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Derivation anti generalization of the Snhl spin-wave instability relations
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The Suhl spin-wave instability relations are shown to be derivable using linear-stability theory
and the method of averaging. This makes rigorous Suhl s early work on formulas for the critical ra-
dio frequency Geld for spin-wave instabilities as well as reformulating the problem in more
mathematical terms. It also makes possible several generalizations and extensions including formu-
las for spin waves with frequencies near the usual detuned frequency, and a direct application of
second-order averaging theory to show that the first-order results here and in Suhl's original work
are very accurate within the in5nite time-averaging approximations used. Appendixes on the full

equations of motion, including the Landau-Lifshitz daxnping, and the complete expressions for the
Jacobian from the variational equations are also given.

The subject of spin-wave instabihties in ferromagnetic
and ferrimagnetic materials in a rf driving field has seen a
revival recently. ' This is primarily because magnetic
materials undergoing such instabilities, like yttrium iron
garnet, have been shown to exhibit many of the interest-
ing nonlinear types of behavior such as period doubling,
-quasiperiodic motion, and chaos. ' s To this date the
original work of Suhl9 and the later rederivation by
Schlomann' and Akhiezer et al. " remain the main
references for the expressions for the onset of spin-wave
instabilities in these materials. Some time later Patton,
using the same approach as Suhl, derived instabihty rela-
tions which include anisotropy.

I show in this paper that it is possible to derive these
relationships in greater generahty and with greater rigor
and to extend the results to a higher order of approxima-
tion. This is done using linear-stability theory and
the method of averaging, ' ' first and second order.
This shows that Suhl's work was actually a form of
infinite-time averaging applied to a variational equation
of linear stability derived from a simplified form of the
classical equations of motion. The results are given for
the complete e uations of motion which include the
Landau-Lifshitz' damping. The results also include in-
stability relations for sjn-wave frequencies near the usu-
al detuned frequency. For spin waves at frequencies
near the usual detuned frequency, the second-order
correction to the Srst-order averaging result is zero. In
addition, the complete equations of motion, which in-
clude terms not present in Refs. 9 and IO, are given up to
third order, as well as the Jacobian expressions for the
stability and critical rf 6eld analysis.

Recently Sneddon has shown, from a somewhat
difkrent point of view than the one here, that there is a
relationship between linear stability theory and ferromag-
netic instabilities as studied by Suhl and Schlomann. '

Here the point is to show what mathematical concepts
apply to the instability problem, how to rephrase the
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problem to fit the rigorous mathematical scheme and, in
some cases, to extend the results of instability theory.

EQUATIONS OF MOTION

The equations of motion are well described in Suhl's

paper and they wiB only be covered in a cursory manner
here, except for the ffnal result of the full equations of
motion which appear in Appendix A.

The primary equation describing the time evolution of
the magnetization is taken to be the Landau-Lifshitz
equation' with the Landau-Lifshitz form for the damp-
ing

dnl
dt

= —ymxH s —am'(mXH s),e

where m=M(r, t)/
~
M

~

is the "reduced magnetization"
and H,r is the effective field described below. Since

~
M

~

is a constant of the motion,
~

m
~
=1. The first term on

the right-hand side of Eq. (1) is the gyroscopic force caus-
ing precession in the linear limit. The second term is a
phenomenological damping term. This adds a "force"
which tends to cause m to align with H,r in the absence
of a driving field. The damping term is an attempt to de-
scribe, in simple terms, the actual interaction of m with
phonons and, in metals, eddy currents, both of which ex-
tract energy from the motion of the magnetization. This
damping can be described in more physically realistic
terms using magnetoelastic equations and Maxwell's
equations, ' although their inclusion greatly complicates
the equations of motion.

The effective 6cld 8,& has four parts: the exchange
term, the dipole term, the static applied ffeld, and the ap-
plied rf field. The anisotropy is neglected for now.

The exchange term is PM+72m, where Ms ——
~
M

~

is
the saturation value of the magnetization. The exchange
constant here is related to another common version by
@=He„l /Ms (l is tlie lattice constallt).

The dipole term is —4m.Ms gi, k(k.mi, )e'"'/k, where

mi, is the Fourier coefficient of m(r). This comes about
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Qk

dt
=/Akuk+lBku k+Pk(Qk, Qk ) (2)

and their complex conjugates. In Eq. (2} Ak and Bk are
defined as in Suhl' and are given in Appendix 8 here.
The term Pk(ak, ak ) is a polynomial of degrees two and
three in ak and a f. The expressions for these quantities
in Eq. (2) are given in Appendix A. The full Landau-
Lifshitz damping terms are included.

The linear parts of Eq. (2) give rise to the well-known
spin-wave frequency dispersion relations. In the linear
limit the k=0 (uniform mode) spin wave is stable and the
k+0 spin-wave modes decay to their thermal values.
The uniform mode amplitudes ao and az have magni-
tudes on the order of h, the rf field. Thus at small rf
power levels the uniform mode precesses with frequency
co, the driving frequency, and is a stable solution to Eq.
(1). It is the nonlinear part Pk which causes the instabih-
ties and, presumably, other interesting em'ects seen at
higher power rf levels. The next section examines the
nonlinear contribution as the rf power increases by using
linear-stability theory and the method of averaging
for ordinary differential equations (ODE's). '

from the magnetostatic approximation ' to the bound-
ary conditions. The sum in the dipole term is over
nonzero k spin-wave modes. For the k=O mode the di-
pole term is 4mMs. (N&m„o, XTm 0, X,m, o), where NT
and X, are the demagnetizing factors.

The driving or pumping rf field is h~= (h cosset,
h singlet, 0), with co being the driving frequency and the
static field is Ho=(O, O, HO).

Because
~
m(r, t)

~

=1, the motion takes plice on a
sphere for each r. The number of equations of motion
can be reduced from three to two. There are many ways
to do this. 9"i2 Here, the standard approach is used
which is simple projection onto the x-y plane. Assume
the z component of m=1. This implies that m„and m
are small and all terms of order 4 or more are dropped in
the following. Then, write the x and y components of m
in the usual complex form and expand the z component
of m in terms of the new complex variables:

in' =in»+lPly, ing =Q(1—fil+m ) 1 —iPl+lri

Express m in terms of its Fourier series (spin-wave mode
expalisloll}, m= gkmke, and d85ne Qk =ink„+i)ilk@.ikr

Then m+ = gkake'k', m = gka' ke'"', and
rn, = 1 ——,

' gk k. ak. ak. ke'"'. Other relations among ak,
ok, and m follow from these.

These latter de6nitions and relations combined with
Eq. (1) lead to the following infimte system of complex
ordinary di8'erentia1 equations:

or stable, respectively. In the case of spin-wave mode
equations, the question is whether a perturbation of the
k&0 modes increases or decreases in magnitude during
one oscillation of the rf 6eld. Since small perturbations of
the ak's are considered, it is appropriate to examine the
"linearization" of Eq. (2) using the Jacobian of the right-
hand side of Eq. (2).

By calculating the Jacobian, the equation of motion for
the linear stability of ak is

duk
2XJkk'uk'+ X Jkk'u-k' ~

dt k

(3)

~here

Jki, i A——k5kk +
aP„Jkk' «~ k ~kk'+

BQ

Ak Bk

k k

The Jacobian is evaluated on the orbit for the uniform
mode motion, that is, ak ——ak =0 if k&0 and ao =ao(t) is
a solution of the equation of motion for the k=O mode.
When this is done the Jacobian reduces to 2&(2 block
structure in the pairs of variables ak and a ' k. The block
for the ao mode is diagonal. Since the transformation
k~ —k does not affect Jkk or Jkk. , the 2X2 block be-
comes

Jkk Jkk
J24 J14

kk kk

where the J's are functions of ao and t only. The full ex-
pressions for the J's are given in Appendix B.

The 2&2 block structure makes it possible to obtain
approximate solutions to the instability equations (3).
/his was implicit in Suhl's original paper and in others
who followed Suhl's approach. 'o" The uniform-mode
equation can be solved in some approximation giving ao
as a function of r and, therefore J as solely a function of r

This means the instability equations can be written com-
pactly as

a =J(t)a,
where a is the column vector (ak, a'

k ) . The matrix J(i)
is periodic in r with period 2m /co.

First, separate the hnear and nonlinear terms in J:
J=I.+Uwhere

A. The instabilit3 equation and its solution

Linear-stability theory examines the time evolution of
a small perturbation to a known solution to an ODE.
Speci6cally, whether the perturbation grows or dimin-
ishes determines whether the known solution is unstable

Now use a variation of parameters approach to write
a (r) =e 'c ( t). Then, the equation of motion for c is

GC Lf Lf

dt
=e 'Ue 'c=Ee .

The matrix U is of the order of Ii (or ao) which is the
small parameter in the problein. This means Eq. (7} is in
a form that is suitable for solution by the method of
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averaging. ' ' This approximates E by its infinite-time

average E, where

E= lim —I E(t)dt .r~ (x) 7 0

The approximate solutions are c (r) =e 'c (0) and,
therefore, a(t)=e 'e '(2(0). The expression for (2(t) can
now be put ino a more tractable form. This is done
below.

8. Kigenvalues and critical rf fields

Instabilities exhibit themselves by the existence of an
eigenvalue of e~ ez which is greater than 1, where T is
the period of one oscilh()tion of the uniform mode a0. In
other words, small perturbations in (2 (r) will grow during
each period. Let S diagonalize I., SI.S '=l.li. S is the
Holstein-PrimakoF transformation. Then, since eigen-
values are preserved under similarity transformations, the
eiyenvaiues of e~~e "are the same as the eigenvalues of
e D Tez", where E'=SES '. In the diagonalized matrix

Qi, 0
LD= 0

the Q),'s are the complex frequencies of the k+0 spin
wave, where the real part of Q)„g)„determines the damp-
ing for the linear equations and the imaginary part, co&, is
the usual spin-wave frequency (see Appendix 8). The
same form of Q„results for all standard damping mecha-
nisms in the Landau-Lifshitz equation (LLE).

For simplicity, let the matrix F =SUS '. Then using
the definitions ofIn and F.',

11p
E'= hm— 2'~k

The I' matrix depends on t through various factors of
ao and a 0 and the rf Seld. The rf 6eld dependence is sirn-

ply he'"'. Since a0 is periodic it is also expandable in a
Fourier series' in e'""'. In the hnear limit (20 is simply
proportional to he'"' This all m.eans that F is always ex-
pandable in a Fourier series

h„;,=
(1)2

[y(1)4 4(f(0) X )2 2 ]1/2
12 Il + 9k

determine the stability of the uniform mode: if vt, is an

eigenvalue of E, then instability of the uniform mode re-
sults when v&+ q& ~ O. The critical Seld is determined by
the equality v&+ q&

——O.

The above relations can be generalized somewhat by
adding and subtracting a constant diagonal matrix
X=diag(ih X, i—h X) in the equation of motion for a(t),
where h is the magnitude of the rf pumping 6eld. The
reason for the inclusion of the h term is apparent belo~
in the F' ' relationship. This generalization changes the
above formulas by replacing F] & by F&] +ih X and co& by

(oi,—Ii X. The advantage of this is that it allows variation
of the Suhl frequency restriction and the stabihty of
spin-waves nearby in frequency can be examined. Viewed
in another way, the variable X controls the detuning.
The remainder of the formulas in this section contain this
extended feature.

The eigenvalues of E' are

vt, ——Re(F' ')+[ —[Im(F'(, ')+h X] + i
F()2'

i
J' (ll)

where Re( ) and Im ( ) mean real and imaginary parts.
Two things are immediately apparently. The real part of
F()t) can afFect the stability and the relative magnitudes of
Im(F(it) )+h X and FI2) can afFect the stability. Each is
an ostensibly independent contribution. Early work by
Suhl and Schlomann' efFectively took h X= —Im(F'(t'),
i.e., a particular detuning of the spin-wave frequency.
Here the detuning is variable and explicit. Equation (13)
shows that the most unstable spin wave, that which will

grow exponentially at smallest rf field, will have the de-
tuned frequency of Suhl, i.e., h X=Im(F', ,'). Equation
(13) allows for an estimate of the instability criteria for
spin ~aves whose frequencies are near this detuned fre-
quency.

The I' matrix Fourier components are all proportional
to powers of the rf 6eld. This allows a general derivation
of relations for the critical rf field, h „;,. Write
F("'=12 "f("' and F' '=h f' ', where f'"' is independent
of h and is just F'"' evaluated at li = 1. Then for the first-
order Suhl instability (n = 1),

F y F(n) inro( (9) and for the second-order Suhl instability (n =2),

(13)[I(2)2 (I(0) +X)2]1/4

When X=f'11', Eqs. (12) and (13) reduce to the usual
"detuned" Suhl relations, '

9k
h„;,= (1) (n =1, first order),

12

I(2) (n =2, second order) .

C. Second-orcker averaging results

The immediate result of averaging in Eq. (10) is that on
the diagonal only F'„' and its complex conjugate remain
and ofF the diagonal only E'&z' and its complex conjugate
remain, with the Suhl restriction that co), neo/2. ——

Note that only (2 (T) is needed to determine instability,
where T =2n /0) Because of. the Suhl restriction,
Q&T =inm+g&T, this means the first exponential factor
for the time averaged solution for a (T) becomes simply

g~TI
( —1)"e,where I is the 2 X 2 unit matrix. Now, com-
bine the exponentials to get

(2 (&)-(—1)"e " (10)

up to a similarity transformation. The sign and magni-
tude of the eigenvalues of E' relative to the rli, values will

The averaging technique was implicit in Suhl's work.
Here it is explicit and leads directly to the Suhl restric-
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tions on the spin-wave frequency with some generaliza-
tion. One advantage of the method of averaging is that it
can, in principle, be done to any order and it can also
provide error estimates. ' ' The results in the previous
section were derived using first-order averaging. This
section uses a sim le approach based on general nth-
order averaging' ' to obtaining a higher-order correc-
tion for the instability relations and, furthermore, shows
that this will be small.

In the first-order averaging, the matrix E, which helps
define the vector field for the equation of motion for c (t),
is replaced by an averaged matrix E which allows an
a proximate solution to c (t) to be found, say
c "(t)=e 'c(0). The next logical step is to find a
higher-order correction to c'", say c' '(t). I.et
c' '=c"'+ sP, where s is of the order of the small param-
eter in the problem (either h or ao here) and P is to be
found. Then

c' '=c"'+eP=Ec' '=Ec'"(t)=Ee 'c"'(0),

where E-yh-e at most and higher-order terms have
I

been dropped. Solving for P gives

P = —f (E —E)e 'dt c'"(0) .

Now ET-2nyh ./co && 1. Therefore, the exponential
can be expanded and only the lowest-order term which
might contribute to the integral be retained. Equation
(15) becomes

P =—f (E E—)dt c"'(0) . (16)

If E were periodic in general, with period T, then P
would always be zero. Recall that E =e 'Ue ', where
the eigenvalues of I. are Qi, ——i(coi, —h X)+ri. The in-
clusion of the h 7 term allows second-order averaging re-
sults to be calculated in a simple way for all spin waves
with frequencies near neo/2 for the particular nth-order
instability being investigated.—L~t LDt

By writing E =S e Fe S, where S and I' are
the same matrices as in Sec. 8, the equation for P be-
comes

—2'{co1,—It g) {„)
12
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11 11

where the order of the instabihty is assumed to be n It is no.w easy to see that P=O. The diagonal terms become zero
upon integration because of the periodic nature of F„;only FIoi' survives and this cancels with the other F', ,

' term On.
the off'-diagonal, recall that X is chosen so that te„—h X=neo/2 This .causes all terms in the Fourier expansion of F,2

to drop out, except the nth term, which then cancels with the E'1z' term. Hence, the relations among the eigenvalues at
the onset of instability and especially the critical field formulas are unchanged to second order in the method of averag-
ing. This may partly explain why, despite seemingly severe approximations, the Suhl critical field relations are so accu-
rate."-"

In the following A=y+ic, t and for any symbol ie, ice ic, kit——e~ All ot.her symbols are consistent with Ref. 9. Note
that all terms which collectively have the coefficient a and the second-order term in h+ are not present in other deriva-
tions of the equations of motion.

dQk k+k k+
dt

= —t~h+&«+i~, &.+P
~

k ~'+2~ —4~X, +~~X,S«a„+2~iXM,
o,h

Qk'Qk —k'
kt

h+
+iAMs g

k'
r

k'k' k k,+ Qk k~Q
k,'k

'

k k k'

+iAMs g,
glgll

—( i
k

i

—2k k')+2m
2

(k —k'), k+k'
k' k" k' k"—k

(k' )+ LT C 4 0 hT C

f

k'[' Qk" Q —k'Q k' k"—k +a~~vzuk"k k"Qk'Q k' /~zv Tuk"OQk" Qk'Q k' —k

+aMs g
k'k»

—[k'/'+n. —2K%& Q k» Q k k~ k«Q

(k' )
+~ QksQk»Qk gi kii +P~Pfy Qgrtgg k«QgtQgi
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APPENDIX 8: EXPRESSIONS FOR THE JACOBIAN

Below are expressions for the Jacobian of the equation of motion in Appendix A, evaluated on the uniform mode
(ao&0, ai, ——0, if k&0). In addition, the Holstein-Primakoff transformation, S, and the dispersion relation for the spin
waves are given. Together all these expressions enable the computation of h„;,.

k+k k, k h+ k+k,
Z„'„=iX Ho+P~ir~'Ms+2~Ms ', —4~N, Ms — 2~uMs *,+ah oo+u ' —2~ " ', go'

k 0+k k,
+atrMs ao+a[4trMs(Nr N)—+Ho]aoao +sr«2Ms(N NT)—Ms — +2Ms ttoao,

k +kJ~ 2sri =A,
z Ms+i', + 4sr—Ms 2 tto+a Ms —

I
k

I + ', (Ho —2srN—sMs)+nMs tie

P

2 k,2 k2+
+iA, Ms I

—lt
I

2trNr—Ms+2rrMs tso+srtiLMs ttoao .

In order to calculate h„;, the matrix F =SUS ' must be
calculated. The matrix U is defined by U» equals the
terms containing ao in Jid„Ui2 equals the terms contain-
ing ao in J~, U22 ——U/), and U2) ——U]2. The matrix S is
given by

1/2

9) and coi, is the spin-wave frequency. The matrix F can
now be constructed using these relations and an approxi-
mate solution for the trajectory of the uniform mode
ao(t). By substituting in for ao(t) the Fourier coefficients
I""' can be calculated. A particularly simple case is the
asymptotic linear solution for ao(t), then

with

2 2 I/2
cok ——(Ak —[Bi, ~

)' and e '=Bi, /~ Bg
~

and Sz, ——S",2 and Sz2 ——S». Ai, and 8& are part of the
linear terms in the equations of motion (see text and Ref.

Ahe' '
(A, =y+ia),

and I:' ' is the matrix made up from all the Jacobian
terms in tto(t)ao (t) plus the one linear term in h+ao(t),F"' is the matrix made from Jacobian terms in ao(t), and
F' ' is the matrix made from Jacobian terms in tto(t).
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