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Susceptibility formalism for magnetic and quadrupolar interactions
in hexagonal and tetragonal rare-earth compounds
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A susceptibility formalism is developed for analyzing the magnetic and quadrupolar interactions
in hexagonal and tetragonal rare-earth compounds. Symmetrixed expressions are given for the
one-ion magnetoelastic coupling and for the two-ion quadrupolar interactions. This formalism, de-

rived from perturbation theory, leads to specific magnetic, strain, and quadrupolar susceptibilities
considering both the crystaBine-electric-Seld efFicts and quadrupolar interactions. It allo~s an
analytical description of physical properties, such as the Srst- and third-order paramagnetic suscep-
tibilities, the parastriction, and the elastic constants.

I. IXm.ODUerIOX

Magnetoelastic e8'ects and, in a more general way, qua-
drupolar interactions have been extensively studied over
recent years in cubic rare-earth intermetallic com-
pounds. ' In particular, the paramagnetic phase has
been found to be a fruitful range of investigation, since it
allows: (i) alignment of the 4f magnetic moment any-
where in space by applying a magnetic field along the
proper direction; (ii) the consequent study of properties
for any symmetry, while often the only properties associ-
ated with the easy magnetization direction are those of
the ordered state; (iii) derivation of a susceptibility for-
malism from a perturbation theory, leading to an analyti-
cal description of several experiments related to magnetic
and magnetoelastic properties, such as the elastic con-
stants, the parastriction, and the third-order magnetic
susceptibihty. These studies have been successfully
performed in numerous concentrated and diluted cubic
rare-earth compounds, ' leading to the determination
of magnetoelastic and possibly quadru polar pair-
interaction parameters. Thus, a consistent understanding
of the quadrupolar interactions has been achieved in
several intermetallic compounds. ' '

These quadrupolar properties have been studied less
thoroughly in rare-earth intermetallic compounds with a
symmetry lower than cubic, e.g., in hexagonal and tetrag-
onal compounds, due to the greater number of parame-
ters involved in the crystalline-electric-field (CEF) Hamil-
tonian as we11 as in the quadrupolar couplings. Only a
few systems have been investigated, such as diluted
yttrium- and scandium-based rare-earth compounds, ' Pr
metal" and recently the PrNi5 compound. ' The magne-
toelastic and quadrupolar properties of these systems
present behavior with new interesting features, related to
the fact that the main quadrupolar component, namely
(Oz ), is already ordered by the crystal field, unlike the
case in cubic symmetry.

In the present work, the full Hamiltonian is first de-
scribed, including all the relevant terms of the one-ion
magnetoelastic coupling, as well as of the various two-ion

quadrupolar interactions, for hexagonal and tetragonal
symmetries (Sec. II). Section III is devoted to the pertur-
bation theory which allows us to obtain the different
magnetic and strain susceptibilities involved in the mag-
netization, the parastriction, and the elastic constants.
Section IV presents the behavior of the various suscepti-
bilities according to difFerent situations (singlet or doublet
as CEF ground state, case of Kramers or non-Kramers
rare-earth iona) and shows how the susceptibility formal-
ism may be fruitful for determining the quadrupolar in-
teractions as well as the CEF itself.

IL THE HAMII. TONIC

In this expression, &ca„ is the crystalline electric field
(CEF) Hamiltonian written, in the axes system with the z
axis parallel to the e axis of the hexagonal and tetragonal
unit cell, as respectively

c'E"F = &zo z+ Iio4+ &606+&6o6

REF=&zoo+&4&~+&4«'+&6o6+&606

where the OI 's are the Stevens equivalent operators, '

and the 81 's the CEF parameters.

z= &JpttH J (4)

represents the Zeeman coupling between the 4f magnetic

The Hamiltonian used for describing the magnetic
properties of a 4f shell including magnetoelastic and
two-ion quadrupolar pair coupbngs has been extensively
described for cubic symmetry in the last decade. "
Here, two other simple symmetries, namely hexagonal
and tetragonal, are considered. By using the operator-
equivalent method and the molecular-field approximation
(MFA) for the two-ion bilinear and quadrupolar pair in-
teractions, the complete Hamiltonian, for one 4f ion, is
written as

%=&cEF+%z+%ftt+&g+%ME+(E,i+Ett+E0) .
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moment and the internal magnetic-field H (external field
corrected for demagnetization effects}.

a = g—zPsHs'J

is the Heisenberg-type isotro pic bilinear interaction
Hamiltonian written in the MFA as a function of the ex-
change field Hs acting on a given ion (n is the bihnear
exchange parameter):

bic CsCl-type rare-earth intermetallic compounds' where
it is responsible for the ferroquadrupolar ordering ob-
served in TmZn and TmCd for example. ' ' It is worth
noting that, in hexagonal and tetragonal compounds, the
02 quadrupolar component is already ordered (i.e.,
&0', )~0) by the crystal feid, but that does not exclude
the possible existence of quadrupolar pair interactions.
The MFA treatment again leads to corrective quadrupo-
lar energy terms in the Hamiltonian:

H, =nM=ng, i,&J& . (6)

Here the anisotropic bilinear coupling is neglected; it
would induce diferent n values only parallel and perpen-
dicular to the c axis. Note that this MFA treatment leads
us to consider a corrective energy term

Ehex tI("a(00 )2+ tg e((02 )2+4(P )2)

+-,'~R&P )'+(P„&'),
Z"t=-tX &002)2+-try&02&2+-tX5&P &'

Q z 2 2 2 2 xg

+-,'~'(& P,„&'+(P„&') . (12}

in the Hamiltonian for one ion since, when summing the
pair interactions over the whole crystal to obtain Eq. (6),
the energy relative to a pair of rare-earth elements is
counted twice.

SC (0—', &0', I{."'(&0—,'&0', +4&P„,&P„„)

The full one-ion magnetoelastic coupling, linear in
strain (harmonic approximation) and limited to the
second-rank terms, may be written, in symmetrized nota-
tion, as

~hex (Batteal+Ba2ea2)00 Be(ee02+2eep2 X/7

and

SC~(&P„—&P„+&P &P ), B~(e/—P +e(P~, )

~et (Bateal+Ba2ea2)00 By&y02 Bse5P
ME 2 2

(13)

gag = —X'(00, &O', —ay&02 &0,2—SC5&P.,&P„„

Z'(& P„&—P„+( P &P ), (9)

represent the two-ion quadrupolar Hamiltonian written
in the MFA as a function of the linear combinations of
the products of second-order Stevens operators, which
are invariant under the symmetry operations of the hex-
agonal or tetragonal point groups. The expression for
these second-order operators are

0', =3J,' —J(J+1),
O2 J2 J2

P, =—,'(J,J +J J,") (ij =xy, yz, zx) .

This type of coupling has been extensively studied in cu-

B'(e;P,„—+ezPy, ) . (14)

1 C«(eal )2+ Ca12eat&a2+ 1 ga2(ea2)2el g 0 0 &
2 0

+ —,'&0[(et) +(e'2)']+ —,tc][(e)) +(e() ],

Etet 1Cal(&al)2+Cal2eal&a2+ 1Ca2(ea2)2
0 0

+ 1 c((ey)2+ I( 5(55)2+ 1 C[e( e)e2 +(ee)2]

(16)

In these expressions the e"'s are the symmetrized
strains (see Table I) and the B"'s the magnetoelastic
coeScients associated with the corresponding normal
strain modes. The related elastic energy is written as

TABLE I. Symmetrized strains in hexagonal and tetragonal symmetry.

Hexagonal
Representation Strain

Tetragonal
Representation

r3

Strain Expression

1

3
(e„„+e»+e )

(-)2 I /2 &XX +&yy

3 2

—~ &XX —
&yy ~

1
XX

I6 5

&2e„,

v'2g, „
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(17)

where the CIi's are the symmetrized background elastic
constants without magnetic interactions (see Table II}.

Minimizing the free energy eath regard to the strains
leads to their equilibrium values as a function of the ex-
pectation values of the foBowing quadrupolar operators

(a) Hexagonal:

g alCa2 g a2Ca12

Cai( a2 (( a12 )2

g a2Ca1 g al Ca12

Cal( a2 (Ca12 )2

(Bal)2Ca2 28aiBa2( a12+(Ba2)2( al
Ga 0 O +KCalCa2 (Cal2 )20 0 0

=GME+I%'

BE 2
G'= +K'=GME+K',

G~= +K~=Gf, +K~.(8~)'
E

(b) Tetragonal:

(25)

(27)

8'
ee (O2 ).

1 CE 2

C

(b) Tetragonal:

e2=2, (P„,&,2 CE xy

pz

(18)

(19)

G'as in Eq. (25)

(Br)'Gr= +Kr=GQE+Kr,
C

(85)26'=, +X'=6~ME+X',(5

(28)

e ', e'2 as in Eqs. (17},

er (02 )
jar
C

g5e'=, (P„,&,xy

(20)

(21)

8' 8'ei=, &P &; e',=, (P„,& .
o 0

(22)

After replacing these ei' values in Eqs. (13) and (14),
&ME appears to be indistinguishable from %& [Eqs. (8)
and (9)], and both terms can be gathered in the total qua-
drupolar Hamiltonian:

G&O', &O',—G'(&O,'&O2—+4&P„,&P„,)

—G~[&P )P +&P„&P„],

gq', = G&O', &O', —Gr &O', &O,'——G'&P„, »„,
—G'[&P„&P +&P„&P„]. (24)

The total quadrupolar coemicients G" then receive con-
tribution from both the one-ion magnetoelasticity and the
quadrupolar pair interactions:

(a) Hexagonal:

TABLE II. Symmetrized elastic constants in hexagonal and
tetragonal symmetry.

2
G'= +K'=GME+K' .

CE
(30)

It is worth noting that only the expectation value
(002 ) is different from zero in hexagonal and tetragonal
symmetry, and in the absence of any external stress. As a
consequence, the a term in &&T [Eqs. (23) and (24)] gives
an additional quadrupolar contribution to the pure CEF
second-order term in Eq. (2) as soon as 8 ',8, or K
are present. As (02) this contribution is temperature
dependent, thus the CEF level spacing also. Therefore, in
case of strong quadrupolar coupling, it is worth taking
into account this contribution explicitly besides the pure
CEF one.

On the other hand, from Eq. (17) and Table I, there is a
spontaneous quadrupolar contribution to the volume
(through e ') and to the ratio c/o (through e ) of the
hexagonal or tetragonal unit cell. This feature manifests
itself through the thermal expansion, as seen in Pr and
PrNi5 for example. ' ' Applying a magnetic Seld
modifies ( 02 ) then e ' and e, and the same relations as
Eq. (17}may be written between the corresponding incre-
ments 5e ', 5e, and 5(02 ). These new relations will be
actually used in the description of the magnetostriction
and the parastriction (see below). At last, in Eqs. (23) and
(24},the ( 02 & and ( P; ) expectation values vanish in the
absence of external stress. However, the corresponding
6"'s may drive a phase transition towards a lower sym-
metry, e.g., orthorhombic, as observed in rare-earth insu-
lators. "

Hexagonal Tetragonal

Ca12

Expression

3
I'2C» +2C12+4C13+C33 ~

&2 «11+C12 —C13 —C33 ~

3
3 ~ C11 +C12 4C13 +~C33 ~

C11 C12

III. PERTURBATION THEORY

The Hanultonian [Eq. (1)] may be used in two ways for
describing the magnetic properties of the 4f shell. First,
a direct diagonalization of the full Hamiltooian may be
performed„ in particular, in the presence of a magnetic
field, and all the expectation values of the J s (i =x, y, z)
»d 02, 02,PJ's (tj =xy, yz, zx) operators can be de
duced, whence the magnitude and position of the rare-
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earth magnetic moment M=gjps(J} and the values of
the strains el' [Eq. (17)-(22)]. This is the usual way for
describing the magnetization and the magnetostriction
curves, in particular, in the ordered state.

The second way of using this Hamiltonian is to apply a
perturbation theory for the paramagnetic state. ' ' This
method is developed here to hexagonal and tetragonal
systems. By applying this theory to the zeroth-
order Hamiltonian, it is possible to analytically expand
the generalized free energy F=—kTlnZ, where
Z =Trexp( &I—kT) is the partition function, up to
second order for the e"'s and the various guadrupolar
operators, and to fourth order for H and M. All the mag-
netic properties may be then derived from the thermo-
dynamical analysis of the free energy I', namely the first-
and third-order magnetic susceptibilities, the parastric-
tion, and the elastic constants. In this calculation, the
modes g(e') in hexagonal (tetragonal) symmetry will not
be taken into account, as their investigation would re-

quire us to apply a magnetic Seld out of the main symme-
try directions. %e will restrict ourselves to a magnetic
field parallel and perpendicular to the c axis, successively,

~0 CEF G QOO2 ~ (31)

where Q0=(02 }0 is the spontaneous (H =0) expecta-
tion value of the involved quadrupolar component. The
full Hamiltonian %, then includes &0 and perturbation
terms arising from Eqs. (4), (5), (8), or (9), (13), or (14):

A. Magnetic field along the c axis

First, we apply the perturbation theory for a magnetic
field H along the c axis, i.e., the [001] direction, where
only the operators J, and 02 are involved. The zeroth-
order Hamiltonian (H =0) takes the following form,
identical for the hexagonal and the tetragonal sym-
metries:

%~= &0 g~I2s(H—+nM)Jz (B 5e—+B 5C + K 5Q0)02+ ,'nM + ,'—K (Q0+—5Q0)'

+ 1 Cal (&al+ 5&al )2+ Cu12(&al+5&al )(&a2+5&a2)+ 1 Ca2(&a2+5&a2)2

where, according to Eq. (17), e0'= A "Q0. The expression for the free energy F, is then derived (see Appendix A):

p F 1X (H + M)2 Q (B la5&al+B u52& 2a+Ka5Q ) 1X (Bal5&al+Ba25&u2+Ka5Q )2

X' '(H+n—M) (B '5e '+B 5su2+K 5Q ) ——'X' '(H+nM)

+ l nM2+ &Ka(Q +5Q )2+ 1Cal (&al+5&al)2+Ca12(&al+5&al)(&a2+5&a2)+ 1 cu2(&a2+5&a2)2

(32)

(33)

This expression involves four single-ion CEP suscepti-
bilities which may be calculated from the sp'ontaneous
CEF level scheme, obtained by diagonalization of the
zeroth-order Hamiltonian %0 (see Appendix A): they de-
pend only on the energies of the CEF levels and on the
exact composition of the corresponding CEF wave func-
tions, through matrix elements of Jz and 02 between the
CEF levels. By analogy with the cubic symmetry, ' '

Xp
is the usual (Srst-order) magnetic susceptibility; X0

' is the
third-order paramagnetic susceptibility, i.e., the following
term in the field expansion of the magnetization curves.
X is a strain susceptibility associated with 02 and occur-
ring in the elastic constants; X' ' is a quadrupolar 5eld
susceptibility appearing in the parastriction. Note that
the presence of a spontaneous quadrupolar moment Q0
drives here additional terms in Eq. (33) compared to the
expression in cubic symmetry; one term appears explicit-
ly and the other ones are included in the expressions of
X andy").

As said above (Sec. II), the equilibrium values for M,
5e ', 5e, and 5Q0 are given by the conditions of minim-
ization of the free energy:

BF, BF, BF, BF,

85m ' 85m ' ~5Q

That provides a system of four linear equations, the solu-
tion of which leads to the following expressions:

M =X~H+X~~'H +. . . ,

5&al g al5Q 5&a2 g a25Q

5Q, =5&O', }=X.,H +. . . ,

with

Xp
+M

1 —ngp

1 (X'.")'
y(3) y(3) +26a

(1—nX0) 1 —G X

y(2)
ya tX

(1 nX0)'(I —G—X )

(34)

(35)

(36)

(37)

(38)

(39)

X~ is the usual total 6rst-order magnetic susceptibility
which is the single-ion one gp strengthened only by the
isotropic bilinear exchange coupling n. g~' is the total
third-order magnetic susceptibility which represents the
initial curvature of the magnetization curves in presence
of bilinear exchange and quadrupolar interactions; it con-
sists in two contributions, both reinforced in an identical
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manner by the bilinear interactions: (i) the first one cor-
responds to the pure CEF term Xo ', (ii) the second one is

the quadrupolar contribution which, according to the
sign of 6, may strengthen or compete with the erst one.
Finally, g is the total quadrupolar fjleld susceptibility
which is enhanced by both the bilinear exchange n and
the quadrupolar interactions 6 .

B. Magnetic field along the [100)direction

(X(2) )2
[3) ~(3)+26 a a

(1—nXO) 1 —G X

(X'"}2
+26'

1 —O'X,

y(2)

(1—nXO) (1—O'X, )

(44)

(45)

Now we apply the perturbation theory for a magnetic
field perpendicular to the c axis, and we investigate Srst
the [100] (a}direction. Both symmetries (hexagonal and
tetragonal} can be treated in a similar way, and all the ex-
pressions are the same, except that 8', K', 6; e', and Co
(hexagonal} have to be replaced by Br, Kr, Gr, er, and

CII, respectively (tetragonal).
As soon as H differs from zero, the initial symmetry is

broken since both M =glpii(J„) and Q2
——(O2) appear

next to Qo ——( 02 ). If the zeroth-order Hamiltonian %ho

takes the same form as above [Eq. (31}],the full Hamil-
tonian includes additional terms with respect to Eq. (32)
(where J, has to be replaced by J„):

The main difference, with regard to the case where 8 is
applied along the c axis, is the presence of both o. and e
quadrupolar contributions to the total third-order mag-
netic susceptibility. On the contrary, each quadrupolar
6eld susceptibility depends only on the quadrupolar pa-
rameter associated.

C. Magnetic Sell in the basal plane
(other than [100]direction)

When the magnetic field is applied in the basal plane in
a direction other than the [100]direction, the calculation
of the field dependence of the magnetic and quadrupolar
moments may be simpli5ed by symmetry considerations.

By again applying a perturbation theory (see details in

Appendix 8), the free energy F, associated with the a
axis is expressed as F, [Eq. (33)]plus additional terms re-

lated to the 02 operator:

F, = F, ,'X,(B'et—+K—'Q2)

—X"'(H+nM)2(a'e', +K'Q, )

+—,'K'(Q2) +-,'Co(et) (41)

M, 5e ',5e,5Qo as in Eqs. (34)—(36),

Q2 X0H +. . . , —— (43)

whence the following relations for the total susceptibili-
ties:

X~,X& as in Eqs. (37) and (39),

Two new CEF susceptibilities X„X', ' are defined in this
expression, involving matrix elements of 02 between CEF
levels. In addition, it is worth noting that, if the expres-
sions of all the CEF susceptibilities in Eq. (41) are formal-
ly the same as previously (Sec. IIIA) their numerical
values difFer through the new CEF wave functions used
when the magnetic field is along the a axis (see Appendix
B}. This feature is well known for the first-order magnet-
ic susceptibility Xo and this is true also for Xo

' and vari-
ous g„and g„").

As in the previous case, the conditions of minimization
of the free energy I', lead to a system of linear equations
from which the following expressions are derived:

5Qo=5(Oz) =X&H, as in Eq. (36),

Q, = (O', ) =X~H2cos2y,

(P„» ) =—,'X&H sin2$,

(46)

where P is the angle between H and the a ([100]) direc-
tion, and X&,X& are given in Eqs. (39) and (45). These re-
lations will be useful in the expressions of the magnetos-
triction (see Sec. V C).

2. Tetragonal symmetry

If the 6rst-order magnetic susceptibility X~ remains
isotropic in the basal plane for tetragonal symmetry, the
same considerations as above show that X~) is anisotropic
perpendicularly to the e axis. Two independent suscep-
tibilities are now involved, i.e., those relative to the two
sets of twofold axes in the basal plane. The expressions
for the [110]direction may be easily derived through per-
turbation theory (see Appendix C); it is formally the same

1. Hexagonal symmetry

It is well known that the Srst-order magnetic suscepti-
bility X~ is isotropic within the basal plane. In the same
way symmetry properties applied to the third-order mag-
netic susceptibility lead to the isotropy of XM' perpendic-
ularly to the c axis. ' In particular, the third-order sus-
ceptibility is the same for the a and b axes of the
orthohexagonal unit cell. Note that the anisotropy be-
tween both axes, which depends on the V6 CEF parame-
ter, should appear only for the higher terms (Hs, H7. . . )

in the H expansion of the magnetization.
For the H dependence of the quadrupolar moments,

symmetry considerations lead to expressions for 5Qo, Q2,
and (P,» ), which involve only two independent suscepti-
bilities:
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as for the [100] direction but includes now a 5-
quadrupolar contribution instead of a y one:

(Xt2) )2

1 —6 X

(X"')'
+265

1 —6 g~

Xsr'(H~~[110])= 4 Xo '+26
(1 n—XO)

(47)

For the quadrupolar operators, general expressions for
a magnetic 6eld within the basal plane, involve three in-
dependent quadrupolar susceptibilities:

(a) a mode:

d I' xCal Cal (Bal )2
d(5e ')2 1 —K X

d F xCa2 Ca2 (Ba2)2
d(5e ')' 1 —K X,

'

A2j
Ca12 g alp a2

d (5e" )d (5e"}

(b) e mode (Hexagonal)

2Fhex
ECe (Be)2

d (el) 1 E'X,— (54)

5Q, =(O', )=X H' [Eq. (36)],

Q2 ——(02 ) =Xr&H cos2$,

(P„)=Xs~H'sin2y,

(48)

(c) y mode (Tetragonal):

2ptet XyC = ",=Cg-(B )
d(er)2 1 —I(.

."X

(d) 5 mode (Tetragonal):

(55}

where P is the angle between H and the [100] direction,
and X&,Xr& are given in Sec. III B. The third quadrupolar
susceptibility X& is associated with the quadrupolar
operator I'„„:

(2)
X$

XQ
(1—nXo} (1—6 Xs}2 5 (49)

Thus the y and 5 tetragonal strain modes can be sepa-
rately investigated by applying a magnetic 5eld succes-
sively along the [100] and [110]directions, the a contri-
bution being the same in both cases.

D. Elastic constants

The expressions describing the variation of the elastic
constants including quadrupolar el'ects can be derived
from the same perturbation theory by considering the
e"'s as external variables and by taking H =0.

Minimizing the corresponding free energy with regard
to each of the remaining variables 5QO, Q2, (P„) pro-
vides the strain dependence of the expectation values of
quadrupolar operators:

d 2Ftet(s (s (Bs)2
d (e')' 1 EX, —

IV. BEHAVIOR OF 'fHK DIFFERENT
SINGI.E-ION SUSCEPTIBILITIES

A. First- and third-order magnetic susceptibilities

It is well known that the first-order magnetic suscepti-
bility is anisotropic between the c axis and the basal
plane, within which it remains isotropic. At high
temperatures —high in comparison with the level
spacing —the vertical splitting between the two corre-
sponding reciprocal susceptibihties is only induced by the
second-order CEF term, Vz B2/az——

1 1 3 (2J —1)(2J+3) 0
2 5C

(57}

The different one-ion susceptibilities may allow one to
determine the CEF level scheme throughout specific
features. We propose here to discuss some behaviors ac-
cording to the ground state for Cei+ and Pr + ions in
hexagonal symmetry.

5Q (Bat 5&a 1 +Ba25&a2 )
1 —SC~X.

( Hexagonal), (51)

Q —B1'el' Xy

1 —j'ygy

(P„)=B e (Tetragonal) .
X$

1 —K Xg

(52)

Finally the elastic constants c" are obtained by taking
the total second-strain derivative of the free energies.

where C is the Curie constant. Then the easy magneti-
zation direction is only determined by the sign of the B2
parameter (Fig. 1}.

At low temperature, the thermal variation depends on
the level spacing and the nature of each level. Along the
easy magnetization direction, Curie or Van Vleck behav-
ior, are observed in association with the magnetic or non-
magnetic character of the ground state. According to the
temperature, the competition between Curie and Van
Vleck terms may lead to a pronounced minimum for the
reciprocal susceptibility as observed along the a axis in
Fig. 1(c) (this case is very close to the situation of
PrNis)' . Along the dificult magnetization direction, a
Van Vleck behavior is systematically observed (Fig. 1) ex-
cept in the case of a Kramers ion with a ground state ex-
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o
o
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IXI
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o

+~o

0
3MO

CI

I

g4 ]
tb) (d) ~00

200 0
TEMPERATURE(K)

FIG. 2. Temperature variations of the 6rst- and third-order
magnetic susceptibilities parallel and perpendicular to the c-axis
of the hexagonal cell for a Kramers ion (J=

2 ) in the case of
~

+1/2) ground state.

20O
TEMPKRATURE (K)

20

FIG. 1. Temperature variations of the 6rst-order reciprocal
susceptibility parallel and perpendicular to the c-axis of the hex-
agonal ce11 for a non Kramers ion (J=4). As indicated by the
difFerent level schemes, the variations are calculated for magnet-
ic a —d or non-magnetic b —c, pure a, b, d or mixed c ground
state wave functions.

hibiting a
~

+—,) component [Fig. 2(a)]. Note in Fig. 1(b)
the divergence of 70 along the e axis which is induced-
by the lack of Van Vleck matrix element from the non-
magnetic ground state ~0). According to the level
scheme, particular behaviors may occur as for instance in
Fig. 1(d), where a change of easy magnetization direction
is observed as a function of the temperature.

The third-order magnetic susceptibility is also aniso-
tropic between the c axis and the basal plane. %'ithin this
latter plane, it is isotropic in the hexagonal symmetry but
anisotropic in the tetragonal one (see Sec. III C). Figure
3 gives the variations calculated along the c and a axis for

a

80 0

TEMPE�RATURE

(K)

FIG. 3. Temperature variations of the third-order magnetic susceptibility parallel and perpendicular to the c-axis of the hexagonal
cell for the same conditions as in Fig. 1.



P. MORIN, J. ROUCHY, AND D. SCHMIDT I 37

the same level scheme as in Fig. l. Along the easy mag-
netization direction, the temperature variation of Xo[' is
reminiscent of the behavior of the Srst-order one: for a
magnetic ground state, Xo is negative and diverges as
classically expected for the expansion of a Brillouin func-
tion [Figs. 3(a) and 3(d)]. For a nonmagnetic ground
state only the Van Vleck contribution is present at low
temperature [Figs. 3(b) and 3(c)]. Positive X~

' values are
even possible leading to unusual temperature variations
[Fig. 3(c)].

Along the hard magnetization axis, the third-order sus-
ceptibility is of Van Vleck type and generally very weak
[Fig. 3]. This corresponds to the difficulty to induce a
magnetic moment on a nonmagnetic ground state due to
the large anisotropy. As for Xo, the only exception is in-
duced by the presence of the

~

2—,') component in the
ground state wave functions [Fig. 2(b)].

Thus, studying this susceptibility is very complementa-
ry of the study of the first-order susceptibility and may be
also selective for determining the CEF level scheme
throughout the observation of well defined anomalies in
the temperature dependence as in Figs. 3(b) and 3(c).

8. Strain and quslruyolar Sell Susceptibilities

Here again, the susceptibilities associated with the
various magnetoelastic modes may provide us with clear
informations on the level scheme.

1. cx mode

As an intrinsic quadrupolar moment (02 ) is imposed
by the symmetry, the strain susceptibility X exhibits a
Van Vleck behavior at 0 K due to the cancellation of the
Curie contributions. The 0 K value is null when there is
no mixing at all or in the case of a mixed singlet [Fig.
4(b)]. In the case of a mixed doublet [Fig. 4(a)] as ground
state, the Van Vleck value is diff'erent of zero.

For a [001] magnetic field, the quadrupolar field sus-
ceptibihty also vanishes at 0 K for the same conditions as
for X [Fig. 4(d)]. For a mixed doublet, frequent case for
heavy rare earths, the quadrupolar field susceptibility
diverges [Fig. 4(c)].

For a magnetic 5eld along the a axis, X~
' is negative at

high temperature. At low temperature, the Curie terms
vanish and the Van Vleck value at 0 K may be positive as
well as negative, according to the sign and magnitude of
the spontaneous quadrupolar moment (Fig. 5).

100
'E (i~l' ~'- +2&

50"

iS

Egg' ' 44&M(b) ~ . '
(d)

200 I ~

0
0 IO 0

TEMPERATURE {K)
40

0

FIG. 4. Temperature variations of the strain susceptibility g
{a)and {1)and of the quadrupolar Seld-susceptibility 7'~' {c)and

{d) in hexagonal symmetry. Note that the ground state wave

functions are mixed, corresponding to a doublet {a—c) and a
singlet {b —d).

200"

100-

E (K)"
I 3&

200-
— I+20'

100"

LA
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a divergence occurs at 0 K. Parallel behavior is predicted
for the quadrupolar Seld susceptibility X', ' [Fig. 6(c) and
6(d)].

For Kramers ions, the degeneracy of the doublets is of
spin origin whereas, for each quadrupolar mode, the lev-
els are singlets. Thus a Van Vleck behavior is systemati-
cally calculated at low temperature, the strain susceptibil-
ity value being more or less large according to the level
spacing and the nature of the ground state. The quadru-
polar field susceptibility usually of Van Vleck type, may
also diverge at low temperature through terms linear in
( I/T) in the expression (7', ').

2. Symmetry lowering modes

Similar features as for the a case are also possible as
shown in Fig. 6 for the e mode in the hexagonal symme-
try. For a non-Kramers ion with a singlet ground state
or in the absence of mixing terms, a Van Vleck behavior
is calculated with a nonzero value at 0 K for 7,. On the
contrary with a mixed doublet as ground state [Fig. 6(b)]

&00 200
TEMPERATURE (K)

FIG. 5. Temperature variations of the quadrupolar field-
susceptibility g' ' for a magnetic 6eld applied in the basal plane
of the hexagonal cell for t~o characteristic level schemes of a
non Kramers ion {J=4).
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A first characterization of the quadrupolar interactions
may be carried on for each symmetry by measuring the
third-order magnetic susceptibility. The total quadrupo-
lar coefficients [Eqs. (25)—(30)], or combinations of them,
are achieved through Eqs. (38), (44), and {47). From an
experimental point of view, it is fruitful to analyze the
magnetization curve by plotting (M/H) as a function of
0~.5 The zero-field extrapolation gives the first-order
magnetic susceptibility, whereas the initial slope defines
the third-order one. Its temperature variation may then
be described using Eq. (38), (44), or (47) according to the
direction of the magnetic field. Such an analysis has been
recently achieved in the case of PrNi5 (Ref. 12) and
TmNi~ (Ref. 23).

B. Elastic constants

20
i

60 0
&KHPKAATU+f {K)

I

40
0

80

V. DE+ERMINATION OF THE PAIR INTERACTION
AND MAGNETOELASTIC CORI. x ANCIENTS

In the same time as the difFerent susceptibilities may
inform about the CEF throughout the single-ion contri-
bution (previous section) they may also give the strength
of the magnetoelastic and pair couplings associated with
a given syro. metry using specific experiments.

A. Monetization processes

It is well known that the bilinear interactions may be
deduced from the vertical shift between the experimental
reciprocal susceptibility g' and the single-ion one, Xo

'

along the c and a axes [Eq. (37)]. Note that for a fer-
romagnetic ordering, the reciprocal susceptibility van-
ishes at the Curie temperature, T„lagonthe easy magne-
tization direction. In this case, the relation

Xo '(T, )=n (58}

provides us with another determination of the bilinear
coeScient, n.

FIG. 6. Temperature variations of the strain susceptibility
associated with the e-shear mode of the hexagonal symmetry for
a non Kramers ion (J=4). The level schemes for (c) and (d) are
given in (a) and {b),respectively.

The normal elastic modes deduced from ultrasonic ve-
locity measurements may be described throughout Eqs.
(53)-(56}, the lattice background being measured in a
nonmagnetic isomorphous compound. Both the pair in-
teraction coefficient and the absolute value of the magne-
toelastic parameter may be thus achieved. Many exam-
ples exist in the literature about rare earth zircons for ex-
ample, although usually analyzed within a pseudo-spin
formalism.

In most cases, contrary to the cubic symmetry, the
strain susceptibilities do not diverge at low temperature,
that usually forbids a full softening of the corresponding
elastic constants. However, the divergence of X, (X»,Xs
in tetragonal symmetry} for a mixed doublet as ground
state [Fig. 6(b)] may induce a full softening of the C'
(C",Cs) elastic mode. In the absence of another stronger
coupling, this would occur at a temperature correspond-
ing to the ( 02 ) or (P„) quadrupolar ordering, the
transition being second order. This agrees with the
tetragonal-orthorhombic transition observed in rare-
earth zircons.

C. Change of length measurements

In the presence of an applied magnetic field, an addi-
tional experimental probe, the parastriction, is based on
the quadrupolar Seld susceptibilities. Indeed, applying a
magnetic field along a (a,a2ai) direction induces a
change of length in the (p,p2p2) direction. ' For exam-
ple, in the tetragonal symmetry:

'
I3)P2P3

—+ e (2p3 —pi —p2)+ —e (p, —p2)+&2@ p,p2+&2p3(e', p, +e2p2} .~&~2~3 6 e 1 a2 2 2 2 1 » 2 2 s

a,a,a, &3 6 v'2

According to equilibrium relations [Eqs. (17}-(22)]and to the quadrupolar field susceptibilities [Eqs. {39),(45), and (49)]
the change of length may be simply described in particular along high-symmetry axes, for diferent directions of the ap-
plied magnetic field. Sets of measurements allow us to separately study the a, y, or 5 modes and thus to determine the
corresponding magnetoelastic and pair-interactions coeIcients as previously done for the a, y, and e modes in the cu-
bic symmetry. * For instance, the experimental temperature variation

ioo oio in =( &/~ )'
i2i i' [{1 (60)

allows us to determine the 8» and 6» coefficients from the comparison with the I/(X' ')' variation. Note that the



P. MORIN, J. ROUCHY, AND D. SCHMI I-j.

temperature variation is linear at least at high temperature (Figs. 4 and 6). Similar analysis has been recently performed
in hexagonal PrNi&. '

In the absence of an applied magnetic field, Eq. (59) allows us to analyze the thermal expansion. Indeed the thermal
expansion coef6cients are the temperature derivatives of

g001 ~o.'1 + ~o;21 2
v'3 v'6

g010 g 100 &a1 a21

v'3 v'6

Thus using Eqs. (17)-(22), they read as:

( Ca2g al Ca12g a2)+ ~2( Calg a2 Ca12g al
)

o'c =
v3 Calga2 (ga12 )20 0 0

aD

( Ca2g al ga12g a2) ( galg a2 Ca 12' al
)

1
0 0 v2 0 0

LXb =0,'g =
b a Calga2 (( a12 )2

(61)

(62)

With g~g) =
T

(&Eol&-&E&&ol&) (63)

Measuring the thermal expansion parallel and perpen-
dicular to the c axis provides us with an additional exper-
imental probe for determining 8 ' and 8, the magne-
toelastic coefficients. Note that in this case the a-
quadrupolar interactions implicitly act on the starting
level energies [Eq. (31)]. A similar feature has been previ-
ously discussed in cubic symmetry about high-order mul-
tipolar interactions. Thermal expansion data have been
analyzed in PrNis and Pr metal according to this formal-
iSm. 12 "

VI. CONCI, USION

We have presented the extension to the hexagonal and
tetragonal symmetries of the susceptibility formalism,
successfully used in the cubic symmetry. Two main pos-
sibilities are ofFered by this application of the perturba-
tion theory. First, in addition to the first-order magnetic
susceptibility, the single-ion strain and quadrupolar field
susceptibilities provide us with novel fruitful experimen-
tal probes with regard to the CEF. Indeed, the entire set
of CEF parameters is difficult to be accurately deter-
mined. This explains that studies in the literature usually
consider only low-lying levels within a pseudo-spin for-
malism. The corresponding wave functions are not fully
determined because mixing efFects through V4, V6, or V6
terms are not considered. As the neutron spectroscopy is
not as powerful by itself as in the case of the cubic sym-
metry, a simultaneous analysis of all the available results
is then necessary and magnetoelastic probes are well
come. The possibility of separately studying the difFerent
symmetry modes may increase the number of possible in-
formations.

On the other hand, the existence of magnetoelastic-
and pair-interaction couplings may be here as common as
for the cubic syxnmetry. Examples of quadrupolar order-
ings are numerous in rare earth zircons, such situations
may also be expected in rare earth intermetallics. The

determinations of the corresponding coeScients may be
very fruitful for explaining all the magnetic properties as
within the cubic symmetry. '

In this latter case, the order of the magnetic transition
in particular has been successfully described by this sim-
ple mean-field approximation if the quadrupolar interac-
tions were carefully determined: a Srst-order magnetic
transition is observed as soon as the third-order magnetic
susceptibility occurring in the Landau expansion of the
free energy is positive. ' In tetragonal and hexagonal
symmetries, the existence of such a first-order transition
may also be discussed in the same way. If driven by only
a positive 1012' value in absence of quadrupolar interac-
tions, it appears to be associated with a mixed wave func-
tion in the Jz basis [Fig. 3(c)] for a non-Kramers ion.
This is the situation of PrNi5 (Ref. 12) where unfor-
tunately the spin system is under critical. In all the other
cases X0

' is negative and a first-order transition may be
only driven by quadrupolar interactions, if their positive
contribution dominates the Xol

' term [Eqs. (38) and (44)].
Thus, a full understanding of the magnetic properties
may be gained by the knowledge of the quadrupolar in-
teractions in a given compound.
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A,PPENMX A

In a first step we de6ne the eigenvalues E; and the
eigenvectors

~

ik ) corresponding to the zeroth-order
Hamiltonian &0 [Eq. (31)]:

%0(ik) =E, ~ik) .
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In each subspace i the eigenvectors
I
ik ) must be adapt-

ed to the perturbating Hamiltonian Jt, -JVo, in particular
if the degeneracy is 1arger than one. This condition is a1-

ways fulfilled if the CEF basis functions
I
ik ) are chosen

so that 6M~ =6 (four for tetragonal symmetry) in their

I
J,MJ ) expansion:

analytical expressions for the perturbed energies E,„:
4

g + y g(n)+
n=1

Then the partition function

(A3}

I
ik ) = aikf I J,Mq)+al 6 I

J,MJ 6)—

i2 I
J,MJ —12). . . . (A2)

The perturbation theory up to the second order for the
el"s and to the fourth order for H allows us to obtain

Z g ik

i, k

can be calculated, where p= 1 /(kB T), kB is the
Boltzmann constant and T is the temperature. One ob-
tains

Z=ZoI 1+ ,'pXo(H—+nM)'+pQo(8 '5e '+8 5e +K 5Qo)+ —,'p(X +pQo)(8 '5e '+8 5e +K 5Qo)

+p(X' '+ —'pXoQo)(H+nM) (8 '5e '+8 5e +K 5Qo)+ —'p[Xo '+ —'p(X ) ](H+ M) I (A5)

whence the expression of the total free energy E = kB TlnZ g—iven in Eq. (33).
The expression of the four CEF susceptibilities Xo, X, X' ', and Xo

' are given by

I Jk, ji I

'
Xo=gjjBXf —2 X E E +k T IJkkI

i, k j i j B
j&i, l

(A6}

2

X =gf; —2 g E 'E +
k T IQikik I' —

k
T(Qo)'

i, k i j B B

Xa = —
2k &XoQo+gJPB gfi

8 i, k

Jikj I Qj lj 'l'Jj 'l', ik +2Qik, jlJjlj 'l'Jj 'l', ik

(g. E, )(E. E,, }

2
I Jikjl I Qik, ik +2Qi kjl Jjl,ik Jik, ik'

j&i, l
E; —E. k~T

2(k T)2 I ik ik I Qik ik
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Xo'= —
2k T(XO)'+gzVa &I;

8 i, k

—4
Jik,j 1JJ'I,j 'I'JJ'I',j"I"Jj"I",ik

, ,', - (E; Ej—)(E; E—,')(E; E—j-)
j~i, l
J ~/, E

j "~i,I"

I
Jkjl I I

Jkj''i'
I

+~ kjl Jjij'i'J'i' kJ ki'k

(E;—E, )(E;—E, )

I Jik, ik I I Jik,jl I 2 2 1
2+ + 22(E; Ej ) — (E, E ).
z— (. E; EJ )king

—T ksz Tz

+ z z I ikikl
1

(A9)

where

J,„,=&ik
I J, I

Jl),
and

Q;k, ji=&ik
I oz I JI &

(A10)

(A 1 1)

are the matrix elements of J, of Oz between the CEF lev-
els. For each CEF sublevel,

pgf;= e
Zo

i, k

pE

pE 7

e
(A12)

is the Boltzmann population factor.

APPENDIX 8

When the magnetic field is applied along the [100]
direction (x axis), the

operators
involved in the perturba-

tion theory are J„, 02, and 02. However, it appears
much more convenient to perform the calculations with
the z axis parallel to H. Therefore, a rotation of m/2
around the y axis may be carried out, transforming J„
into J„Oz into ——,'(Oz —30z) and Oz into —,'(Oz+Oz).
In each degenerate CEF level i, the rotated eigenvectors

I
ik )' have again to be adapted to the new perturbating

Hamiltonian, and this condition is easily satis6ed in the

new coordinate axes by choosing the
I
ik )' functions so

that AM& ——2 in their
I
J,MJ ) expansion.

The perturbation calculation can then be performed in
an analogous way as in Appendix A, except that an addi-
tional operator, 02, has to be considered leading to new
related quadrupolar susceptibihties. Finally an inverse
rotation allows to express both quadrupolar susceptibili-
ties X& and X(z in the initial axes system [Eqs. (39) and
(45)].

Note that X, and X', ' (Xr and X'r ' for tetragonal sym-

metry) have the same expressions as Eq. (A7) and (A8) ex-
cept that Oz has to be replaced by Oz in the quadrupolar
matrix element Q,„ i as well as in Qo.

APPENDIX C

In tetragonal symmetry, considering a magnetic field
along the [110] direction is equivalent to consider the
case where 8 is parallel to the x axis after a rotation of
n/4 around the z axis. In this rotation, Ooz does not
change and 02 is replaced by 2P y

P y by 202 04
—0~ and 06 by —06. The same calculation as previous-
ly may be performed (Appendix 8), but the quadrupolar
parameter G is now involved instead of Gr. Returning
to the initial axes system by an inverse rotation then pro-
vides the final expressions for XM' and X(z [Eqs. (47) and
(49)].
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