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Elastic fracture in random materials
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We analyze a simple model of elastic failure in randomly inhomogeneous materials such as
minerals and ceramics. %e study a two4mensional triangular lattice with nearest-neighbor har-
monic springs. The springs are present with probabihty p. The springs can only withstand a small
strain before they fail completely and irreversibly. The applied breakdown stress in a large, but
Snite, sample tends to zero as the fraction of springs in the material approaches the rigidity percola-
tion threshold. The average initial breakdown stress, crt, behaves as erg=[A(p)+B(p)ln(L)]
where L is the linear dimension of the system and the exponent AM, is between 1 and 2. The
coeScient 8(p}diverges as p approaches the rigidity percolation threshold. The breakdown-stress
distribution function Et, {o)has the form Fq(o)=1 —exp[ —cL'exp( —kltr")]. The parameters c
and k are constants characteristic of the microscopic properties of the system. The parameter k
tends to zero at the rigidity percolation threshold. These predictions are verified by computer simu-
lations of random lattices. The breakdown process can continue until a macroscopic elastic failure
occurs in the system. The failure occurs in two steps. First, a number of springs fail at approxi-
mately the strain which causes the initial failure. This results in a system which has zero elastic
modulus. Finally, at a considerably larger strain a macroscopic crack forms across the entire sam-

ple.

I. INTRODUCTION

The fracture of brittle materials at stresses far below
the theoretical strength of the material is usually attribut-
able to the presence of defects, often in the form of mi-
crocracks. In GriSth's theory of brittle fracture, ' the
failure of a macroscopic sample occurs when the stress
around the largest and!or least favorably oriented crack
reaches a critical value. At the critical stress level, the
crack propagates unstably through the sample. The
value of the applied load at which this occurs depends
sensitively on the crack size, orientation, geometry, and
local environment. While the individual crack properties
can be dealt with in the framework of classical fracture
mechanics, the local environments are complicated by
the fact that diS'erent cracks interact through their slowly

decaying strain fields. It is therefore unreasonable to as-
sume that each defect is afFected by the same loading.
We explicitly abandon this assumption by constructing a
random elastic model of failure. Microcracks are distri-
buted randomly in the model system. An external load is
applied and the stress and strain are determined
throughout the sample. A local fracture criterion is used
to model the crack growth problem. Similar methods
have been used to describe dielectric breakdown in
metal-loaded dielectrics, 3 random fuse networks, 's and
crack p'ropagation in random materials.

The model we use ls composed of masses on a t%'0-
dimensional triangular lattice connected to their nearest
neighbors by harmonic springs. The springs are present
with probability p and are absent with probabihty 1 —p.

The linear bulk elastic properties of systems of this type
have been studied by a number of authors. In particu-
lar, if p is less than the rigidity percolation threshold '

p„, Young's modulus vanishes even though a connected
path of springs may exist across the system. By contrast,
we would like to address nonlinear questions associated
with the manner in which these models fracture under
the application of an externally applied stress. This
analysis yields a new prediction for the failure strengths
of random brittle materials such as ceramics, amalga-
mates, and sintered powders.

In this paper we analyze this simple model of elastic
failure by means of theoretical scaling arguments and nu-
merical solution of the elastic equations in a random sys-
tem. Several important new results are derived from this
analysis. As expected, we find that the breakdown stress
in the system is sensitive to the fraction of missing
springs in the system. This is caused by the formation of
clusters of missing springs in the system. The initial
failure in the system will occur adjacent to the critical de-
fect, i.e., the largest and/or least favorably oriented de-
fect in the system. The failure or fracture stress is of or-
der an inverse power of the linear dimension of the criti-
cal defect. Due to this efFect, the breakdown stress tends
to zero in the limit as p approaches the rigidity percola-
tion threshold. By contrast, Chakrabarti et al. use a
Lennard-Jones model for the interaction of the atoms in
the solid under stress. They find for their model that the
failure str'ess goes to zero at the normal percolation
threshold p, rather than at the rigidity percolation
threshold as we find. This is understandable since in the
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Lennard-Jones model no two particles are tied to each
other, as is the case with our spring model.

The breakdown stress in our model has an intrinsic size
dependence. Large samples of material are more sensi-
tive to elastic failure than small samples, i.e., the failure
stress is smaller in larger samples. The data of Chakra-
barti et ol. also suggest a rather large Suite-size e5'ect in
the failure stress. This can be interpreted simply by the
following argument. The fracture begins near the critical
defect. The critical defect in a large sample will be
larger, on average, than the critical defect in a small sam-
ple and the stress required for failure decreases with in-
creasing defect size. As we will show, the size of the crit-
ical defect, l,„, scales like l,„=ln(L) where L is the
linear dimension of the sample. The breakdown stress

o& is of order (1/lm, „)' " where the exponent Itt is be-
tween 1 and 2. The net result is that o~& =1/ln(L). The
distribution function of breakdown stress Ft (o) has the
scaling form"

FL(cr)=1—exp —cL exp
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We derive this form from a simple scaling argument
based on the statistics of percolation clusters and the
shape and stress enhancement factor of the critical de-
fect. This form is different from the Weibull distribu-
tion' form ordinarily used to fit the distribution function
of breakdown and failure problems. The Weibull break-
down distribution function is of the form
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FL ( cr ) = 1 —exp( cL o ) . —

A plot of the exponential of an exponential form looks
qualitatively similar to a plot of the Weibuii form if the
%eibull exponent m is large. However, we will show that
the exponential of an exponential form fits our numerical
data much better than the %eibull form, particularly in
the high-reliability limit. Formula (1) is the appropriate
distribution function because the size distribution func-
tion for cluster sizes in our percolation model is an ex-
ponentially decreasing function of cluster size. If the
clusters had a power-law distribution function when the
%eibull form would be appropriate.

%e test all of these theoretical predictions by numeri-
cally solving for the equilibrium configuration for a ran-
dom network of springs placed under a uniform external
stress. In our two-dimensional model we use lattice sizes
up to L =70 (i.e., 14700 springs). The numerical results
agree with the theoretical predictions. The breakdown
stress is a rapidly decreasing function ofp near the rigidi-
ty percolation threshold, the average breakdown stress is
a logarithmically decreasing function of system size, and
the exponential of an exponential form for the
breakdown-stress distribution function accurately Sts the
numerical results.

II. LATTICE MODKI.

The simple model we use to describe elastic failure is
shown in Fig. 1. The nearest-neighbor bonds of a lattice
are. occupied at random by harmonic springs with proba-

~ = O. I 34

FIG. 1. ta) A random lattice configuration at p =0.90 before
the external load is applied. (b) The con6guration after rigidity
failure has occurred. Note that springs that remain along the
failure path, indicated by the incomplete connections, mi11 not
be stretched to linear order in the applied strain because they
are free to rotate. This results in a zero linear rigidity modulus.

(c) The con5guration after complete fracture has occurred.

bility p. The springs have unit spring constant and have
an unstretched length of exactly one lattice spacing.
Springs are absent with probability 1 —p. Each spring
can withstand a stretch of up to 10 lattice spacings. If
a spring is stretched more than this amount the spring
fails completely and irreversibly and is removed from the
system. This rather small maximum stretch amount is
chosen to keep the force equations approximately linear.
The probability is chosen such that p is greater than the
rigidity percolation threshold value, p, . This ensures that
the network has a nonzero Young's modulus. Figure 2
shows Young's modulus, E, as a function of the fraction
of springs present. Note thai E tends to zero at the rigi-
dity percolation threshold p, =0.65+0.005. At the rigi-
dity percolation threshold the linear elastic modulus van-
ishes even though the lattice is still macroscopically con-
nected. This is because external strain can be accommo-
dated completely by the rotation of bonds in the sample
without the stl almng of any sprIngs. If bond-bending
forces are present, the rigidity percolation threshold
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FIG. 2. A plot of Young's modulus E =crim [in units of
E (p =1)]prior to the first failure as a function of p. Note that
E tends to zero as p approaches the rigidity percolation thresh-
old at p =p„=0.65%0.005. The line is a guide to the eye.

stress-strain curve in Fig. 3. The resulting lattice
con6gurations are shown in Figs. 1(b) and 1(c). First, at
the stress a I which causes the initial failure, a number of
springs fail. These springs which fail form a connected
path along which no springs are parallel to the applied
stress. This results in a dramatic lowering of the elastic
modulus. As can be seen in Fig. 3, the linear elastic
modulus, E=cr le, vanishes after this initial set of
failures. However, the lattice is still connected. As the
strain is increased, a nonlinear elastic modulus is ob-
served until a second group of springs fail and again the
linear elastic modulus vanishes. This process continues
until no connected path exists across the sample. This
corresponds to complete fracture of the sample. The first
maximum in the stress-strain curve (Fig. 3) is generally
higher than all subsequent maxima. If the simulations
were performed at constant stress rather than constant
strain, the model would fracture immediately after the in-
itial load drop. We will therefore not distinguish between
the stress which causes the first load drop and the stress
which causes the fracture of the sample.

Inspection of the stress-strain curve (Fig. 3) yields in-
formation which is useful in gauging the validity of this
type of model for the behavior of brittle materials. For
strains below the initial yield drop, the stress-strain curve
is linear. Such linearity is expected in real materials at
small strain when there is no plastic flow or crack exten-

would be moved to the ordinary percolation threshold
value p, (p, =0.347 in the two-dimensional triangular
la'ttlce).

This is a simple model of an inhomogeneous elastic
medium which is composed of a random mixture of an
elastic material and microscopic voids or cracks. The
external load on the sample is in the form of a uniform
external strain applied to the model in the x direction.
Periodic boundary conditions are maintained in the hor-
izontal (x) direction, while the top and bottom surfaces
are free.

The initial failure of the material is modeled in the fol-
lowing manner. An external strain, e is applied in the x
direction and incremented in units of 0.0005. For each
strain, the equilibrium configuration of the system is
determined by allowing the system to relax by using the
conjugate gradient method. The macroscopic stress, 0,
and Young's modulus E =a/e are then calculated. If
one or more springs are strained by more than 10 " then
the spring with the largest stlMn 18 broken and the sys-
tem is reequihbrated. This process of-breaking and re-
equilibration continues until no spring is stretched
beyond its elastic hmit at the current strain. The stress
associated with the external strain at which the first
spring breaks is called the initial failure stress. The pro-
cess is continued by incrementing the external strain and
re-solving for the equihbrium configuration until the sys-
tem breaks entirely into two pieces. The breakdown
occurs in several steps. These steps can be seen in the

020 —
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0OI 0.04 005

FIG. 3. A plot of the macroscopic stress a as a function of
the applied strain e for a typical sample. The decreasing regions
are a result of the breaking of springs in the sample. Notice
several things. First, the 0. vs e curve is very linear at small e,
indicating that the sample has a hnear elastic modulus of o./e.
The stress-strain curve prior to the first microscopic failure is
linear to an accuracy of 0.1%. Secondly, the rigidity failure be-
gins to occur when the strain is a=0.005 and the external stress
is 0.34. A number of springs fail at this external applied stress
and the linear elastic modulus tends rapidly to zero. Eventually
for strain a=0.011 the elastic modulus becomes nonzero again
and several groups of springs break, resulting in another rigidity
failure. These types of failure continue far beyond the extent of
this 6gure until the system completely breaks at a strain of
&=0.134.
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FIG. 4. The failure stress 0& as a function of p for lattice
sizes L =20, 30, 50, and 70. Note that at 5xed p, o& is a slowly
decreasing function of I..

sion. While the stress of the system drops to zero in our
model following the Srst stress maximum, real materials
do not exhibit zero stress at finite strain prior to failure.
The zero-stress regions correspond to periods of spring
rotation where no springs are carrying load. This is an
artifact of this model which can be rectiSed by including
bond-bening terms in the energy which penalize rotations
away from the equihbrium bond angle of 60'. Inclusion
of such terms in the rigidity percolation problem moves
the rigidity percolation threshold to the ordinary percola-
tion threshold and changes the universality class of the
threshold. s

In Fig. 4 we show the initial failure stress as a function
of spring probabihty p and system size L. Note that the
failure stress is a decreasing function ofp as p approaches
the rigidity percolation threshold p„. This effect is caused
by the fact that the microscopic voids present in the sam-
ples are large for p close to p, and a few springs are carry-
ing the entire load on the sample.

about 20%. Therefore the removal of even a very small
number of springs will reduce the initial failure stress by
at least 20%.

Figure 4 displays a plot of the initial failure stress crI
as a function of p for I.=20, 30, 50, and 70 on a two-
dimensional lattice. Note that o.I tends rapidly to zero as
p approaches the rigidity percolation threshold p„. Note
also that the failure stress in Fig. 4 is a slowly decreasing
function of the system size I.. As in any model in which
some quantity depends on the characteristics of the most
unusual con5gurations of a random system, the failure
stress in this model displays an intrinsic finite-size scaling
behavior. The failure stress is determined by the linear
dimension of the critical defect. The critical defect in a
random elastic network is a configuration in which two
linear cracks almost touch each other. A crack of this
type is displayed in Fig. 5. If a single linear crack of
length I is placed in a uniform external stress then the
stress is enhanced at the tip of the crack by a factor pro-
portional to (1)'~ . This is demonstrated in Fig. 6(a).
However, if two cracks of length I/2 are placed in close
proximity to each other so that the distance between the
tips of the cracks is much less than I/2 then the stress in
between the cracks is enhanced by a factor of order I.
This is demonstrated in Fig. 6(b). For large isolated de-
fects the stress is much larger between two cracks of
length 1/2 than at the tips of one crack of length l.

The finite-size dependence shown in Fig. 4 is caused by
the fact that the critical defect in a large sample will typi-
cally be larger than the critical defect in a smaller system.
A rough estimate of the L dependence of cr& can be given
as follows. For 1 —p ~& 1 the probability of getting a de-
fect of the type shown in Fig. 5 somewhere in our two-
dimensional system is of order (1 p)'L . The size—of the
critical defect is determined by the requirement that
there is no defect larger than the critical defect. This im-
plies that (1 p)'/L is of orde—r unity. Therefore the size
of the critical defect is given by I,„=—ln(L)/ln(1 —p)
for large I..

The dependence of the failure stress on the size of the
critical defect is particularly simple for models of dielec-
tric breakdown in metal-loaded dielectrics and Ohmic-

III. DES'fRISUTIQN OF FMI.URE STRESSES

The initial failure occurs near a particular type of de-
fect conSguration. The failure stress depends crucially on
the size of these defect configurations. W'hen the defect
fraction is close to zero the defect clusters will all be
small. This does not imply that the ratio of the failure
stress to the failure stress in the perfect system tends to
unity as @~1. On the contrary, even if there is only a
single defect in the system the failure stress will be re-
duced by a Snite amount from the value in the pure sys-
tem. In our model the removal of a single spring oriented
along the x direction reduces the initial failure stress by

FIG. 5. The con5guration we call the critical defect. It is
composed of two linear cracks of length I in close proximity
oriented perpendicular to the applied stress.
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more subtle because of the very slow decay of elastic
strain fields. The elastic strain field decays as 1/r'~ for
distance r away from a single defect. Because of this, sin-

gle linear defects can contribute significantly to the elas-
tic failure problem even though they do not play a major
role in dielectric breakdown or Ohmic failure problems.
The failure stress should scale as

1 1

1,„1n(L)

The exponent p lies somewhere in the range 1 (p (2. If
nearby pairs of defects dominate the critical defect prob-
lem then p=1. The case @=1 is found for models of
dielectric breakdown and Ohmic-heating failure in ran-
dom mixtures of conductors and insulators. If isolated
defects dominate the critical defect problem then @=2.
Our numerical results are equally consistent with both
p= 1 and @=2.

To show this, in Figs. 7(a) and 7(b) we plot 1/O'I (p, = 1)
and I/o& (JM=2) versus the logarithm of the system size
for several difFerent p's. The data in both plots are
reasonably consistent with Eq. (3). The slope of the lines
is small for p close to unity and large for p close to p„.
From these data we can make the empirical observation
that the average initial failure stress a & scales like '

(b)
10P ~

& (p)+8(p)ln(L) ' (4)

I 1 I l I l I 1 I & I

2 4 6 8 IO I2

FIG. 6. (a} A plot of l/o& for a defect which is a line of /

missing springs oriented perpendicular to the applied stress.
Note the linear dependence of 1/0& on /. (b) A plot of l/crI vs

the length I of the defect pictured in Fig. 5. Note the linear
dependence of 1/oI on I.

where the exponent p is roughly between 1 and 2. The
coefficient 8(p) is small for p close to unity and diverges
as p ~p».

This form for the average failure stress can be derived
from the form of the failure stress distribution function.
Clearly since the systems being modeled are random, the
failure stresses will have some distribution function.
Different samples will have diferent failure stresses.
However, there does exist a smooth distribution function
for the failure stresses of samples with a given p and L.
We will sketch the derivation of the form for this func-
tion and show that the result is consistent with the nu-
merical distribution function found from the computer
simulations. The details of the derivation can be found in
Ref. 5.

The failure stress is determined by the linear size l of
the largest defect in the sample. Let CL(l,„) be the
probability that no defect larger than size I exists in a
d-dimensional cubical volume I. . %e then subdivide the
cube with volume L into (L /L, )"smaller cubes of linear
dimension I., ~ If the characteristic size of the largest de-
fects is much smaller than I-

&
then the statistical indepen-

dence of the subcubes implies that the probability of
there being no defect larger than l,„on the I. lattice is

heating failures in random networks of conductors and
insulators. For the case of dielectric breakdown, the
breakdown applied electric 5eld is proportional to the in-
verse of the linear dimension of the critical defect. The
critical defect is a pair of conducting clusters oriented
along the applied 6eld. The elastic failure problem is

[C (I,„)] ' =C (I,„) .

This, along with the fact that the distribution function
for percolation cluster sizes scales like' CL ( n )= 1

—cL exp( —kl) for large I, we arrive at the result

Cl (1,„)=exp[—cL exp( —kl,„)] .
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FIG. 8. A plot of the failure probability FL (o ) as a function of a for takeo diferent lattice sizes at p =0.90. The data are presented
in a manner so that we can differentiate between the Duxbury-Leath form [Eq. (I)] and the Weibuil form [Eq. (10)]. In Fig. 8(a) the
logarithm of the logarithm of Fz is plotted vs I/cr" (y, =2). In Fig. S(b) the logarithm of the logarithm of F~ is plotted vs I/o"
(p= j.). If (1) is the correct form for the distribution function and we choose the correct value of p then the data for the two de'erent
lattice sizes should collapse onto a single straight line. In Fig. 8(c) the same function of FJ is plotted vs the logarithm of o.. If the
%'eibull form (10) is appropriate then the data mill coHapse onto a single straight line. As can be seen, both the p = 1 and p =2 cases
of Eq. (1) fn the data considerably better than Eq. (10).
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Fig. 8(a} or 8(b). If the Weibull form (10) is appropriate
then the data will collapse to a single straight line in Fig.
8(c). As can be seen, the data form nice straight lines in
both figures, 8(a} and 8(b), whereas the data in Fig. 8(c)
are noticeably curved. The slope of the guide to the eye
in the Weibull plot is the Weibuil parameter m. The data
indicate that m is quite large (m =10). This is a good
empirical signal that perhaps (1) may be the more ap-
propriate distribution function.

IV. CONCLUSIONS

These theoretical calculations and scaling arguments
can be tested in experimental situations and should apply
to a number of different types of random brittle materials;
among these would be ceramics, amalgamates, and sin-
tered powders. The important aspect of each of these
materials is that they have randomly distributed defects.
Based on these theoretical arguments and the numerical

data we suggest the following critical experiments. First,
the initial failure stress should be measured in a large
number of similarly prepared random materials. This
should be done as a function of randomness and system
size. The resulting distribution functions can be plotted
in the manner given in Fig. 8(a) or 8(b) to test the
Duxbury-l. eath form for the distribution function. The
manner in which the average failure stress depends on p
and I. can be tested against the expected form (4). The
Duxbury-l. eath (1) form should be the relevant distribu-
tion function in eases where the %eibull exponent m is
rather large. This would provide an indication that the
cluster size distribution function is probably exponential
rather than a power law.
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