
PHYSICAL REVIE%' 8 VOLUME 37, NUMSER 10 1 APRIL 1988

Determination of the crossover exponent in the random-field system Mn„Zn, „F,
C. A. Ramos, ' A. R. King, and V. Jaccarino

Department ofPhysics, Uniuersity of California, Santa Barbara, California 93706
(Received 15 October 1987}

Optical birefringence (h,n) measurements have been used to study the antiferromagnetic phase
boundary in the d =3 random-Geld Ising model (RFIM} system Mn„Zn, „F2 (x =0.40, 0.55, and
0.83). From experiments at external Selds 0&8 &20 kOe, a value of the crossover exponent
P= 1.4320.03 has been obtained. This agrees with both the value P= 1.42%0.03 determined for the
ideal RFIM system Fe„Znl „F2 and the one most recently obtained for Fe„Mgl „Cl&,
/=1.41%0.05. All satisfy the Aharony inequality P ~ y, the d =3 random-exchange susceptibihty
exponent (y=1.31+0.03). Thus all measured diluted antiferromagnets exhibit crossover from
random-exchange (not pure) d =3 Ising model to RFIM behavior. %e suggest possible misinterpre-
tations in previous studies of the Mn„Znl „F2 and Fe Mg& „C12 systems that have led to the con-
clusion that the crossover was from pure to RFIM behavior. For the Srst time a quantitative
analysis has been made of the Seld scaling of the peak amplitude and dynamical rounding of a ther-
modynamic function at the phase transition of the RFIM system.

I. INTRODUCTION

Random fields have profound effects on the ordering of
magnetic systems. It is generally agreed that the lower
critical dimension of the random-field Ising model
(RFIM} is d, =2. For d & d„new static and dynamic crit-
ical behavior is expected and is observed. However, no
consensus exists as to all aspects of the phase transition,
from either an experimental or theoretical point of view.
Several factors contribute to the lack of unanimity in in-
terpreting the experimental results on d =3 RFIM sys-
tems. The two most important factors are the extreme
critical slowing down and macroscopic inhomogenity
effects; the former prevents the system from equilibrating
in the critical region, while the latter obscures the precise
character of the critical behavior.

An additional element of ambiguity has been intro-
duced by the fact that differing conclusions have been
drawn from experimental studies of somewhat similar,
but clearly not identical, d =3 RFIM systems. In every
instance a diluted antiferromagnet in a uniform ffeld has
been studied, following the insight, first provided by Fish-
man and Aharony, as to its equivalence to a random
6eld applied to a pure ferromagnet. The most carefully
characterized and extensively studied has been the
Fe„Zn, „Fz system. Here the Ising character is derived
from the very large, uniaxial, single-ion anisotropy. It
most closely approximates the ideal d =3 RFIM system.
Considerable attention has also been given to the iso-
structural Mn„Zn& „F2, ' although it possesses only a
weak dipolar anisotropy. Lastly, some work has also
been done on the Fe„Mg, „C12 system which is, in
several ways, the least ideal of the three. Little attention
has been given to the question of whether there are any
intrinsic difkrences in the RFIM properties, either to be
expected or to be observed, in the diferent systems. This
is a major purpose of the present study.

Perhaps the first step in trying to establish whether
such differences do exist would be to compare their cross-
over behavior, since one has only to determine the tem-
perature at which the phase transition occurs as a func-
tion of field to obtain the crossover exponent P. We have
elected to do this rather than compare the more difficult
to measure exponents associated with the static and dy-
namic critical behavior. If the crossover exponent is
identical for all, then one expects the static and dynami-
cal critical behavior should also be identical, since the
crossover would be from and to the same universality
class in each instance. Since this turns out to be case, it
reinforces our previously held convictions that the
Fe Zn, „Fz system is the best one in which to pursue
definitive RFIM studies, as neither spin-ffop nor
metamagnetic transitions occur at relatively low values of
the external 6eld.

II. CROSSOVER TO RFIM BEHAVIOR

A. Static scaling

Fishman and Aharony' showed that an antiferromag-
net with random exchange, when placed in a uniform
field 8, was physical realization of a random-field Ising
model (RFIM) system. It was predicted that new critical
behavior would be observed within a crossover region

where
~
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T —TN+bH ( /Ttt is the reduced tem-
perature measured relative to the mean-field phase
boundary T& —bH „hRF is the reduced rms random field,
and P is the crossover exponent. The mean-square re-
duced random field for the site-diluted case has been
shown to be, in the limit h RF ~~ 1,
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x(1 x—)[TN "(1)/T] (gp&SH jka T}
hap= (2)
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where Ttt "(1) is the mean-field Ttt in the pure system,
and 8 "(x) is the mean-field Curie-Weiss parameter. If a
sharp phase transition exists, the new transition tempera-
ture is expected to occur at

T, (H)= TN —bH —cT~hag —= Ttt bH—CH—~~, (3)

t, =[T,(H) —TN+bH ]/Tit = ch Lg—

and a is the RFIM specific-heat exponent. C exhibits a
field-dependent scahng C 0:hgp ~

t t, ~,—where

y =2(a —a)//=0. 13. Although the temperature deriva-
tive of the optical birefrigence, d(hn}/dT, has been
shown to exhibit the same temperature divergence as
does C, it is actually composed of two terms with
difFerent field-scaling exponents y =0.13 and
y'=(2/P)(1+tT —a) =1.56, respectively Neve. rtheless,
for values of the field energy which are small compared to
the internal energy, d(bn)jdT appears to scale with
external field as —h ORp .

The actual value of the RFIM crossover exponent P is
of particular interest because here a distinction is to be
made between the diluted antiferromagnet in a uniform H
and the ferromagnet in a random field. For the ferromag-
net the crossover proceeds from pure Ising to RFIM be-
havior and P must be equal to y~, the pure Ising suscepti-
bility exponent. Although the diluted antiferromagnet
obviously corresponds to a system with random ex-
change, it was originally believed' that random-exchange
Ising model (REIM) exponents would not be observable
in the experimentally accessible critical region. It would
follow that P would again be equal to the pure Ising (not
REIM) susceptibility exponent. The rationale behind this
was the argument that the reduced crossover temperature
t„ from pure to REIN behavior should scale as

where bJ/J is the relative rms variation in the exchange,
and a is the (pure) Ising specific-heat exponent a-0. 11.
Thus, for moderate dilution [where Eq. (6) was presumed
to be valid], t„was expected to be so small as to be ex-
perimentally inaccessible. Consequently, the crossover to
RFIM behavior would be described by P= y .

However, more recent renormalization-group calcula-
tions have shown that the random-exchange fixed point

where c is a constant of order unity.
The magnetic specific heat C of a RFIM system is ex-

pected to scale as

C (t, hap)=hap~~~f (thRpz~"), (4)

where a is the H =0 specific-heat exponent and f is a
universal scaling function. Assuming a sharp phase tran-
sition exists at T, (H), this becomes, within the crossover
reg}on,

C h"

B. DfllQBc sckll5g

Fisher has shown' that for the RFIM, there is a
dramatic critical slowing down as T, (H) is approached,
with a characteristic relaxation time ~, diverging with an
activated form

r-exp(C/
i
t t, i

"8)—
rather than the usual power-law form. Here v is the
correlation length exponent, and 8 is the "violation of
hyperscaling" exponent, which describes the anomalous
growth of the free energy in a correlation volume leading
to the modified hyperscahng relation

2—a=(d —8)~ .

The specNc hest is expected to scale, for T~T„as
C —

i
t t, i

nf—((into)/ge),

(10)

where f is a universal scaling function. At the critical
point, C must be independent of g, thus

(C ) -ulna)i (12)

The apparent width of the transition t' due to 6nite fre-
quency measurements should scale as

t *-
~

inca
~

(13)

If the random field is small (as is the case in the experi-
ments), the critical behavior near T, will also be afFected

by the crossover from the REIM fixed point at H =0,
T =TN. Equation (11) is then valid if lengths are mea-
sured in units of the crossover length I.o-g„-t,,"—h ap" ~ and times in units of ro-L 0, where v and z (the
dynamic scaling exponent} correspond to zero-random-
field exponents. This guarantees that along the RFIM-
REIM crossover boundaries defined by Eq. (1), Eq. (11)
becomes equal to the REIN expression

occurs at fairly weak disorder; the proportionality (6)
should be replaced by

( t,„ i
~ [(1—x)/(1 —x, )]'i

where experiment' suggests x, might be as large as 0.9.
In that case, the crossover from pure Ising to REIM be-
havior would be essentially complete for x &0.9; thus
REIM critical exponents should be and are' "' observ-
able and the crossover is from REIN to RFIM behavior
in this range.

Although the corssover is from REIM to RFIM behav-
ior, it turns out that P+y (REIM). For the d =3 RFIM
diluted antiferromagnet problem, Aharony has recently
shown' that P ~ y and is bounded by

1.05 &P/y &1.1 .

Thus we have the following inequahties predicted for the
d =3 REIM diluted antiferromagnet: P & y (REIM)
~yp, with y (REIN} =1.31 and yz ——1.24. The experi-
mental situation with respect to P will be discussed after
the presentation of the new results on the Mn„Zn, „Fz
system.
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verifying that both static and dynamic functions match
along the crossover lines. Equation (11) then becomes

The apparent rounding half-width,
~

I I,
~

—*=I ',
caused by measurements at finite frequency scales as

I e
P I/P [ln(I —Ivz/P )]

—1/vs

and the amplitude of the peak in C is

(C ) ~h„FI'/~[ln(a)IIaFz"'/I')] /' (17)

where the II „F~/~ factor arises from the Seld dependence
of the static scahng of C [Eq. (4}]. Thus we have the re-
sult, except for logarIthmIc correctIons In h„F and r0,
that the dynamics and static scaling are the same, i.e.,

t'~hL/P and (C )~ a:h„F /& .

The "width" of C scales as does the static temperature
scaling, and the peak height scales as does the amplitude
of the divergence at t, . The same observation applies to
both components of d(hn)/dT, i.e., the peak height of
each component scales with hRF as hgF, with y =0.13
and y' = I.56, respectively.

This is in fact a general result. A thermodynamic func-
tion F can be written in terms of the scaled temperature,
as in Eq. (4),

F cr.

hfdf(

~
1 1,

~
h R—FI/~ )"f' .

Here f ' is a dynamic scaling function of the argument of
f in Eq. (15), which describes the dynamic rounding of I'
for

~
t I,

~
& 1 '. F can b—e transformed to

F ~ II g„[ln(cob 2"'/4'
)]"/"s

ther application of the hn technique, the room-
ternperature birefringence has been used both to charac-
terize the concentration gradient in a given crystal and to
choose the crystal (or portion thereof) with the smallest
gradient for subsequent critical phenomena studies, ei-
ther using birefringence or other methods (e.g., suscepti-
bility or neutron scattering).

The gradient characterization method using the am-
bient temperature hn technique does require the end-
point components (e.g., FCFI and ZnFI) to have values of
hn @which differ suSciently from each other so that small
variations in concentration of the alloy (e.g.,
Fe„Zn1 „Fz}will be manifest as large birefringence vari-
ations in the mixed crystal. This condition is vvell

satisfied for Fe„Zn& „F2 but not for the Mn„Zn& „F2
system (see the extensive discussion in Ref. 20}.

Despite not being able to characterize the gradient at
ambient temperature in the Mn„Zn, „Fz crystals via the
hn technique, one can nevertheless use it to obtain some
measure of the axial concentration gradient by examining
both the mean transition temperature Tz as a function of
position along the crystal boule axis and the apparent
rounding of the transition itself from an analysis of the
critical behavior (see extensive discussion in Ref. 21).
This one does by measuring d (hn)/dT versus T in the vi-
cinity of Tz, focusing a collimated ( =0.2 mm diameter)
laser beam perpendicular to the growth axis. This allows
one to minimize the eftects of the predominant concen-
tration gradient (typically —1% per centimeter) along
the crystal growth axis, though not those due to radial
gradients. In each Mn„Zn, F2 crystal studied we have
used this method to optimize the choice of axial position
for the detailed measurements of d(hn)/dT versus T
which are reported below (see discussion below of Fig. 1).

Xf"[1n(a)h "' ~)(
i
I t, ih ~)" ]— (19)

where f" is now a function which describes the complete
profile of F: both the static scaling and the dynamic
rounding for

~

t —t,
~

(I' ~e see that the usual static
~
I —I,

~
II aF ~ term dominates the scaling behavior, with

only logarithmic corrections in co and h„„. Likewise, the
peak amplitude scales as does the static scaling with iI» „,
with only logarithmic corrections in ~ and h RF.

IH. EXPERIMENTAL METHODS
AND SAMPLE CHARACTERIZATION

The optical birefringence (b,n) technique has been ex-
tensively used for studies of optically transparent magnet-
ic materials. The proportionality between
d(hn)/dT and C has been exploited, for example, in
studies of the pure Ising, ' REIM, ' and RFIM (Ref. 19)
problems. The method is particularly meH suited to criti-
cal phcnoIIlcna IIlvcstIgatlons Ill Itllxed (I.c., I'alldofll, two
component) crystals, where inevitable macroscopic con-
centration gradients produce undesirable rounding of the
phase transition. For the Fe„zn, F, system, in a fur-

I
27. I 27.2 27.5

T(K)

I

27.4

FIG. 1. Inset sho~s temperature derivative of the optical
birefringence d {h,n) ldT vs T in Mn&»zno 4&F& at 0=0. In the
main part of the 6gure d(hn)dT vs T is displayed for the criti-
cal region (indicated by the box in the inset). The solid line is
the best-St REIN critical behavior, including the e8ects of an
assumed linear concentration gradient which causes a rounding
of 5T&——0.050+0.005 in T„. Note the peak value of d (hn)/dT
does not occur at the average Neel temperature T&.
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Three Mn„Zn& „F2 crystals were studied. Their con-
centrations (x =0.40, 0.55 and 0.83) were determined by
density measurements %'Ithln an estHlMted accuracy 1n x
of %0.01. Although earlier measurements of Tn(x) for
x very close to one showed the initial slope
1/TN(1)(dTN/dx}~, =1, the values of T„obtained
from the d(dn)dT measurements are consistent with a
linear change of Ttt, in the range 0.4& x &0.83, approxi-
mately given by Ttt(x)=T&(l)(x —x )/(1 —x ), where
x~=0.24 is the percolation concentration. This non-
Ising-like property of the Mn„Zn, „Fz system is to be
contrasted with that of Fe„zn& „F2 for which
I/Ttt(1)(dT&ldx)=1 over the entire range 0.3 &x & l, ii

as would be expected for an Ising system.
The crystals were x-ray oriented and mounted with the

c axis colinear with the applied magnetic Seld H to within
21'. The experimental birefringence apparatus has been
previously described. ' The magnetoresistance of the
calibrated carbon-glass thermometer was separately mea-
sured and taken into account in the Seld dependent
d (hn)/dT studies. the short-term temperature stabiliza-
tion was better than 1 mK. In order to rule out any pos-
sible thermometer drift between runs done on the same
sample on coiisecll'tive days, we remeasured d (LLn)/dT
versus T at H =0 and compared this result with the cor-
responding data previously obtained under the same con-
ditions. When keeping the thermometer below T= 100
K we found the dil'erences to be of the order of 10 mK.
The magnetic Seld was calibrated using NMR.

It has now been well established ' ' that field cooling
(FC) of a d =3 RFIM system results in the quenching in
of a nonequilibrium domain state. Hence all of the
d (En}/dT data were taken by first zero field cooling
(ZFC} the crystal to weil below T„,and then raising the
field to the desired value. The critical behavior was then
explored by either heating the crystal at constant H [to
obtain d (hn)/dT versus T], or monotonically increasing
H at constant T [to obtain d(b, n)/dH versus Hj on
through the phase transition region.

The temperature derivative of the optical birefringence
d(hn)/dT was studied in three selected crystals of
Mn„Zn, „F2 (x =0.40, 0.55, and 0.83). We first discuss
the observed behavior of d (hn)/dT at H =0 so as to un-
derstand the nature of the singularity in the specific heat
and the effects of a concentration gradient upon it. Next,
we present the field dependence of d (hn)dT versus T and
abstract the crossover exponent P for each of the three
crystals. Then we consider the scaling behavior of the
dynamic rounding of the phase transition in
Mno 55Zno 45F2. Finally, we derive the complete phase di-
agram for the special case of Mn04oZno 60Fi as obtained
from measurements of d (b,n)/dT versus T at constant H
and d (hn) /dH versus H at constant T.

A. Behavior of d(hn)/dTversss Tat 0=0

As noted above, scans of d (hn)/dT were made along
the growth axis of the three crystals to Snd the particular

region in each one in which the transition appeared shar-
pest. The optimum result for the Mno „Zn04,F2 crystal
is displayed in Fig. 1. The inset shows all of the data for
the region around the phase transition, whereas the main
part of the Sgure displays the critical behavior of
d(b, n)/dT just in the region of reduced temperature

~

t
~

&10 . The data looks virtually identical to previ-
ously obtained results on d{b,n)/dT versus T in the
Fe„zn& „F2 system. In the latter case the critical be-
havior was analyzed as belonging to the REIM universal-
ity class, for which the exponent a in C = A

~

t
~

has the value a = —0.09+0.03 and the amplitudes
A+(t &0) and A (t &0) have a ratio A+/A
= 1.6+0.3.

In two recent works King et al. and Belanger et al. '

have demonstrated by direct measurement and simula-
tion what are the effects that a linear concentration gra-
dient has on the rounding of the phase transition as
determined by d(hn)/dT studies. We use their pro-
cedures to fit the data shown in Fig. 1. The exponent is
fixed at a = —0.09 and the amplitude ratio
3 +/A =1.7 is chosen. The assumed linear gradient in

Ttt, 5Ttt, and the average transition temperature Tn
were allowed to vary until a best fit was obtained, which
corresponded to 5TN =0.050+0.005 K and TN
=27.38120.003 K. This is shown by the solid line in
Fig. 1. It is essential to note that the maximum of
d(hn)/dT versus T does not occur at T„as has been
pointed out to be the case in any instance in which a con-
centration gradient is present and A + /A +1, irre-
spective of the sign of a '. For the other two crys-
tals we estimated the values of Ttt ——12.5520.05
K (Mno 4oZno 6oF2) and T~ ——52. 355%0.005 K
(Mnos3Zno i7Ft}. The g~e~te~ unc«ainty ill TN ill the
40% Mn crystal comes, in part, from the rapid decrease
in the amplitude A of the singularity in C with in-

creasing dilution, making the experimental signal-to-
noise ratio poorer than it is at higher Mn concentrations.
The values of Ttt versus x so obtained are in accord with
earlier ' and recent measurements in the Mn„Zn~ „F2
system, but not with the recent results of Ikeda. Per-
tinent data are collected in Table I.

S. Determination Of T, (H) anti ({)

The field dependence of d(hn)/dT versus T with
H~(c axis, was measured in each of the three crys-
tals. Representative data for the Mno 40Zno 60F2,
Mno 55Zn045F2 and Mno 83Zno &&F2 crystals are shown in
Figs. 2, 3, and 4, respectively, at a few of the many fields
measured. As we found in earlier' ' studies of the
Fe„Zn, „Fisystem, the shape of d (b,n)/dT versus T be-
comes increasingly symmetric around T,(H) as the field
is raised. This has been interpreted as arising from a
symmetric logarithmic divergence in

~

t —t,
~

. The ap-
parent increase in rounding of the transition as 0 in-
creases is a direct consequence of static scaling and ex-
treme critical slowing down effects inherent to the RFIM
problem' (see discussion below}.

Unlike the asymmetric case, the peak of a symmetric
singularity does occur at T,{H) in the presence of a con-
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TABLE I. Parameters obtained for Mn„Zn, „F2 system. The quantities T~, b, C, and P are defined
in the text and correspond to least-squares fits of T,(H} to Eq. {3}(unless otherwise speciged}. In the
last column ee quote the resulting root-mean-square deviation (rms) of the data mth respect to the
Stted curve.

0.40 12.55(5)
12.56(14)'

b (10 ' K/Oe )'

3.9

C (K./kOe2«)

1.6(2)x 10
1.6(7)x 10-'

1.45{14)
1.46(21)

50
50

O.SS 27.381(3)b
27.384{7)'

3.2(1)x 10-'
3.3(3)x 10-'

1.44(3)
1.46(5)

52.355(5)
52.357(10)'-

3.7(4)x 10
3.9(1.3)X 10-'

1.36(8)
1.38(10)

'Taken to be b(x)=x 'b(1), where b(1}=1.57X 10 ' K/Oei. If instead b(x) is calculated from
b(x}=b(1)TN(1)/T~{x},the results for ((} increase by (1&o in all cases.
Fixed. The uncertainty in P includes the statistical error of the fitting procedure as well as the varia-

tions of P produced by changing T& by +ST&.
'Taken as free parameters.

centration gradient. Thus no elaborate fitting procedure
is required to determine T, (H) versus H away from
H =0. For the three crystals, the raw T,{H) versus H
data were "mean-field" corrected through the bH term
given in Eq. (3), with b(x)=x 'b(1) (see Table I). The
quantity T~ —T, {H) bH versus —H is shown in a log-log
plot in Fig. 5. The values of ((t, C, and TN determined
from a least-squares fit to Eq. (3) are given in Table I.

Some remarks are in order concerning the difFerent un-
certainties that enter into the determination of (() in each
case. For x =0.83, the bH term makes a proportionate-
ly larger contribution to the small shift in T, (H), relative
to the CH /~ term, than it does for x =0.55 and 0.40.
Hence the accuracy to which (f can be determined at
x =0.83 depends on how well one believes the mean-field
correction can be made and how accurately T& is deter-
mined. If either the form b(x)=x 'b(1) or b(x)

= [T„(1}/T~(x))b (1) is used and T~ is fixed (i.e., includ-
ing the H =0 point) then /=1. 37+0.08 is obtained. If
TN is taken as a free parameter, (i.e., excluding the H =0
point), the best fit gives T~ =52. 357+0.010 and
/=1. 38%0.10. The value of T~ obtained this way is in
excellent agreement with the H =0 Stting of the data,
and is a further verification of the validity of the pro-
cedure.

At the opposite extreme is MnoZn060F2 where the
shift in T, (H) is large and the bH2 is proportionately less
important. Fixing T~ to T~25T& and restricting the
range of fields to 0 (H (6 kOe yields a value of
(() = 1.45+0. 14. Leaving TN as a free parameter results in
almost identical values of (() and TN but with still larger
uncertainties; /=1. 46+0.21 and T~ =12.56+0. 14. Why
is one not able to capitalize on the large random-6eld
shift to'obtain a more precise value of (()'? At the low Mn

2.0
0.0

I l9.6 9.8

(A

z
Q3
CL
«X

o.o

M~055 ZAO45 F2

T(K)

FIG. 2. d {dt n)/dT vs T in Mno 40Zno 6oF~ at H =0, 2.0, 4.0,
5.9, and 19.6 kOe. The average transition temperatures are in-
dicated by vertical lines. The curves are guides to the eye.

T(K}

FIG. 3. d{hn) jdT vs Tin Mno»Zno45F2 at 0 =0, 4.9, 9.8,
14.7, and 19.6 kOe. The average transition temperatures are in-
dicated by vertical lines. The curves are guides to the eye.
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IQ.Q
ty in P we have allowed b to change by 50% and TJv to
vary by +5 mK leading to a value of /=1. 44+0.07.
Considering the pros and cons of the other two concen-
trations, the Mno 55Zno 45Fz crystal is clearly the best of
the three for the accurate determination of ((.

From a comparison of the best ~alue of (() (see Table I)
obtained for each crystal, it appears that no variation of
P with x occurs in the range 0.4(x &0.83, within the
combined experimental errors. If we assumed that no
variation in (() with x is to be expected then we make a
weighted average of the three measurements of ((); in
which case P = 1.43 with a variance of +0.03.

concentration two factors contribute to ihe increased er-
ror in the determination of ((): one is the rapid decrease in
the amplitudes A + with decreasing x (much faster than
x, as one might niively expect), and the other is the in-
crease of the dynamic rounding of the phase transition
with decreasing x, at a constant H. Both factors cause in-
creased uncertainty in the determination of T, (H) be-
cause of poorer signal-to-noise ratios. Added to all of the
above is the limited field range (0&H &6 kOe) in which
the shift can be described by Eq. (3). We will return to
this latter point in the discussion of the complete H-T
phase diagram for Mno 4oZno soF2.

For Mno5&Zn04&F& fixing the Necl temperature to
Ttv =27.381+0.003 we obtained P = 1.4420.03. Even al-
lowing T~ to be an adjustable parameter (i.e., excluding
the H =0 point) gives /=1.46+0.05 and T~=27.384
+0.007 K, both very close to the values obtained with Tz
6xed. In order to obtain an upper limit to the uncertain-

l0„- Mn„Zn~ „F&

I I I I

Q.l—

) i I i I

l0
I

20

FIG. S. Log-log plot of the mean-5eld-corrected shift in
T, (H) from T& vs 0 in the Mn„znl „F~ systems. The solid
lines are the best power-law Sts and yield the values of P given
in Table I.

52.2
T(K)

FIG. 4. d(bn)AT vs T in Mn083Zno I7F2 at H =0, 10.0,
15.2, and 19.3 kOe. The average transition temperatures are in-
dicated by vertical lines. The curves are guides to the eye.

C. Rounding of the transition in an applied field:
inhomogeneous broadening, static and dynamic scaling eBects

Previous d h, n /d T experiments' have shown that the
shape of the transition in the RFIM regime can be well
described as a logarithmic divergence [i.e., d (An)/
dT~Iog

~
T —T, (H)

~
]. For low fields a rounding of

this logarithmic behavior can be expected at
~
T —T, (H)

~
&5TN where 5TN is the rounding of the

transition at 0=0 caused by a concentration variation
5x, The dependence of the parameter C of Eq. (3) on x
will induce an additional rounding of T, (H). For
Mno»Zno 4,5F2 we estimate this contribution to bc

5T, (H)=0. 1[T~—T, (H) bH j5Ttv—.

The total rounding of T, (H) due to inhomogeneities
would then be

5T, =5Ttt I 1+0.1[T~—T, (H) bH ]I—
in this crystal.

Besides rounding from inhomogeneities, dynamical
rounding ' has been shown to play an important role
in determining the response of the system in the critical
region. Although the present experiments are nominally
"dc" or steady-state measurements, they were actually
carried out on a finite time scale of ~=100 sec per mea-
surement. The critical slowing down in RFIM systems is
so extreme that even on the time scale, co= I/r=10
sec ', dramatic dynamic effects are expected. ' For

~

t t,
~

&t —given by Eq. (18), the logarithmic critical
divergence is expected to be limited, and the peak in
d(bn)/dT to approach a finite value given by Eq. (18).
%e assume, in the case of a logarithmic divergence, that
the singular part of the peak amplitude is given in Eq.
(17) with a ~0, which leads to only log-log corrections in
co and ii a„ to be applied to Eq. (18). In practice, it is not
possible to distinguish experimentally between a very
small value of a and log

~
t t, ~, nor woul—d it be possible

to distinguish between the two forms of Eq. (17).
To compare the data with these predictions, we show

in Fig. 6 a typical scmilog plot of the amplitude for
Mno 55Zno 45F2 at 19.6 kOe together with an estimation of
t', de6ned as the reduced temperature at which the
asymptotic logarithmic behavior intercepts a horizontal
line drawn through the peak. Assuming t'ccH ~~ [Eq.
(18)], the dynamic rounding of T, (H) would be t"T~,
with t'(H =19.6 kOe, v=100 sec)=2.2X10 as es-
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FIG. 6. Semilog plot of d(ba)/dT vs reduced temperature
t —t, . The construction by which the effective dynamic round-
ing temperature t~ is determined is explained in the text and
follow's the procedures u9% to analyze the ac susceptibility
(Ref. 28) and Faraday rotation (Ref. 29) in the Fe„Zni „Fz sys-
tem.

timated from Fig. 6.
The SeldMependent peak-amplitude scahng of Eq. (18)

cannot be simply compared with the data because the
measurement of the amplitude requires a reference base
line. We construct the latter by noticing that the cross-
over boundary r„, Eq. 1, and t~ both scale with hRF as
h i'. Thus the values of the scaling function of Eq. (4) at
these points are field independent, and the corresponding
values of C scale with IiRF with only the exphcit Seld
dependence of C . We note that the RFIM value of C
crosses over to the REIN value at t,, (the low-
temperature crossover) and that the REIN value of C is
only weakly temperature dependent between r,, and
T,(H}. It is reasonable to conclude from this that the
height of the RFIM peak above the H =0 data should be
a good measure of the SeldMependent amplitude of
d (bn)/dT.

The effect of concentration gradient on the peak height
and width is expected to be largest at low fields, where
r'Tz &5TN, becoming negligible at larger Selds, where
r Tz ~~5T&. To take this variation into account, we use
the following model to treat the static and dynamic
eS'ects together: in the absence of a gradient, we approxi-
mate the peak proSle by

[(T T}2+(r*T }2)'"-
d(hn)/dT ~H ~Aog

2 &
. (20)kH'«

Here k =0.007 K/(kOe) ~~ is chosen to St the data with
d {dn)/dT~D at t,,

The effects of the gradient on this expression are then
approximated by integrating T, (H) over the range
(T, 5T, ) & T,(H) &(T, +5T, ).—The peak amplitude at
T =T, is found to be

I

MAO 55ZAo y5 Fp

tK)

l.O l.5
[T„-T~{H)—bHs] {K)

27

I

2Q

FIG. 7. Peak amplitude of d(h.n)/dT vs the mean-field
corrected shift in T, (H) at several values of H&0 in

Mno»zn045F2. The upper curve is the expected weak random-
field H " scaling in the absence of gradient rounding. The
lower curve is the result of a calculation that takes into con-
sideration the measured gradient induced rounding of Tz. 5T&
is the rounding observed at H =0 as was determined in the best
6t to the critical behavior showa in Fig. 1. The inset shows the
complete d (hn ) /d Tdata at H =4.9, 9.8, 14.7, and 19.6 kOe (in-
dicated by the arrows in main Sgure) in the RFIM region. The
solid lines are the calculated behavior of d(h, n)/dTvs Tat each
value of H and include static and dynamic scaling efFects as well
as those arising from the concentration gradient induced round-
ing.

For low fields, where t'T~ &5T„ the limits of integra-
tion are taken to be T,+r'T~ since d (&n)/dT [Eq. (20}j
is assumed to be zero outside this range.

In Fig. 7 we have plotted the amplitude of the peaks
taken as the maximum in d(hn)/dT measured with
respect to the 8=0 curve at the same temperature.
These results can be compared with the evaluation of Eq.
(21) (lower curve in Fig. 7},where we have used the previ-
ously estimated magnitude for 5T& and t ~ On. ly the pro-
portionality constant in Eq. (21) was taken as an adjust-
able value. In order to have an estimate of the efFect of
the inhomogeneities on the peak amphtude we have set
5T& ——0 and left the remaining parameters fixed: this is
shown by the upper curve in Fig. 7. This simple analysis
shows the importance of considering the efFects of con-
centration variations and the critical slowing down when
analyzing the critical behavior of the RFIM systems.

As an inset to Fig. 7 we show the prediction of the line
shapes for the transitions at difFerent fields found by in-
tegrating Eq. (20) with the same parameters used to cal-
culate the peak amplitude. Since for the region
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~
T T—,(H)

~

&t'Tz the amplitude is entirely deter-
mined by static scaling it is clear that the increase in the
apparent width of the transition region with magnetic
Seld is a direct consequence of static and not dynamic
scaling. Note that the apparent width (half width at half
height) is not to be confused with t T~, which is a much
smaller quantity.

Mno~ Znoe F~ 4.5 K

MI-

CQ
0
cf

lO

H (kOe)

FIG. 8. Field derivative of the optical birefringence
d (hn)/dH vs H in MnQ &ZnQ 6F2 at temperatures T =4.3, 9„1I,
and 12 K. The lines are guides to the eye.

D. Complete H-T phase diagram for M~ ~no ~F&

In the Mn040Zn060Fz crystal we were able to examine
the nature of the phase boundary between 2& T & 13 K.
This was accomplished by measuring d (hn)/d T versus T
at constant H (see Fig, 2} and d(b, n)/dH versus H at
constant T (see Fig. 8). The combined results of the two
kinds of measurements of T,(H) versus H are shown in
Fig. 9. By extrapolation to T=O of a smooth curve
through the data, one can surmise that
(dH, /dT)z o

—0, and —that the critical field at T =0 is

H, =13.8 kOe. Furthermore, from the monotonicaly
changing character of the data of Figs. 2 and 8 the con-
tinuous curvature of T,(H) versus T, we deduce that no
other critical points appear along the phase boundary.
Hence the transition, which is secondwrder at the small-
est fields, appears to remain second-order along the entire
boundary.

Since the Mn„Zn& „Fz system exhibits a bicritical
point at a value of x at least as small as 0.5, ' we searched
for a spin-Hop-paramagnetic transition by measurement
of d(hn}/dT versus T in the range 1.9& T &20 K at
various fields between 14&H &20 kOe. The result of
part of the 19.6 kOe scan is shown in Fig. 2. No evidence
for any other phase-boundary line was found.

The inset to Fig. 9 shows the same phase boundary but
plotted as H ~~ versus T. The straight line through the
high-temperature points is the best-St-of the 8 g 6 kOe
data shown in the log-log plot of Pig. 5. Clearly one rap-
idly departs from the predictions of Eq. (3) as H increases
above 6 kOe. For this weak1y Ising system, the extent of

30
N

20O

hJC I

T{K)

FIG. 9. Complete phase diagram for MnQ4ZnQ6F2 Solid
dots were obtained from d(hn)/dT vs T and the open circles
from d (hn)/dH vs H measurements. The solid line is a best fit
to the data for H g 6 kOe and a guide to the eye at larger fields.
The dashed portion is an extrapolation of it to T =0 K. The in-
set is the same data in an H~ ~ vs T plot, showing where the
departure from the weak random-6eld behavior first occurs.

the field range of simple RFIM behavior is noticeably
smaller than that of the more Ising-like Fe„Zn, „F2 sys-
tem where even for x =0.46 one observes 0 ~ behavior,
to 2O kOe at least. "

V. COMPARISON OF NEW RKSUI TS
WITH EARI.IKR STUMES QF ct =3 RFIM SVSTKMS

Until very recently, the experimental situation on P has
appeared to be ambiguous. Seemingly differing results
had been obtained for the three primary d =3 RFIM sys-
tems studied: Fe„Zn& „F2, Mn Zn& F2, and
Fe„Mg, „C12. FeF2 has a single predominant intersub-
lattice exchange and a large, single-ion, easy-axis anisot-
ropy, making it an ideal d =3 pure Ising system. Mea-
surements of the critical exponents of FeFz are in good
agreement with pure Ising values throughout the entire
critical region. Values of P from measurements of the
of the optical birefringence [/=1.40+0.05 (Ref. 18);
1.42+0.03 (Ref. 26)], capacitance (/=1.40%0.05), and
Faraday rotation~ (/=1.44%0.04) are all in excellent
agreement, within experimental error. Recent neutron
scattering measurements, on a virtually gradient-free
Feo~Zno s„F2 crystal, showed that y= 1.31%0.03, from
which it was determined that P/y = 1.08+0.05 consistent
with Aharony's estimate' of 1.05 & P/y & 1.10.

In FeClz, a predominant ferromagnetic exchange
within the layers, and a weaker antiferromagnetic in-
teraction between layers result in a system with a
metamagnetic transition below a tricritical point. The di-
luted material Fe Mg& „C12 also exhibits a reduction in
Tz which is quasi-two-dimensional, initially decreasing
linearly from x =1 toward the percolation limit for a
d =2 square lattice at x&-0.5. Furthermore, the com-
petition between intralayer and interlayer interaction re-
sults in a spin-glass phase appearing well above x . All
the above not withstanding, FeCl~ does exhibit three-
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dimensional Ising behavior. Therefore, for the diluted
material we expect it to exhibit REIN critical behavior.

Specific-hest measurements of the phase diagram of
Feo 682Mgo 3&SC12 showed a peak which was interpreted to
shift with an apparent exponent 4 =1.26+0. 10, a value
presumably in agreement with y = 1.24. However, there
was apparently no attempt to do a critical behavior
analysis of the data, nor to make any direct measurement
of the effects of a concentration gradient on the deter-
mination of T~.

More recently, however, very careful Faraday rotation
measurements by I.eit3o and Kleemann on
Feo 7Mgo iClz have given an exponent /= 1.41%0.05 in
agreement with the Fe Zn, „Fz results. Because of the
high sensitivity of the Faraday rotation in this sample,
the authors were able minimize the volume of the crystal
to =0. 1 mm and therefore reduce the rounding of the
transition by gradients of concentration to 5T~/T~
g 1.5X10 . This result for 5Ttv /T~ is of the order of
the best result obtained with the birefringence method by
orienting a narrow laser beam perpendicular to the con-
centration gradient, so as to minimize the variation in
concentration over the beam. Also, the Faraday rotation
experiments were made on a typical time scale of v =100
sec, assuring thermal equilibrium. Finally, only ZFC
data were used in determining P. These authors surmized
that the results of the earlier specific-heat studies~ were
incorrect since the measurements were made under non-
thermal equilibrium conditions, involving averaging ZFC
and FC values of the transition temperatures. In addi-
tion, no attempt had been made to characterize the neces-
sarily larger concentration gradients that would be
present in the size sample required in the heat-capacity
measurements. Considering the differences in the manner
in which the two studies were made, we believe the Fara-
day rotation measurements to be more accurate in all
respects.

In MnF2 the exchange interaction is virtually identical
to that in FeFz, but the anisotropy is dipolar and much
weaker than the large single-ion anisotropy in FeF2.
Nevertheless, the asymptotic critical behavior of both
materials should belong to the same Ising universality
class. This was implicit in early birefringence measure-
ments of Fe, Zn& „Fz and Mn„Zn, ,Fz which gave
values of P consistent with /=1.4+0. 1 for both sys-
tems. However, later careful measurements on
Mno&~Zn025F2 using the thermal expansion technique
gave P = 1.25+0.07, consistent with the original idea that
P =yz. Adding to the dilemma was the fact that neutron
scattering measurements on the same crystal determined
that the exponents v and y were those appropriate to the
REIM, not the pure Ising model. So confusing was the
experimental situation as to the apparently differing
crossover behavior in different systems that some were
led to speculate' as to whether distinctions existed be-
tween "strong" and "weak" Ising systems, which mani-
fest themselves in RFIM crossover behavior, but not in
the REIN behavior in the same systems.

It is clear from the present work that the main contri-

bution to the Snding of a smaller than expected value of P
in the earlier Mn075Zno 25F2 studies was the concentra-
tion gradient elect which led the authors to misjudge Tz
at H =0. %e can see this effect very readily in our own
data at a comparable concentration. For example, in the
analysis of Mno 83Zno &7F2, we found that if the tempera-
ture corresponding to the peak of d (hn)/dT versus T at
H =0 had been mistakenly chosen as T„, the resulting
value for P would have been /=1. 1720.09, instead of
the value given in Table I. A detailed analysis of gradient
effects on critical phenomena are given in the papers by
King et al. and Belanger et al. '

On theoretical grounds, however, one might expect the
crossover exponent to approach the pure Ising-to-RFIM
value of P=y(pure) =1.24 at very small dilution and very
large values of the applied field. For some intermediate
range of concentration and applied field, an "efFective"
exponent might be observed, with a value between those
of the pure and REIM-to-RFIM crossovers. Whether or
not the slightly smaller (though unchanged within the ex-
perimental errors) values of P in the 83% sample is evi-
dence for such a crossover in P cannot be ascertained
without further study at higher concentrations and
higher Selds. The Fe„Zn, „Fz system would be ideal for
this investigation because spin-mop occurs at a much
higher field than in the Mn„Zn, «Fz system.

VI. SUMMARY

When the results obtained for the crossover exponent P
in the Fe„Zn& ~Fz system and those recently obtained by
Leitao and Kleemann on Feo 7Mgo 3C12 are compared
with those reported above for the Mn„Zn, „F~ system
we may conclude that the observed crossover in all dilut-
ed antiferromagnets is from REIM to RFIM and not
pure Ising to RFIM behavior. Furthermore, within rath-
er small and well-de6ned experimental errors, we deduce
the following.

(1) P is identical for all three systems (Fe„Zni, F2,
/=1.42+0.03; Fe„Mg, ,C12, /=1. 41%0.05;
Mn„Zn, „Fi„/=1.4320.03), within experimental error.

(2) P shows no concentration dependence in the range
in which it has been measured in the two systems studied
(Fe„Zn, „Fz, Mn„Zn, „Fz).

(3) The Aharony inequality P& y (REIM) is well
satis6ed in these two cases.

It follows that, in the weak random-6eld limit
[T~—T, (H)] ~& T~, the static and dynamical critical be-
havior should be identical for the three systems and
should be governed by the same crossover scaling.

%e are indebted to N. Nighman for the growth of the
Mn„Zn, „F2 crystals and to D. Huse and Y. Shapira for
private communications. One of us (C.A.R.) was sup-
ported by the Consejo Nacional de Investigaciones
Cienti6cas y Technologicas de la Republica Argentina.
This research was supported by the National Science
Foundation Grant No. DMR85-16786.
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