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First-principles electronic-structure approach for phase diagrams of binary alloys
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A combined statistical-mechanical and electronic-structure approach for the Srst-principles cal-
culation of binary-alloy phase diagrams is presented. The grand partition function, constructed
from volume-dependent internal energies obtained from local-density total-energy supercell calcula-
tions, permits the determination of the entropy and thus, in principle, all thermodynamic quantities.
Illustrative results of 6rst calculations for the Al-Li system show: (i} structural properties versus
concentration in very good agreement with experiment and (ii) features on the Al-rich side of the
phase diagram of the fcc solid solution which are important for alloy formation.

T'he calculation of phase diagrams of binary alloys, en-
tirely from first principles, remains a long sought and im-
portant goal. A first, realistic attempt is found in
Kikuchi's cluster method. ' Starting with the evaluation
of the entropy of characteristic clusters in an alloy, and
supported by a calculation of the internal energy in a
pair-potential approximation, the free energy and related
quantities are obtained. This line of thought leads to the
cluster variational method, in which the evaluation of
the energy is greatly improved. Later approaches to cal-
culate alloy phase diagrams involve the alternative route
of computer simulations. I In this paper, we follow the
ideas of Kikuchi, but note that the energy and entropy
are dependent quantities in thermodynamics. Therefore,
we base our results on calculated electronic energies only,
which is possible because the precision of total-energy
calculations has increased rapidly. Today, for example,
structural properties of ordered compounds are well
reproduced with state of the art density functional
methods. Importantly, the recent enormous increase of
computer power (both in speed and memory) allows the
study of increasingly complex crystal structures with
highly precise methods.

This paper presents a Srst step towards the calculation
of phase diagrams of binary alloys starting from a local-
density total-energy supercell formulation. After con-
structing the grand partition function which permits the
determination of the entropy from our calculated total
electronic energies, we are, in principle, able to obtain all
thermodynamic quantities. %bile this approach faces the
same problem as obtaining the entropy in cluster varia-
tional methods since one is presently restricted to rela-
tively small unit cells, there are a number of important
advantages: (1) solid solution and ordered phases can be
calculated with the same numerical method and pre-
clsloll; (2) any sufIIclcntly prcclsc baIld-stl uctllfc Illctliod
can be used; (3) local environment cS'ects such as charge

transfer and chemical bonding are accurately described;
(4) any crystal structure for which the total energy has
been calculated can be easily included in the grand parti-
tion function; (5) the model is self-contained and only
needs the total energies; (6) no fitting and no breaking
into pairwise interactions is necessary.

The calculation of a binary phase diagram necessitates
the description of a solid solution, A I,B„for an arbi-
trary composition x. A standard approach to obtain the
electronic structure of solid solutions is the single-site
coherent-potential approximation based on a multiple
scattering formulation of the Korringa-Kohn-Rostoker
Green"s function method (KKR-CPA). This approach
describes the sohd solution in terms of a disordered alloy
by embedding single atoms in an CS'ective medium which
depends on the composition of the alloy components.
Very recently, it even became possible to directly calcu-
late total electronic energies by including self-consistently
the effects of the different charge densities of the embed-
ded atoms. In addition, the KKR-CPA has also been
generalized to treat embedded clusters instead of single
atoms.

In contrast to the KKR-CPA, which describes the
configurational average by an effective medium, we de-
scribe the solid solution by a thermodynamical average of
ordered supercells including all con6gurations of A and 8
atoms in the supercell, and perform the conSgurational
average of thermodynamic quantities using the grand
partition function. %e only apply our approach to ob-
tain thermodynamic quantities, and do not evaluate elec-
tronic properties like energy eigenvalues and Fermi sur-
faces. %'e have tested this approach for a two-
dimensional Ising model where the magnetization is
equivalent to concentration. The results show that the
Ising model for even small unit cells gives, quahtatively,
the correct behavior of the speci6c heat as a function of
temperature. The exact value of the transition tempera-
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ture, of course, depends strongly on the size of the cells
when they are small. In a real alloy, however, the depen-
dence of the total energy upon composition is much more
complicated than in the Ising model. Because our results
for the structural properties of the fcc solid solution,
Al& „Li„,are in very good agreement with experiment
we gain confidence in our thermodynamic model. Unfor-
tunately, to our knowledge there are no experimental
data available for the energetics which might serve as an
even harder test for our procedure of configurational
averaging. But the results obtained so far encourage the
application of our model to attempt the calculation of a
phase diagram.

In order to attain the thermodynamic limit one has to
consider larger and larger cells inside the alloy, and in the
end the e8'ects of the boundary of this cell (i.e., contribu-
tions to the internal energy from bonds across the bound-

ary) become unimportant. In our approach, we use
periodic boundary conditions and thus force the structure
of adjacent supercells to be identical; therefore, ordered
structures are possibly favored when this approach is re-
stricted to small supercells. Including larger supercells
will probably lower the free energy of the solid solution
and an ordered structure which is found to be stable in a
calculation with small supercells might become unstable
with respect to the solid solution. If any of the ordered
structures associated with a small supercell is already un-

stable, it will remain unstable in a calculation with larger
unit cells. Additionally, for small supercells the shape of
the cells also becomes important. Our approach relies on
the sowalled local approximation which was used for
calculations of averaged densities of states of binary al-
loys. Here, we go far beyond these previaus supercell at-
tempts by calculating total energies as a function of
volume and calculate the average of quantities such as to-
tal electronic energies, equihbrium volumes and bulk
moduli.

In order to perform the configurational average we fol-
low the recipe for the construction of a grand canonical
ensemble in statistical mechanics. The grand partition
function Z for a subvolume V of the total system of elec-
trons, for both nuclei A and 8, is given by

Z(z„zq, za, V, T)

The canonical partition function Q for the temperature T
(P=1/kT) is defined by

Q {N„N„,Na, V, T ) =Tr exp( PH)—
and the fugacities z,. are related to the corresponding
chemical potentials p, by z; = exp{@,P). The trace is per-
formed over all states of the system with N, electrons and

X&,N& atoms in V. All thermodynamic quantities then
follow after taking the limit V to infinity.

Even for a small volume V the summation in Eq. (1) is
still forrnidab1e. At this point we make the following as-
sumptions: First, we consider only neutral supercells.
(This is certainly justified in a system where charge 6uc-
tuations are screened out in a distance short enough

when compared to the size of the cells. ) Second, we per-
form the total electronic energy calculations at T =0 and
neglect 6nite-temperature elects on the electronic struc-
ture. (At present, this could be accounted for by includ-

ing a semi-emplAcal term 1n the total energy of each
con6guration, derived from the speci5c heat as related to
the densities of states at the Fermi energy. One expects,
a signi5cant inhuence of this e8'ect only at very high tem-
peratures. ) Third, we invoke the Born-Oppenheimer ap-
proximation and at this point neglect any contributions
from phonons. (Again, one could find a semi-empirical
correction which is related to the Debye temperature
which can be estimated through the calculated values of
the bulk moduli. These terms are expected to have a pro-
nounced elect only at temperatures above room tempera-
ture. ")Fourth, we do not vary the total number of atoms
in a given volume. (Our calculations show that for four-
and eight-atom fcc supercells the energy of formation of
vacancies is very high, since in these small supercells
there is insufficient freedom for relaxation. Vacancies
have to be described with much larger supercells, which
then implies that their effects on the phase diagram will

be small. )

Taking into account all these assumptions, we express
the partition function by

Z(z,e V, T)= gz, z exp[ PE„(V)]—, (3)

where E is the volume-dependent total electronic energy
for the vth configuration with N„(v) atoms of type A as
obtained fram our electronic-structure calculations. We
left out the irrelevant factor z+ which does not depend on
v. Since we 6x the total number of atoms, there only
remains one efFective fugacity, z,e, which is determined

by the average number of A atoms

The internal energy and the Helmholtz free energy are
then derived from the statistical average of the quantities
E„and from lnZ in a standard way. ' Further, since the
calculated E„ is a function of V, the Helmhaltz free ener-

gy is a function of V. By minimizing the Helmholtz free
energy one derives the T-dependent equilibrium volume
and bulk modulus. Also the fugacity z,l depends on T
and V. The entropy is then obtained as the difference of
the internal and the free energy divided by T. At this
point the entropy is only con5gurational, since we have
neglected the contributions of phonons and electronic ex-
citations. It is thus clear that this statistical model only
needs the total energies, E„(V), which one obtains from
6rst-principles calculations; no additional information is
required.

To demonstrate our method, we chose the Al-Li sys-
tem because of its great technological importance and be-
cause it is a severe test of any new method. Al and Li are
chemically rather different atoms due to their valency,
size, and electronegativity. Hence, one expects sizable
charge transfer and strong local environment sects due
to the strong chemical bonding; this was con5rmed in
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calculations for the ordered Al-Li Zintl phase. ' To
demonstrate our approach we focus on a simple case,
namely on the A1-rich side of the alloy system and only
calculate the solNi solution for the fcc lattice. To cover
the whole composition range of the phase diagram' all
other important structures such as the ordered Al-Li
Zintl structure must be considered as discussed below.
Of great importance for the mechanical and elastic prop-
erties of Al-rich alloys is the formation of a metastable
A13Li ordered phase (of I.12 structure), ' which is one of
our supercell configurations. Therefore, it is also of phys-
ical interest to merely study the thermodynamic balance
of fcc solid solution and A13Li by considering an ensem-
ble of fcc supercells.

According to the local approximation a supercell
should be as close to a sphere as possible. With this in
mind, we constructed an fcc supercell of twice the lattice
spacing needed for one atom. Such a supercell contains
eight atoms and in total 256 difi'erent configurations of A

and 8 atoms have to be considered; however, because of
symmetry, the number of inequivalent configurations can
be reduced to 16. For all these 16 configurations we ap-
plied the self-consistent full potential linearized augment-
ed plane-wave method' to obtain very precise total ener-
gies as a function of volume. A detailed discussion of the
calculations and the convergence with the size of the su-
percell will be published elsewhere.

The entropy of mixing is shown in Fig. 1 as a function
of T and composition, x. At very high temperatures
(5000 K}we approach the limit of ideal mixing for eight-
atom supercellsy

S/k = —8[x ln(x)+(1 —x}ln(1 —x)] .

Close to T =0 we 6nd dips at x =0.25, 0.5, 0.75, and
0.875 which refiects the interpolatron between the most
stable supercells. The entropy at T=0 is not zero be-
cause of symmetry degeneracy within the in5nite periodic

lattice; e.g., in the case of the I.12 structure there are four
dHferent con6gurations with the same total energy and
therefore 8/k = ln(4). In the thermodynamic limit,
however, this number is small compared to the total
number of atoms X in the supercell and hence at T =0
the entropy per atom S/N will go to zero. A remarkable
feature in Fig. 1 is the dip at x =0.25, due to the A13I.i
con6guration with I.lz structure, which remains even at
700 K.

The equilibrium volume is a very important concept in
the metaBurgy of alloys. The Al-Li system provides an
especially severe test for electronic structure calculations
because of the strong deviations of the alloy volume from
the linearly interpolated volume of Vegard's law. Al-
though the equilibrium volume per atom of pure Li is
20% larger than the volume per atom of Al, mixing of Li
to Al shrinks the volume /Fig. 2(a)] by up to 1% at
x =0.25. The calculated absolute values of volume are
1% smaller than experiment (which is the usual error in
local-density calculations}. As seen from Fig. 2(a), the
configurationally averaged relative volume change agrees
well with the experimental results's for the solid solution.
(It should be kept in mind that, at this stage, we have not
included any contributions from lattice vibrations. ) As
shown in Fig. 2(b) the bulk moduli decrease linearly with
increasing amounts of Li in very good agreement with
measured values. ' Hence, our averaging procedure gives
good results for the structural properties of the fcc solid
solution. We believe also that our calculated average to-
tal energies are reasonable quantities but we cannot pro-
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FIG. 1. Configurational entropy S/k of fcc Al& „Li„vs
composition x as a function of temperature for T=50, 200, 500,
700, 1000, and 1500 K (u, b,c,d, e,and f, respectively). Dashed
curve: 8/k =—8[x 1n(x)+(1—x) ln(1 —x)].

FIG. 2. Change of (a) equihbrium vo1ume and |1) bulk
modulus of Al& „Li„relative to fcc Al vs composition x for
T=50 and 1500 K compared vnth the experimental values
(Refs. 16 and 17, respectively).
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FIG. 3. Phase diagram as obtained by lines of maximum C~
as a function of temperature T for the fcc only Al& ~ Li» system.
Here A indicates a mixture of mainly the Al and A13Li (,L 1&

structure) supercells, 8 denotes a mixture of mainly A13Li(1.12)
and Al-Li(L10) cells, and C denotes another mixture of super-
cells. Finally, 0 denotes the region for which total disorder is
reached at high temperatures. The hatched areas symbohze
miscibility gaps.

vide a definite statement because no experimental data
are available.

Figure 3 reveals the information pertaining to the
phase diagram for the Al-rich side. As stated, the phys-
ics we consider is the thermodynamic competition be-
tween solid solution and some ordered phases represented
by particular conffgurations in the supercell. To clarify
our approach, we emphasize that our supercells are not
individual phases but that a mixture of cells, as defined by
Eqs. (3) and (4), is used to get the lines shown in Fig. 3.
These lines in Fig. 3 are deffned by maxima in the specific
heat at zero pressure as a function of T for a fixed compo-
sition. It appears to be a sensible way to define phase
boundaries for Pnite systems, although this procedure
might not be able to distinguish between Srst- and
second-order phase transitions. The consequences of our
phase diagram for alloy formation will be discussed else-
where but it should be noted that the occurrence of an
A13Li(L12)-rich phase (phase A in Fig. 3) and a miscibili-

ty gap agree well with experiment. A quantitative com-
parison of the phase diagram is not meaningful because
(i) we have not included lattice vibrations or any theory
of melting and (ii) the Al-Li Zintl phase has to be includ-
ed for a complete equilibrium phase diagram on the Al-
rich side. Within our thermodynamical model including
the (Al-Li} Zintl result (and others) is very easy but for a
realistic description of the experimental equilibrium
phase diagram well-known nonstoichometry efects (va-
cancies and antisite atoms), especially in the Al-Li Zintl
phase, have to be calculated. All this, however, goes
beyond the aim of this paper.

The hatched areas in Fig. 3 represent miscibility gaps.
At compositions and temperatures in this range the free
energy is lowered by separating the system into two
phases of dim'erent compositions. On the other hand, in
the area labeled A we need a mixture of mainly two types
of cells [pure Al and Al&Li(L 12)] to maintain the
prescribed composition according to Eq. (4). This is a
microscopic mixture, indicating that one has a solid solu-
tion with a high degree of short-range order. Region 8
can be described in a similar way by a mixture of
A13Li(L12} and Al-Li(L10). In region C we ffnd a more
complex mixture of supercells, while in region D total
disorder is reached at high temperatures.

The results obtained in this paper for the Al-rich side
of the phase diagram appear to be encouraging. Since we
are limited to smaH supercells, the present method should
only be applied to regions in experimentally known phase
diagrams where complicated ordered structures do not
occur and where concentration waves with long wave-
length are not important. If a system is known to have
only short-range interactions, the use of small supercells
is justified. Even in the case where long-range interac-
tions do exist, however, small supercells can still give
good results, as long as the long-range interactions do not
stabilize complex ordered structures with large unit cells.
Therefore, at present, experimental phase diagrams have
to guide the applications of our approach {as for many
other approaches). Experimentally, there are no ordered
structures (stable or metastable) with more than four
atoms in the unit cell for Li concentrations less than
509o. Therefore, we can expect to obtain good results
with our eight-atom supercells in this regime. Also, our
four-atom supercell calculations for the free energy give
very similar results for the Al-rich side as compared to
the eight-atoms case. The Li side of the phase diagram is
more complicated and in order to describe the observed
A12L13 and A14Li9 ordered structures we need larger su-
percells. %hile we need to restrict ourselves at this stage
to regions of phase diagrams where only simple ordered
structures are known Co be important, it appears that our
combined statistical mechanical and electronic-structure
method shows promise for studying alloy phase diagrams
from Srst principles. In that respect we join the eSorts to
combine quantum and statistical methods from a Srst-
principles point of view, ' a problem for which there is
yet no simple solution.
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