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%e report results of computer simulations on a three-dimensional Heisenberg spin-glass model,

where the strength of the interactions falls off with the inverse third power of the distance, which

should be a good model for systems with the Ruderman-Kittel-Kasuya-Yosida interaction. Our re-

sults show that this system is in a different universahty class from the short-range model, in agree-

ment with a suggestion of Bray, Moore, and Young. The data is also compatible with their proposal

that the system is at its lower critical dimension, though we cannot rule out the possibility of a low

but nonzero transition temperature.

I. INTRODUCTION

One surprising feature to emerge from recent studies
on spin glasses is that the best studied systems, such as
Cu-Mn and Ag-Mn, which have relatively little anisotro-

py and so are Heisenberg like, are better described by a
short-range Ising model rather than a Heisenberg model.
More precisely, while the experimental evidence' for a
6nite transition temperature, T„ is very strong, theoreti-
cal studies indicate a 6nite T, only for Ising systems,
whereas Heisenberg models have T, =0. In particu-
lar, Olive et al. show that the nonlinear susceptibility of
Ag-Mn (Omari et al. , Ref. 1} is quite similar to that ob-
tained from a nearest-neighbor three-dimensional (3D) Is-
ing model, but qualitatively different from a nearest-
neighbor Heisenberg model. To fully explain this ap-
parent paradox, it will probably be necessary to under-
stand better the role of anisotropy. However, there is a
potentially important difFerence between many of the real
systems and the theoretical models, namely that the me-
tallic spin glasses have Ruderman-Kittel-Kasuya-Yosida
(RKKY) interactions which fall ofF as 8;J where R;i is
the distance between sites i and j, whereas the models are
usually confined to nearest-neighbor interactions. In fact,
Bray et al. recently proposed, on the basis of scaling ar-
guments, that RKKY Heisenberg systems would be at
their lower critical dimension, dI, in contrast to the re-
sult that di =4 for isotropic Heisenberg models. It is

therefore clearly necessary to understand the role of
RKKY interactions in order to explain experimental
data. %e have consequently undertaken numerical stud-
ies of a Heisenberg model with (essentially} RKKY in-
teractions in order to test out the suggestion of Bray
et al. '

%e hand that the nonlinear susceptibility increases
much faster at low temperatures than for a short-range
Heisenberg spin glass (and faster than found by Chakra-
barti and Dasgupta for a similar model), in agreement
with Bray et al. 's suggestion that the short range and
RKKY Heisenberg models are in a dNerent universality
class. Our results are consistent with d =3 being the
lower critical dimension but we are unable to simulate at

low enough temperatures or large enough sizes to rule
out the possibility that T, is nonzero.

The plan of this paper is as follows. Section II de-
scribes the model, the quantities we calculate, and our
method of analysis. In Sec. III we give the results and
analysis, while Sec. IV summarizes our conclusions.

IE. THE MODEL

Canonical spin-glass systems, ' such as Cu-Mn and
Ag-Mn have a small concentration of magnetic atoms in-

teracting with the RKKY coupling

cos(2kjR;1 )
+RKKY JRKKY g ~i ~j 3 i j

J'

where e; = 1 or 0 depending on whether site i is occupied

by a magnetic atom (e.g., Mn) or not, kz is the Fermi
wave vector, R;j is the distance between sites i and j, and

8, is a Heisenberg spin, This Hamiltonian is rather awk-
ward to simulate because, even for a rather low concen-
tration of spins e, there will be some nearest neighbors on
the lattice. These pairs do not play an important role in
the physics but they have a much bigger coupling than do
pairs of spins separated by the typical distance of a spin
from its closest neighbor. This varies as e '~ and so is
much larger than one lattice spacing when e is small.
Having such large couplings means that single spin-Aip
dynamics is rather inefficient in bringing the system to
equilibrium because the two nearest-neighbor spins prefer
to change their orientation together. Furthermore, the
scaling behavior comes from the lotgg dIstgnee, Ri~, vari™
ation of the interactions, though such strong short-range
couplings may give important eorreetIons to scaling. In
contrast to Chakrabarti and Dasgupta we have therefore
not studied the model defined precisely by Eq. (1) but
rather an Edwards-Anderson" model, with a spin on
each site of a simple-cubic lattice, with Hamiltonian

0= —g J;.S; S
&ij )

where the interactions J; are given by
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I"=
ij

(3)

where e,- is a random variable drawn from a Gaussian
distribution with zero mean and unit variance, and cl is

defined for the 1attice with X=L &L &L sites by the re-

quirement that

(10)

where v is the exponent of the spin-glass correlation
length g' for T R T„and ri describes the power-law decay

of the correlation at T, . Thus

g J2=3,
j=1

so that the mean-ficld transition temperature is

(4) where g diverges as

g-(T T, )— (12)

Note that cI depends weakly on L and tends to a con-
stant for L large. To avoid surface effects, we compute
8; from

R; =[(x;—xj } +(y; —yj ) +(z; —zj ) ]'

where the x;, etc. are coordinates on the lattice, provided
all the relative distances are less than L /2. If
x; —xj & L /2 we replace x, —xj by L —(x; —xi ) to mimic
the effect of periodic boundary conditions, and similarly
for the other components. In other words, we periodical-
ly repeat the lattice and take E.;J. to be the shortest possi-
ble distance between sites i and j, either in the same lat-
tice or on adjacent repeats of it. %C do not consider
periodic boundary conditions in which the interaction be-
tween spin is summed over all periodic images. This
geometry is expected to give similar results to the present
ones.

The main quantity that we calculate is the spin-glass
susceptibility, Iso, defined by

where ( . }T denotes the statistical mechanical average
for a given configuration of interactions, and [ . ],„ in-

dicates an average over all possible such configurations.
In the paramagnetic phase Xs& is related to the non-
linear susceptibility, thc coeScicnt of h in the expansion
of the magnetization in powers of the magnetic field h.

In general gsc; is expected to diverge as

(7)

for a dimension d above the lower critical dimension, di,
in which case T, is nonzero. If the system is below the
lower critical dimension (d &di) then Eq. (7) still holds,
but now T, =0, i.e.,

For R &pg one expects that f(R/g}- exp( —R/g). At
d =di the power-law divergence as T~O is presumably
replaced by the exponential variation in Eq. (9) but one
can still define g by

&so-0' " (13)

Thus, for a nonzero T„there are two independent stat-
ic exponents in spin glasses, just as in uniform systems.
Below the lower critical dimension d~, the low-

temperature behavior is governed by a zero-temperature
critical point, as if the system had a transition at zero
temperature (T, =0). In this case, there is an additional
relation' between the exponents prouided the ground
state is nondegenerate (aside from symmetry related
states):

2 —ri=d (T, =0),
so that

(14)

y=dv (T, =O) .

=L' "Y'[(T T)L' "]—
For a T =0 transition Xsz is given by

(16b)

(17)

if d &di, so v is finite, whereas for d =di Eqs. (9), (13),
(15), and (16a) give

C/d
ps& ——L 7 L exp

TcT

Consequently, there is only one independent static ex-
ponent if T, =0, provided that the ground state is not ex-
tensively dcgcncratc.

%'e use finite-size scaling' to extract the maximum
amount of information from our simulations. This pre-
dicts that Xso should vary with L and g as

(16a)

Precisely at the lower critical dimension (d =d& ) one ex-

pects *' an exponential divergence as T~O„ i.e.,

C
Xs~ cxp

To'

where o. is an unknown exponent, though McMillan'
has argued that o. =2.

The exponent y is given by

Precisely at T=0 we have

+SG
3

(19)

where the factor —,
' comes from the fact that we have a

Heisenberg model and the spins point randomly in all
directions. As discussed by Chakrabarti and Dasgupta,
there are corrections to Eq. (9) for small sizes because
neighboring spins have some preference for parallel or
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antiparallel alignment. However, we find that these
corrections appear to be small even for the smallest lat-
tices that we study.

The Monte Carlo simulations used a heat bath algo-
rithm, which is described in Ref. 6. This has the advan-
tage that a move is made every step, as opposed to the
Metropolis algorithm where no change is made for a cer-
tain fraction of attempts. %'e used an I XI.XI. simple-
cubic lattice with sizes 4(L & 16 at a range of different
temperatures, and tested that the system was equilibrated
using the techniques of Bhatt and Young. 2' This in-
volves computing 7s& both from a four-spin correlation
function at different times (which should give too large an
answer if the simulation is too short} and from the corre-
lation at equal times of spins in two independent copies of
the system with the same interactions (which should give
too small an answer if the simulation is too short}. If the
two estimates agree, this should therefore be the equilib-
rium value. %'e checked that the results did agree for all
the data points which we present. Because every spin
couples to every other one, the number of interactions is
N, which requires more memory for L, = 16 than avail-
able on the Cray Research X-Mp computer where the
computations were performed on the largest sizes. We
therefore packed 16 diFerent e;J's, deffned in Eq. (3), into
one word of computer memory, so there were four bits
per bond. Hence for I.=16, and only for this size, the
distribution was actually a discretized Gaussian with
2 =16 possible values. We checked that the effect of this
discretization was less than the statistical errors by doing
some runs for I.=11 with both the full and discretized
distributions.

III. RKSUI.TS

Figure 1(a) depicts the spin-glass susceptibility Xso as a
function of temperature for dilerent systems sizes in a
log-log form. The points represent an average of between
11 and 300 bond configurations. Note that the studied
temperature range is somewhat limited, particularly for
the largest sizes (T &0.5 for I.=16), because relaxation
times increase very rapidly as the temperature is lowered
or the size increased. Comparing Fig. 1(a) with 1(b),
which shows analogous results for the nearest-neighbor
model, we see that XsG increases much more rapidly as T
is reduced for the system with RKKY interactions. In
fact, whereas the data for the short-range model show
rather convincingly that T, =0, we shall see that we are
unable to rule out a nonzero value of T, for the RKKY
system. As a result, the RKKY data are much more
a8'ected by Snite-size corrections than the short-range
data, which will make the analysis more diScult.

%'e wish to ascertain whether the short-range and
RKKY models are in different universality classes or not.
Clearly they are not in the same universality class if
T,&0 for RKKY interactions. %'e will therefore first as-
sume that T, =0 and ascertain whether the more rapid
increase in Xso seen in Fig. 1(a) is due to a difFerent ex-
ponent y (which implies a diFerent universality class) or
whether y is the same in the two cases but the amplitude
is larger for the RKKY system (which would mean the
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FIG. 1. (a) log-log plot of the spin-glass susceptibility as a
function of temperature for dilerent system sizes as indicated.
(b) Same as Fig. 1(a) but for the short-range model [Ohve et al.
(Ref. 6)). Note the slower increase of Xso with decreasing T. As
in 1(a), T is given in units of the mean4ieid transition tempera-
ture.

same universality class). Later we will see what bounds
we can put on T, . Even without a finite-size scaling
analysis we can deduce a lower bound on y if we assume
that, for the in6nite system, the slope of the log-log plot
in Fig. 1(a) monotonically increases as T is lowered, and
that the slope is never greater than this for a finite sys-
tern. %ith these reasonable assumptions the lower bound
on y is the largest slope of the curves of Fig. 1(a). From a
cubic spline fit we find that this occurs at I.=16 and
T=0.62 and gives

2.00—

1.00—
%0 80
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FIG. 2. Lower critica1 dimension scaling plot: log, +so
against T on a log-log scale. The dashed line corresponds to
X~——exp(1. 1/T 2), i.e., an essential singularity in X~ at
T, =O.
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'Y & 'dmin (20)
100

Note that 6nite-size elects are signi6cant at this tempera-
ture so we expect that the slope for the inSnite system
would be larger than our bound of 5.8, and would prob-
ably continue to increase at lower temperatures. Howev-
er this value is already larger than the result of Olive
et aI. for the short-range Heisenberg spin glass, ~

XSQ

L
10

3 short range (21)
x. =16

and larger still than the estimate y =2.6 of Chakrabarti
and Dasgupta for the RKKY model. [We obtained this
last figure by taking the values of v in Ref. 7 and using
Eq. (15).) Hence we agree with the suggestion of Bray,
Moore, and Young that RKKY and short-range Heisen-
berg spin glasses are in a difFerent universality class.

They also propose that the RKKY interactions are
sufficiently long ranged so that the present model is at its
lower critical dimension, for which Eq. (9) should apply.
To test this possibility, we plotted logic'so versus T in a
log-log plot in Fig. 2. If the susceptibility has an essential
singularity at T, =0 as in Eq. (9), we should get a linear
behavior in Fig. 2. Although this is not quite the case for
the sizes and temperature ranges plotted, presumably be-
cause of finite-size efFects discussed below, the behavior of
the curves suggests that for large enough sizes all the
curves could he on a straight hne, close to the dashed
one, which has a slope o =2.2 and from the intercept we
obtain C = 1.1. %hereas our present data are not
sufficient to rule out all other possibilities, they are cer-
tainly compatible with the system being at its lower criti-
cal dimension and the spin-glass susceptibility having an
essential singularity as in Eq. (9).

Next we consider finite-size eff'ects. In Fig. 3 we show
a scaling plot of the data in a form where curves for
different sizes would lie on top of each other if the finite-
size scaling formula for the lower critica1 dimension, Eq.
(18), is correct. We used the values o =2.2 and C= l. 1

obtained from Fig. 2. On this plot the straight-line re-
gion on the right is for large enough sizes that 6nite-size
corrections do not occur and the temperature dependence
is given by Eq. (9). However, the curves for difFerent
sizes break away from this line at diferent points, indi-
cating that finite-size scaling is not working. We should
point out, however, that the data is not for very low tem-
peratures, so that if T, =O we may we11 not be in the
asymptotic scaling region. Furthermore, corrections to
finite-size scaling are particularly large at d =d&. These
reasons could account for the lack of scaling in Fig. 3.

In Fig. 3 we assumed that g is given by Eq. (14). If,
however, we relax that restriction, which is equivalent to
assuming a degenerate ground state, and allow g to be an
adjustable parameter we can obtain a much better fit. A
plot with q=o is shown in Fig. 4, which clearly scales
much better than Fig. 3. Nonetheless we sce no reason
why the ground state should be degenerate and feel that a
more likely explanation for the relatively poor fit in Eq.
(3) is that the temperature is rather high so the asymptot-
ic scaling region has not been reached.

%'c would nevertheless like to ascertain whether or not
thc Gnitc-size corrcctioIls eon6rID that thc RKKY system

10
10 10 10 10

L exp

FIG. 3. Finite-size scaling plot with the assumption that the
system is at its lower critical dimension, C,

'd =di ——3). The values
o =2.2 and C = 1.1 were taken from the dashed line in Fig. 2.
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FIG. 4. Same as Fig. 3 but with the additional assumption
that the ground state is degenerate and g =0.
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FIG. 5. Logarithmic plot of the normalized spin-glass sus-
ceptibility gsz ——{3+s~jL ) as a function of T for diferent sys-
tem sizes. The dashed lines indicate the expected low-
temperature behavior.



COMPUTER SIMULATION OF THE HEISENBERG SPIN GLASS. . .

Xso(T,L)=F{T/T(L)) . (22)

For each linear size I. we determine the characteristic
temperature T{L)from the condition that all data points
lie on the same curve when Xso is plotted against
T /T (L ). To achieve this, we have chosen a number of
specific values of Xso, found the corresponding tempera-
ture values, T, (L), for all sizes by using cubic-spline inter-
polation, and required that all data points lie as close to
each other as possible, i.e., we found the minimum of

T~(L) T,(L')
T'(I. ) T'(I, )

(23)

is in a different universality class from short-range sys-
tems, as we already found from the maximum slope in
Fig. 1. We therefore plot in Fig. 5 the normalized suscep-
tibility Xso=(3Xso/L ) as a function of T for different
system sizes. From Eq. {19)Xso should tend to unity as
T~o. The actual data are represented by the symbols,
and the low-temperature behavior is roughly suggested
by the extrapolated dashed line. To see if we can obtain a
bound on the exponents v and y we try to scale XsG as a
function of T and L in the following form:

10
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L ~ 16
10 ~ I ~ I I s I. s I s

0.0 0.2 0. 4 0. 6 0.8 1.0 1.2

T/T (L)
FIG. 6. Scaling plot of the normalized spin-glass susceptibili-

ty 3+~/L" against T/T{I.). The characteristic temperatures
T(L) are St parameters.

0.5

0

This method works very well if all the data scales proper-
ly. It is somewhat arbitrary, however, if not all data lie
in the scaling region. For our data the latter is true& so
we have a certain freedom in choosing the values of Xso,
at which the curve collapsing is performed. From Eq.
(17) we see that for d ~d& the scaling prediction for T(L)
18

(24)

0.3

0.2

0.1

0.0

-0.1
0.4 0. 6 0.8 1.0

Figure 6 shows a scaling plot which places emphasis on
the low-temperature behavior. It suggests that our
higher-temperature data points are not yet in the T~0,
L ~ &x scaling regime. If that is accepted, the curves can
be interpreted in terms of scaling at low temperatures.
The corresponding characteristic temperatures T(L}are
plotted in Fig. 7 in a log-log form. The curve is not a
straight line, as would be the case for scaling at d &d&

[see Eq. (24}],but it is curved in a way that the effective
exponent vg T), de5ned as the inverse of the slope in Fig.
7, increases at lower temperatures. If we make the plau-
sible assumption that vg T) monotonically increases as T
decreases we can get a lower bound for v from the inverse
of the minimum slope in Fig. 7, i.e., where the tempera-
ture is lowest and the size the largest. This gives

FIG. 7. log-log plot of the characteristic temperatures T{I.)
from Fig. 6 against the linear system size I..

100:

10

v+2. 3

which, from the scaling law Eq. (15},gives

y ~6.9 .

(25)

(26)

8
10

8
0

Both this result and the direct estimate in Eq. (20), which
did not allow for 6nite-size corrections, show that the
present long-range model is in a diferent universality
class from the short-range one.

We would like to comment on the above mentioned ar-
bitrariness of this 5tting procedure. By requiring that the
curves of Fig. 5 collapse as well as possible vrhen data at

5
I

FIG. 8. Finite-size scaling plot vnth the assumption that the
system is below& its lo~er critical dimension, {dI~ d =3). The 5t
parameters are q = —1 and v= 1.8. The latter implies y =5.4.
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Xo' .

10
~ Q

0
8

for example, in the two-dimensional XF ferromagnet. '

The finite-size scaling ansatz to this would be like Eq. (18)
but with T replaced by T T,—A. corresponding scaling

fit is shown in Fig. 10 for T, =0.2. While the fit is good,
we note that there are four adjustable parameters com-
pared with three in Fig. 9 and only two in Fig. 3. There
are no theoretical arguments for this behavior but clearly
our numerical results cannot rule it out.

higher temperatures than those in Fig. 6 are included,
one changes the scaling plot and the numerical value of
T(L). However, the variation of T(L) with L is qualita-
tively very similar, and the numerical estimate for v is
changed by only about 10%, which still implies that the
RKKY system is in a difFerent universality class from
short-range models.

We have also tested to what extent our data can be
fitted to the Suite-size scaling ansatz, Eq. (17), appropri-
ate for d & d&. The best fit, shown in Fig. 8, is for v= l.8,
which implies y =5.4. The quality of the St is not very
good but we note that the value of y is again larger than
the short-range value given in Eq. (21).

We now discuss the possibility that T, may be finite. A
fit to Eq. (16b) with T, =0.4, v=1.0, and r1=0. 1 is
shown in Fig. 9. The quality of the 6t is not excellent but
given the diSculties encountered in scaling with T, =0
we do not feel that this value of T, can be ruled out.
Higher values of T, do not work as can be seen from the
curvature of the data in Fig. 1(a) for T&0.5. Lower T, 's

fit somewhat less well than T, =0.4 but also cannot be
ruled out. Finally we have tested the possibility of an ex-
ponential divergence at a finite temperature. This occurs,

10
8 0

10 Q L ~ 4
L ~ 6
L 8

4 L ~ 11
L ~ 16

10
10 10 10 10

I exp

FIG. 10. Finite-size scaling plot with the assumption of an
exponential divergence at finite temperature. The 6t parameters
are T, =0.2„q=0.1, C=1.2, and o =1.5.

0 2 4 6 8
1/v(T-T, ) x,

FIG. 9. Finite-size scaling plot with the assumption that T,
is Anite. The 6t parameters are T; =0.4, g =0.1, and v= 1.0.

IV. CONCLUSIONS

We have carried out extensive simulations of the 3D
Heisenberg spin glass with RKKY-like couplings. These
provide sound evidence that the RKKY system is in a
dNerent universality class from the short-range model.
Our conclusions difFer from those of Chakrabarti and
Dasgupta, who model a site dilute system. However,
our sizes are substantially larger than theirs, N &4096
compared with N &312. Furthermore, we have already
discussed that the very strong nearest-neighbor coupling
in their model may give large corrections to scaling. We
believe that our results are strong evidence that the spin-
glass susceptibility of RKKY systems diverge more
strongly than that of short-range Heisenberg spin glasses.
Our results are quite consistent with d =3 being the
lower critical dimension and with the resulting exponen-
tial divergence of Xso. We are unable, however, to rule
out other possibilities such as d =3 being just above or
just below d&. In the latter case T, would bc finite and we
can rule out any T, greater than 0.4 in units of the
mean-field transition temperature. Although our results
are not as conclusive as we would have liked in deciding
the question of the lower critical dimension, we should
emphasize that the RKKY Heisenberg spin glass remains
a very hard problem which is difficult to treat by other
techniques, such as high-temperature series expansions or
transfer matrices, because of the long-range interaction.

We believe that our results must be included, along
with an accurate treatment of anisotropy, in any detailed
comparison with experiments on the nonlinear suscepti-
bility. ' In fact Bray and Moore have suggested, that
RKKY Heisenberg systems are so sensitive to any small
amsotropy (because of the exponential divergence of the
nonlinear susceptibility in the isotropic system), that one
will never see short-range Heisenberg behavior for any
reasonable value of the anisotropy. This is indeed in ac-
cordance with observation. It would be clearly useful to
perform more detailed studies on insulating spin glasses
to isolate experimentally the role of RKKY couplings.
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