neglect of an energy matching condition for
downhill jumps is justified by low-temperature triplet
transport studies in organic glasses* which suggests that
energy dissipation does not limit the intersite hopping
rate. This is readily explained in terms of the rich pho-
non spectrum of amorphous solids affording acceptor
modes for virtually any quantum to be released in the
course of a downward jump. Motion of an excitation is
followed as a function of time employing previously test-
ed MC programs'*!® allowing an excitation to survey 342
acceptor sites from any site it momentarily occupies. The
time frame of the computation covered 10 decades. It
was subdivided into 200 logarithmically equidistant inter-
vals. At the end of each interval the number of jumps
N(t) an excitation has executed, the number of new sites
S(t) visited, the energy E(t) of the site relative to the
center of the DOS the excitation occupies, as well as the
mean-square displacement [Ar(t)/a]?, are stored. We
checked that averaging near the individual events occur-
ing within the time intervals has no effect on the statis-
tics. The computation is terminated at T=10"¢,. Typi-
cally 3000 excitations per parameter set have been fol-
lowed, the site energies being reset after every twentieth
excitation.
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ITII. RESULTS

A valuable feature of MC simulation is that it allows
keeping track of an excitation during its random walk
across a sample. This provides a handle on the details of
particle dynamics not generally amenable via experiment
or analytic techniques that rely on an effective medium
approach (EMA). A quantity of interest for the descrip-
tion of stochastic transport processes is the number of
new sites $(¢) an excitation has visited after a time ¢. In
Fig. 1 we present plots of both S(#) and the total number
of jumps N (), executed in an undiluted sample (¢ =1) at
temperatures T=25, 77, and 250 K, respectively,
equivalent to disorder parameters o /kT=42, 13.6, and
4.2, respectively, for 0 =90 meV which is a realistic
choice for organic glasses. While for t/t,=10,
N (t):§(t), N(t) increases faster than S(z) at longer
times. Finally a linear ¢ dependence is approached be-
cause the probability of an excitation to encounter a pair
of energetically deep sites where it keeps oscillating
without contributing to diffusion increases with time.

A first illustration of the interplay between nonactivat-
ed and activated excitation dynamics is contained in Fig.
2 showing S(t) versus logt /t, at variable o /kT. In the
strong disorder case, o/ kr: 42, thermally activated pro-
cesses are eliminated and S(¢) grows as

S(t)~(Int /1) , 7)

where n is an exponent.

As o /kT decreased, thermally activated processes are
turned on at progressively shorter times giving rise to an
additional thermal contribution §'7(1) to §(2). § ()
no longer follows a logarithmic time dependence but
varies as t“% characteristic of dispersive transport, the
dispersive transport, the dispersive parameter a decreas-
ing with increasing temperature (o values are 0.6, 0.55,
and 0.22 for 0 /kT=4.2, 4.5, and 13.6, respectively). At
long times, 8§ D(¢) curves approach a linear ¢ dependence
signaling dynamic equilibrium characterized by a time-
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FIG. 1. Number of new sites S(¢) an excitation has visited
after a time ¢ (left scale) and total number of hops executed,
N(t) (right scale) as a function of normalized times and degree
of disorder. The ¢, is the dwell time of an excitation at an arbi-
trary site of an undiluted lattice composed of isoenergetic sites.
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FIG.2. Svs logt/t, plotted on a double-logarithmic scale for
different o /kT. Data points in this and the following figures are
taken from continuous computer printouts.

dependent distribution of hopping rates. As shown in
Fig. 3, 8§ M(¢) as a function of concentration reveals the
expected decrease of a as the sample becomes more and
more dilute. This illustrates the role of growing spatial
disorder on the degree of dispersion of excitation trans-
port in a system of both energetic and positional disorder.
The variation of a with concentration prevents casting
the dependence of 8§ M(c,t) into a simple analytic expres-
sion. We only note that for /15> 10%8 M(c,t/1,
=const) rises superlinearly with c.

In summary we note that the functional dependence of
S(t) is a criterion for distinguishing among activated and
nonactivated excitation motion. At finite T the transition
between both transport modes extends over several de-
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FIG. 3. Time dependence of § (7(t) resulting from thermally
activated hopping (0 /kT=4.5). Parameter is the relative con-
centration c of transport sites, a is the dispersion parameter, in-
ferred from the slopes.
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cades in time revealing the broad distribution of individu-
al event times. For o /kT=4.5, henceforth designated as
the moderate-disorder case, activated dispersive motion
dominates essentially the entire time frame of practical
interest, while at o /kT=13.5, henceforth termed the
strong-disorder case, nonactivated motion prevails up to
five or six decades in normalized time.

Tamor'® has computed the quantity S(1) versus  as a
function of ¢ using MC on a cubic lattice with nearest-
neighbor hopping only and an exponential density of
states. He finds an excellent fit to a dispersive law of the
type S (t)~t* where a(T) increases with temperature and
approaches one above a critical temperature. His data
suggest that the particle is “quasilocalized’ even at finite
T (low T) meaning that 88(¢)/At —0 as t — o, or, in oth-
er words, that the diffusitivity vanishes in the long limit.
The quasilocalization in this case must be related to the
nearest-neighbor hopping model. For infinite-range hop-
ping as allowed in this paper the equilibrium long-time
diffusivity must necessarily be finite for T > 0.

The fact that S(z) appears to obey a weaker time
dependence, namely (2), than in Tamor’s work is related
to the temperature and the time regime. One has to dis-
tinguish several situations rather carefully. In the first
place there is the situation T—0 where the particle ex-
periences no returns at all to the origin. Here the sites
become more and more depleted after each step and there
is rigorously no long-time diffusion. The (In#)"° with
ny=d, the dimensionality of the lattice is rigorously true
in this limit. On the other hand for T > 0, there is, strict-
ly speaking, always a steady state with D(f— 0 )50 so
that in the strictly asymptotic domain S(z)~t¢ when
T >0. This dependence may, however, be “experimental-
ly” unattainable for finite times and the time law will
behave as S(t)~t* for a large portion of the curve.
Indeed we can conclude that for times for which there is
essentially no return to the “origin” (or closed loops), i.e.,
t <tg, the (Int )" law characteristic of T—0 is the correct
representation. As time progresses and loop processes
take place, ¢ > ¢, and we crossover from the NAR to the
AR regime when approaching a steady state, a gradual
change to t%, and finally ¢ should take place. Finally, one
should also note that it is very difficult to distinguish (2)
from t* as a—0 or T—0.

The similarity between diffusion on a disordered lattice
and an effective fractal lattice has been discussed in the
work of Tamor. The nature of diffusion and trapping on
real fractal lattices has been investigated by Blumen
et al.V

The energy of the relaxing excitations relative to the
center of the DOS and normalized to o is portrayed in
Fig. 4(a) which demonstrates that increasing the degree
of disorder in an undiluted sample has no effect on the
short-time relaxation yet reduces the rate of relaxation at
longer times. In accord with intuitive reasonging Figs.
4(b) and 4(c) show that the rate of relaxation is slowed
down upon sample dilution. In the moderate disorder
case, ( E(t)) /o approaches a Int law at long times. Anti-
cipating the result of the data analysis to follow (Sec. IV)
we note that the relaxation pattern observed for
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FIG. 4. Computer printouts for the mean energy (E) of an
excitation, normalized to the Gaussian width o of the DOS, as a
function of time and concentration. Comparison of (E(t)) /o
for undiluted lattices and o /kT=42, 13.6, and 4.2 (a), respec-
tively, (b) and (c) show {E(z)) /o for 0 /kT=13.6 and 4.5, re-
spectively, at various concentration c.

o /kT=42 and 13.6 is of the In In? type and thus a signa-
ture of the freezing effect occurring in the low-T/large
disorder case.

Analysis of the energy relaxation function is to some
extent hampered by small-amplitude oscillations seen in
the computer printouts for E(t)/o. Their correlated ap-
pearance at different concentrations rules out insufficient
MC statistics as a potential reason. Instead, we have to
consider that the structure of the simulation lattice gives
rise to metastabilities as far as jump statistics and, con-
comitantly, energy relaxation is concerned. If, for in-
stance, an excitation becomes temporarily localized at a
low-energy dimer site within which it keeps oscillating,
the probability of escape from one of the sites is reduced
because the probability of occupying the escape site is re-
duced. The fact, that the oscillations vanish if AE(z)/a
is plotted versus §(t) (see discussion) supports this no-
tion.

The velocity at which an electronic excitation or a
charge carrier generated in an amorphous structure is
transported is governed by the time derivative of its
mean-square displacement, D(t)=d[AR%(t)]/dt. While
being constant in the case of Gaussian transport,
(a=1)D(t) decays with time if motion is dispersive. We
present in Fig. 5 plots of d[(AR*(t)]/dt as a function of
time on a log-log scale for o0 /kT=13.6 and o /kT=4.5,
respectively. In both cases D (¢) can be represented to a
good approximation by power laws.. We note, however,
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FIG. 5. Mean-square displacement of an excitation per time
interval At as a function of time and concentration and for
o /kT=13.6 (upper plot), 0 /kT=4.5 (lower plot).

that the slopes approach the value dictated by
D(t)~dS8(t)/dt~t*"" only in the long-time limit. This
illustrates that inferring the time-dependent diffusivity of
an excitation from its mean-square displacement rather
than from dS(t)/dt is an approximation rigorously
justified only at longer times. For o/kT=4.5 and
¢>0.1, D(t) tends to saturate at long times indicating
that the system is approaching dynamic equilibrium. In
the strong-disorder case a approaches unity in the long-
time limit. It is, however, obvious that in a real experi-
ment probing transport of triplet excitations in diluted
systems the asymptotic law may not be reached within
their intrinsic lifetime.

10 °F O/kgT=4.52

D(t/t,=10% (arb. units)

FIG. 6. Mean diffusivity of an excitation after a time
t /t, =10’ as a function of concentration.
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We finally show in Fig. 6 that at a given time the
diffusivity scales linearly with concentration for ¢ <0.1
and begins leveling off for ¢ 0.1. This is clear evidence
against the existence of a percolation threshold at times
where the transporting particles have not yet reached dy-
namic equilibrium.

IV. DISCUSSION

A. The strong-disorder case

The large body of MC data collected for disorder pa-
rameters o /kT=42 and 13.6, where the nonactivated re-
laxation (NAR) regime is strictly or approximately real-
ized, allows detailed comparison with the analytic T—0
version of the Movaghar, Ries, and Griinewald® (MRG)
relaxation theory for a Gaussian DOS. While this theory
predicts a short-time behavior identical to that following
from the EMA at arbitrary T, the asymptotic long-time
behavior should obey a characteristic double logarithmic
time dependence

alnln(vg) ™" (3a)

where
ay(t)=(n/6)[In(vyt)]¢ ~'F . (3b)

n is the site density, d is the dimensionality of the lattice,
and F= f exp(—2yR;;)dR;; is the spatially averaged
overlap factor controlling the jump rate. More rigorous
analytic treatment yields a proportionality factor of
about 3.5 in Eq. (3a). From the T'=0 theory for the ener-
gy of an excitation and its diffusivity it follows immedi-
ately that the dependence on time and concentration is
given by a function of the form

—voF(R )N

tim=n [ *dR(1—e ). @)
0

Evaluation of the integral leads to a scaling relation be-
tween the relative concentration ¢ =na? and the reduced
time tvo=t,. In the short-time limit a linear scaling law
ty—ct; is recovered, while in the long-time limit,
ty(c)—c[In(¢;)]. This implies that at short times, E(t)
curves should only exhibit a parallel shift only if plotted
versus In(time), while at long times their slopes should
also change. In the latter case universality is restricted to
plots of [{ E(t))/0 ] versus In In(time).

Plotting the ( E(t)) /o data for o0 /kT=42 on a (E /o )?
versus In Invyt scale (Fig. 7) confirms the functional rela-
tionship implied by the T=0 theory and shows that the
asymptotic long-time behavior is quantitatively
recovered. For o /kT=13.5 deviations are noted at times
where thermally activated transitions become important
leading to a faster decay of ( E(t)) /0. Relaxation curves
for variable concentration tail off asymptotically into a
family of parallel shifted straight lines again in corro-
boration of theory. Unfortunately, the nonvanishing
thermal contribution to relaxation at o /kT in the long-
time limit, precludes a rigorous test of the c(Int, ) scaling
relation. Nevertheless, an approximate check is provided
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FIG. 7. ((E)/0)* vs Inlnvyt for o/kT=42, ¢=1, and
0 /kT=13.6 at variable concentration, respectively. The dash-
dotted curve is the asymptotic behavior predicted by the analyt-
ic T'> 0 theory.

by extrapolating those sections of the [{ E(t)) /o ]* versus
Inlnvyt plots that are parallel to the asymptotic part of
the ‘“ideal” o/kT=42 curve. The abscissa intercepts
Inln(vyt,) yields 47/3(ya)  In(vyt)*=0.940.2 indepen-
dent of concentration for 1>c¢ >0.02. Without further
documentation we note that the changes in the functional
dependence of S(z) as a function of concentration, im-
plied by Eq. (2), can also be accounted for in terms of the
above scaling argument. We thus conclude that the
MRG T —0 relaxation theory provides a quantitative
description for energy relaxation in systems with strong
energetic disorder and variable concentration, or, more
generally, variable coupling among the sites active in
transport. Nevertheless, we wish to add a cautionary
note regarding uniqueness of the functional form of
(E(1))/o. The weak time dependence implied by a
double-logarithmic law precludes distinguishing among
Eq. (3) and a relation of the form (E)/o ~Inlnvyt on
the basis of the quality of a data fit alone. Plotting MC
data on a (E)/o versus Inlnv,t scale would reveal a
similarly good qualitative fit for ¢ > 0.3, systematic devia-
tions being noticeable only for lower concentrations. It is
the quantitative agreement which demonstrates the su-
periority of Eq. (3).
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Analysis of the MC data affords a possibility of getting
deeper insight into the statistics of the relaxation by in-
troducing the number of sites and excitation visits in
course of its random walk as a variable not explicitly con-
strainted in the analytic treatment. Plotting (E) /o as a
function of § (Fig. 8) demonstrates that for $> 1, (E ) /o
varies as InS, the slope decreasing by about a factor of 2
upon reducing ¢ from 1 to 0.05. It indicates that the in-
cremental energy loss an excitation suffers per jump to a
site not visited before decreases in proportion to 8. Since
this behavior is independent of T (see also Sec. IV B) it
proves that the dilution of states an excitation faces in the
course of NAR does not only slow down its motion but
imposes a tendency towards hopping at constant average
energy which, however, will not be reached at realistic
times for large o/kT. It is remarkable that for
o /kT=42, where the { E ) /o ~In§ law is strictly obeyed,
an excitation has lost an energy of ~2.3¢ after having
visited above five new sites, requiring seven decades in
normalized time. Considering the logarithmic time
dependence of S(¢) (see Fig. 2) we conclude that the total
number of new sites a particle can visit in course of a
real-time experiment over the time frame 4 < ¢ < 10", is
of order 10 only.

Deviations from the (E)/o ~InS relation are noted
for § <1 and §24. The latter indicates the onset of
thermally activated hopping processes (see Sec. IV B).
For §51, (E) /o is =8 as expected, since an excitation
on average started at the center of the Gaussian DOS will
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FIG. 8. (E)/o vs § plotted on a lin-log scale for

o /kT=13.6 for various relative concentrations. For compar-
ison the data set for o0 /kT=42, ¢ =1 is included.

on average have three nearest-neighbor sites it can jump
to without restriction.

B. The intermediate-disorder case

The changes in the relaxation pattern that occur upon
increasing o /kT from 13.6 to 42 are best seen by com-
paring plot of {E) /o versus S (Figs. 8 and 9). The tran-
sition from the nonactivated to the activated relaxation
regime, barely noticeable in the o /kT=13.6 data, is now
clearly visible via the change in slope of (E) /o versus
InS curves as the fact that [{ E ) /o] versus (§) continues
to follow a logarithmic dependence. Although onset of
thermally excited motions depresses the overall time scale
of the relaxation process, it slows down the rate of relaxa-
tion if expressed in terms of the energy released to the lat-
tice per new site visited. Raising T temporarily elevates
an excitation to an energetic level from where its chances
for finding relaxation paths is increased, yet by the same
token does thermal agitation counteract energy dissipa-
tion. It is remarkable that apparently the {E) /o ~InS
law is retained suggesting that it is specific for a given
DOS. An increase in T may be considered as a renormal-
ization of the DOS a relaxing excitation is able to survey.
We conjecture that this functional dependence is related
to the form of the DOS. The analytical treatment of Sec.
V will support this notion.

Figure 9 also indicates that (i) decreasing o /kT leaves
the NAR regime unaffected, (ii) approach of dynamic
equilibrium, where the mean energy of an excitation
equilibrates at (E _ )/0 ~o /kT sets in for § of order of
10%, and (iii) reducing the site concentration causes an up-
ward shift of the segregation energy Eg at which the
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FIG.9. (E) /o vs § plotted on a lin-log scale for o /kT=4.2
and variable concentration. The inset shows the variation of the
segregation energy Eg with concentration. Eg is defined via the
intersection of asymptotes as indicated.
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NAR —AR transition occurs. Eg values, defined via the
intersection of the (E ) /o versus InS slopes characteriz-
ing the NAR and AR regimes, vary logarithmically with
¢ (see the inset of Fig. 9).

Analyzing Eg as a function of ¢ and T allows a cri-
terion for occurrence of the NAR — AR regime to be es-
tablished. The fact that 3({ E5)/0)/dInS remains virtu-
ally constant upon reducing c clearly demonstrates that
dilution does not induce an AR—NAR transition as one
might surmise by qualitatively comparing of (E(t,c))
plots for moderate and strong disorder (Fig. 4). Instead,
the quantitative relation between Eg and c, included in
Fig. 9, can be translated into a relation between ¢ and the
number of hopping sites Ng at E < E, that are accessible
via nonactivated jumps:

E.Y
N,=c(2m0?)~'2 [ exp[ —(E —E,)*/20°ME .  (5)

It turns out that ¢,=N;/N=0.013+0.003 for 0.02 <0
< 1. This is the accord with the notion that the
NAR—AR transition is determined by the competition
between nonactivated downhill jumps and activated
uphill jumps, the probability for the former being solely a
function of N;. At a given temperature (E (c)) must
therefore be determined by the condition N (cE,)=const.

Since uphill jumps are activated, E, at constant ¢ must
experience an upward shift upon increasing T and the
segregation time ¢, after which the mean energy of an ex-
citation has dropped to E; must decrease accordingly.
Meanwhile we know both from theory*%!®!® and experi-
ment?®?! that the interplay between nonthermal and
thermal transitions among the localized states of a Gauss-
ian DOS leads to a non-Arrhenius T dependence of the
mean hopping rate after attainment of dynamic equilibri-
um. It relates to the fact that the mean energy within a
Gaussian DOS at which excitations settle in the long-
time limit and which on average is the activation energy
required for transport varies as o2 /kT.

Indeed the long-time diffusivity within a Gaussian
band has been evaluated explicitly using analytical and
MC techngiues. From Ref. 7 we have that

D _(T)=Dyexp[ —(T,/T)*], (6a)

where T, is a constant proportional to the width o of the
DOS. The crossover time f, to equilibrium varies as
t7D  =const and a=0.45 (see Ref. 7). The present MC
results, shown in Fig. 10, confirms the applicability of
this concept to the entire time domain relevant for ac-
tivated jump processes. It documents that the segrega-
tion time or equilibration time obeys the relation

2

+(a/kT)

(o /kT)y (6b)

ts(c)/to= A(c)exp

with kT;=0.210 for ¢=0.5. The data points for c=1
suggest that varying c¢ leaves (o /kT), unaffected
[A(c =1)=10?]. The slope parameter (o /kT), yields a
characteristic temperature T,=24400 (T in K, o in eV),
which is the equivalent of the activation energy in a con-
ventional Arrhenius expression. Numerically T, is about
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FIG. 10. Log-lin plot of the normalized segregation time
ts/to vs (o /kT)>.

a factor of 3 less than the value found for diffusion T, in
the t — oo limit. This is due to the fact that at the begin-
ning of thermally activated processes an excitation is
sampling easy activated transitions only.

The condition that during an experimental time scale
no NAR—AR transitions occurs, is #;/tg> teyy/to-
Taking 1, /to=10"? yields o /kT >23 equivalent to
T <50 K for 0=0.1 eV which is a typical value for the
width of the DOS charge carriers in random organic
solids. 202!

We end this section by comparing MC and EMA re-
sults. In doing so we draw on the scaling relation con-
tained in the EMA in the limit 7=0, namely, ¢, —ctv,F.
It implies that upon varying the concentration energy re-
laxation curves —(E(t)) /o should experience a parallel
shift along the time axis when plotted on a Inv,t scale the
slope remaining virtually unaffected. Although Fig. 11
bears out common features quantitative differences are,
however, evident at low c. Recalling that the EMA does
not properly account for the freezing in of energy relaxa-
tion in the T—O0 limit because it notoriously overesti-
mates relaxation paths, we attribute the discrepancies

(E)o

10g gV, 1)

FIG. 11. Comparison of the rate of energy relaxation predict-
ed by the effective medium theory (EMA) with the MC result
for 0 /kT=4.5. Parameter is the concentration.
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FIG. 12. Comparison of the diffusivity as a function of time
predicted by EMA and the time derivative of the mean-square
displacement of an excitation inferred from simulation. Param-
eter is the concentration.

seen in Fig. 11 to the spurious neglect of dead ends in the
network of random walks in diluted systems. This
neglect becomes more severe as the actual number of re-
laxation paths occurring in a real system is reduced by ei-
ther eliminating thermally assisted hops or by dilution.
While in the former case the system tends to become
completely localized at T— 0, concentration-inhibited re-
laxation favors hopping transport at an elevated energy
level within the DOS (see above). As a consequence, the
diffusivity calculated by EMA approaches a ¢t ! law at
low c in formal analogy to the T— « case while MC data
indicate the occurrence of dispersive transport. We note,
however, that the shortcomings of EMA are less severe
regarding diffusivity (Fig. 12) than they are regarding en-
ergy relaxation.

V. ANALYTICAL CONSIDERATIONS

The MC results and discussion presented above have
uncovered a series of important empirical relationship
which deserve closer examination from an analytical
point of view. The most important relation found is the
approximate proportionality

[{E8)) /0 P=7(T)In§ 7

with a proportionality constant ¥(T) which depends on
T. Let us attempt to derive the relationship between
(E)and § analytically by first considering the T—0 lim-
it. We argue that after having performed s steps (neces-
sarily new sites at T—0), the average energy lost between
the (§+1) and the (§) step can be _anywhere in the ener-
gy distribution up to the energy E(S); thus

E@+1-ES)= [V ar Ep(E) (®)
where p(E) is the density of states. For a Gaussian of
width o the integral on the right-hand side (rhs) can be
done analytically and expanding the left-hand side (lhs) as
a continuum we have
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In the limit § — o (long times) we obtain
EX8)/20*=In§ (10)

which is almost the empirical MC result (7). To check
the consistency of (10), we now use the MC result for S
versus ¢t as given by (2), and indeed recover the exact
asymptotic analytical law (3) and plotted in Fig. 7 for the
MC data provided that the exponent n in Eq. (2) is n =3.
The scaling with site concentration is also given by (3).
The deviations between the analytic and empirical obser-
vation are obviously well within the possible errors asso-
ciated with asymptotic long times, temperature effects,
and deviations from perfect linearity in the MC plots of
Fig. 8. Finite-T effects can be included in (10) by adding
to the rhs a term due to activated processes and given by

dE
88

The next question concerns the relationship between this
result and the MC result (2) which gives S(¢) as a func-
tion of t. Can we derive this analytically? First let us ask
the following question: Can we derive a rigorous relation
between the mean-squared displacement [Ar(t,e)/a]?
also written as (R*(g,t)) and E(e,t) using the T=0
theory from Ref. 8. For convenience we have defined € as
the start energy of the particle.

First we note that from the very basic integral equation
for E(e,p) and D(g,p) given in Ref. 7 it follows that
SE 8G(1)
ot et =8,

~ E°:§)dE’E’e —EVKINE') . (11

A

SE,

,E—(t—-r) ’

+2I‘, fo’dTG,-?(r)W,-

(12)

where G)=exp(—t3,W,) and W); are the jump rates.
We can relate this equation to the analogous one for the
diffusivity if we write, for the configurational average of

the first-order term of Eq. (60) in Ref. 8,
(3 REWyexp [~ S Wat ) =D
1

:75@,.,:)%(6,.‘,?(:)),.(—1)

(13)

and neglect the time dependence of 73 as defined by (13).
We also note that in the long-time limit, the initial energy
dependence also disappears so that E(g;,t) and D(g;,t)
are independent of €; as t — .

From (12) and the corresponding one for D(g,t) we
thus obtain in the present (very good) approximation the
general relation

=8 (¢ 1)~ E AD (e, 1) (14)
ot Fi

which is valid as long as we can neglect the time depen-
dence of 73 from (13) and where AD is the time-
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dependent part, i.e., AD=[D(t)—D(t— «)]. This rela-
tion (up to weak functions of time and energy) should be
valid even at finite 7. Indeed Eq. (14) is even more accu-
rate if the initial energy dependence is averaged over with
some distribution function. Equation (14) can be verified
at T=0 by using the results derived in Ref. 8 for E(¢,t)
and D(g,t).

For the case T strictly=0, we can in principle derive
an even more accurate relationship between D(g,p) and
E(g,p) using (12) and (13). This is, however, beyond the
scope of the present paper.

The neglect of the time dependence of the 73 term as
expressed by approximation (13) is clearly justified when
looking at the diffusivity D(g,t). The reason is that a
quick estimate using the exact result indicates that one is
neglecting terms of order (Int,)™, 1 <m <3, in compar-
ison to a factor of ~¢ ! at T=0. This clearly becomes a
problem when we are now looking at { R%(¢)), since the
integrated diffusivity is itself a function of (In¢;) or even
weaker as expressed by (3). We conclude, therefore, that
the general relation (14) in the long-time limit, together
with the complete neglect of time dependence of 73, is
reasonable for D(e,t) but not for ( R%(¢)), where indeed
the 7 (¢) effects dominate the time dependence. In view
of the above remarks and the fact that MC also measures
S(t) as expressed by (2), it is now important to attempt a
rigorous derivation of S(t) at T—0. This we shall now
demonstrate.

A. The numbers of new sites visited at 7=0

At T'=0, every site visited in the presence of energetic
disorder, is necessarily a new site. If between the Nth
and (N +1)th jump the energy lost is expressed as
J N p(e')de’ as shown in (9), then the effective site densi-
ty py(€) which the particle sees after N steps is of order
(Gaussian p)

pn(e)~exp(—N%% /207) , (15)

where Ey is the average energy relaxed between the N
and (N +1)th step. Since every site is a new site the
mean-squared distance moved should behave as

s
(R? =L 32, (16)
n=1

where S is the number of new sites visited and r? is the
mean-distance squared corresponding to the nth jump.
This distance clearly grows with n since the number of
available sites is decreasing after each jump. Indeed, us-
ing (19) we have

1
{n exp[(—mE,,)?/202]}2* °

72~

()]

where n denotes the total density of sites and should not
be confused with the index m. At T=0, the sum on the
rhs of (16) is dominated by the last term in the series, so
that

Seg

1
n2/3

2
(R2)~ exp % . (18)
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For a Gaussian we have already evaluated € using (a)
and we have

I
5T (am)\2

Substituting (19) into (18) it now follows that (S =5 is the
number of new sites visited)

—(E%/20Y) (19)

2 02
§ ~[In(n?7In(R2))]/2""*"" 20)

where Ejg is the total energy relaxed after S steps. Trans-
forming the rhs into time space using the exact analytical
asymptotic formula for E(g,t), (3a) gives us immediately

S(t)) ~ ayllnt,)?, @1

t— o0

where ay=c/6F, and consistent with the deductions
made previously on the basis of (3) and (10). Indeed (21)
could also have been derived using (10) and (3a).

Let us now compare (21) with the MC result given by
(2). The functional forms clearly agree except that the
value of the exponent 7, in (16) and (2) and its apparent
concentration dependence do not (for a three-dimensional
lattice d =3). The MC simulations suggest at low ¢ an
effective, fractal dimensionality 1 <d <2, with d(c)
changing with concentration. Since (21) is rigorously
true for a d-dimensional system in the asymptotic regime
and in this case d =3 and furthermore the concentration
scaling of (2) does not appear to be quite right in the
sense that ., —3 as c —1, we suggest that the MC cal-
culations were most likely not strictly in the asymptotic
domain as far as the quantity S(z,) is concerned. The
data in Fig. 3 indicate that at low concentration, S@t) is
always less than 10 indeed often of order ~5. The ana-
lytic results are clearly referring to the strict asymptotic
regime when S(¢) is necessarily a larger number. In this
case there are of course several sources of “error.” In the
first place the replacement of the sum (16) by its largest
term is an approximation which however can be
remedied. A further improvement could also be achieved
for the intermediate time domain by substituting into (20)
the more complete expression for E(g,t) given in Ref. 8.
We shall not pursue this in the present paper.

Altogether we can now conclude that we have a very
satisfactory understanding of diffusion and energy relaxa-
tion in a system with energy disorder including now also
the very low-T region. This has been achieved using a
combination of MC and analytical techniques. The MC
work has brought out the importance of temperature
effects even at very low temperatures. It has given us a
hint on how to incorporate these effects in the analytical
framework without too many complications [see Egs. (7)
and (3a) together with (8) and (11)]. In this paper we
have also introduced, in the analytical theory, the very
important concept of the number of new sites visited S
and the important equation (16); therefore we can now
complete the connection E(§)—(R%S))—>8 1. We
have also shown that the approximation used in Ref. 7
and very frequently used in the literature namely Eq. (13)
must be handled with care when discussing the time
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dependence of (RX(e,t)) rather than D(g,t). In the
former case Eq. (13) and the neglect of the dependence of
72 as used in (14) can be misleading since 73 may be a
stronger function (or of the same order) than the remain-
ing term. The exact evaluation of (R*(¢,?)) at T—0 is,
however, no problem and can be carried out using Eq.
(60) of Ref. 8 when necessary. Temperature effects (low

T) and electric fields can now easily be included in the
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above analytical analysis. This we propose to do in a fu-
ture paper.
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