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The method of the retarded-Green s-function equation of motion is applied to investigate the

spin-wave spectrum and other properties of two-sublattice Heisenberg ferrimagnets. The algebraic

procedure is greatly simplified by introducing the matrix equation for the ferrimagnet for both NaCl

and CsC1 structures. %'e find that the spin-wave spectrum breaks into acoustical and optical
branches as expected. The mean spin values of individual sublattices are calculated numerically for
different single-particle spin values. It is seen that in the special case of an antiferromagnet, our re-

sults agree completely with existing work.

I. INTRGDUCTION

While there has been a great deal of work on spin
waves of ferromagnets and antiferromagnets, ' relative-
ly little attention has been paid to ferrimagnets.
Perhaps this is because ferrimagnets generally possess
rather complicated lattice structures and hence are
difficult to handle. From the point of view of practical
applications, however, many of the important magnetic
materials are ferrimagnetic. Yttrium iron garnet is just
one example. It is, therefore, of interest to study the
properties of spin waves in ferrimagnets.

Ferrimagnets difFer from ferromagnets in that the mac-
roscopic lllagllc'tlzatloll is tllc result of 'thc sllII1 of Illagllc-
tization vectors of all individual sublattices. Unlike anti-
ferromagnets in which the magnetization of individual
sublattices cancel out mutually, the individual sublattice
magnetization vectors do not offset each other in ferri-
magnets. This means that the sublattices in an antifer-
romagnet are equivalent magnetically, and this
equivalence does not hold in ferrimagnets. It is the mul-
tilattice structure and the nonequivalence of the sublat-
tices that make the ferrimagnets more difficult to deal
with theoretically.

In order to retain the basic features of ferrimagnets
and still keep the mathematical description to the sim-

plest level, we consider in this paper a two-lattice Heisen-
berg ferrimagnet model. Consider two dilerent kinds of
magnetic ions a and b They may f.orm either NaCl
structure in which the sublattices are face centered cubic
(fcc), or CsCl structure, in which the sublattices are sim-

ple cubic (sc). Let the mean value of these a-sublattice
spin and b-sublattice spin be (S'), and (S')s, respec-

tively. These mean values are in general dilerent for
diff«ent sub»«ic~ namely l

(S'&.
I ~ I

(S'&b i.
For two-sublattice antiferromagnets, it has been sho~n

that the two branches of bulk spin waves are degenerate
in energy. ' Since the two sublattices are not equivalent

in ferrimagnets, the two branches of bulk spin waves are
not degenerate in energy. ' They break into optical and
acoustical branches.

We apply the method of retarded Green's functions in
this paper to study ferrimagnetism. It has been applied
to treat ferromagnetism' ' and antiferroma ne-
tism. ' ' It has also been used by various authors' ' in
their discussions of surface or interface spin waves in fer-
romagnetic structures. Because of the nonequivalent sub-
lattices, direct application of the method to ferrimagnetic
structures leads to equations of motion that require ex-
traordinary complicated algebra to solve. Instead, we ex-
press the two-sublattice Green's functions in terms of a
2)&2 matrix and find the equation of motion it satisfies.
The algebraic procedure of solution is then greatly
simplified. As a matter of fact, the algebra for solving
equations of motion of the multisublattice ferrimagnet
becomes formally the same as that of the ferromagnet.
The method introduced here is particularly useful in the
treatment of surface spin waves of ferrimagnets.

%'e remark that part of the elect of many-body in-
teractions is already included in the Green s-function
treatment, ' ' 'I's although it is not easy to specify
which part because of the diSculties involved in the
treatment of decoupling procedures. In the present case
of two-sublattice system, the mean values (S'), and
(S')1, calculated from the equations of motion are never
equal to their corresponding single-particle values S, and

St, . That is, we always find (S*),QS, and (S')I,/S„,
even when T=0. This means that particles occupying
negative energy states have been included in our con-
sideration.

In Sec. II we derive the equations of motion for the re-
tarded Green's function, and a matrix method is intro-
duced to solve the equations for the Green's functions for
both NaC1 and CsC1 cases in Sec. III. From the Green's
functions obtained in Sec. III, we calculate the mean
values (S'), and (S')1,. The results for both structures
are presented and discussed. in Sec. IV.
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VAth nearest-neighbor exchange interactions we write
the Heisenberg model Hamiltonian for a two-sublattice
ferrimagnet as'

E«s.+;s;. )) =J&s:&y.«s.+„;s;»

-Jy&s:„&«s.+;s;, » . (4b)

I= g JS, Sb,
(a,b)

where g( b) means the summation over each pair of
nearest neighbors only once. The vector a stands for the
lattice vector of the a sublattice and b lattice vector of
the b sublattice. S, (Sb) is the spin vector located at the
lattice point a (b). J is the nearest-neighbor exchange in-
tegral. %e note that the nearest neighbors of a spin on
the a sublattice are all b spins and vice versa. No aniso-
tropic interaction nor external field is considered in (I}.

%e consider two types of lattice structures: the simple
cubic and body-centered cubic. Because of the two-
sublattice nature, sc actually means NaC1 structure in
which the Bravais lattice is fcc. On the other hand, bcc is
actually CsC1 structure with sc Bravais lattice. As we
shall see later, the spin-wave energy spectra are difFerent
for different lattice structures.

Define the spin operators

Because of the translational symmetry, the thermal ex-
pectation value of the spin is uniform on each lattice.
Thus we have

&s:&=&s'&.

=constant for every point a on a sublattice

and

&s;&=&s'&,

=constant for every point b on b sublattice

%e now introduce the two-dimensional Fourier trans-
form

S'=S"+iS& and Sb*=Sb+iS) .

Following the random-phase-approximation (RPA)
decoupling procedure' ' for the chain of equations of
motion, we find in the energy representation, the equa-
tion of motion for the operator S, in the a sublattice

E«s,+;s.—, »=2&s: &s„.+J&s:&y«s+
5

«s+ s-. )& = g 2&s' &. g.. (, E;, )
'""-"1

x

'«Sb,'S, » = +2&S'),gb, (n, E;m, n)e'" ib1

a

(5b)

—Jy„&s;„&« s+;s.—&), (3a}

«S+;S;, » = y2&S'&,g.,(n, E;m, n)e'""
where 5 denotes the relative position vector between two
nearest neighbors and gs represents the sum over such
nearest neighbors. It should be pointed out that Sa+ is
always a b spin in the b sublattice. The equation of
motion for Sb is

E«s+;s, )) =J&s; &g«s,', ;s.—. »

«Sb.,Sb, )) = +2&S')bgbb(n, E;m, n)e'"'
0

(5c)

(5d)

—Jy&s;„)«s+;s;. )&,

E«s+;s; » =2&s; &~, , +J&s; &@&&s,„;s;&&

—Jg&s:,&«s,+;s;. », (4a)

where S&+& is an a spin in the a sublattice. In a similar
fashion, we can ~rite down two more equations

where Xo is the total number of unit cells in each layer
and the g's are Green's functions expressed in the Bloch-
%annier representation in which the Bloch function is
used in the xy plane and the %annier function is used in
the z direction. x is a two-dimensional wave vector
defined by k=(n, q) =(k„,k~, q). m represents the z com-
ponent of a or b, and n stands for the z component of a'
or b'. The factors 2&S'), and 2&S')b are introduced for
convenience, and the purpose of doing so will become
clear after equations of motion for the Green's functions
are derived.

In terms of the Green's functions deSned by (5), Eqs.
(3) and (4) take the form for NaCl structure
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(E+6J(s')„)g,.(», E;m, n)=5 „+4J(s'),g( )g, (»,E;, )+J(s') fg ( E

(E+6J(s'), )gb, (»,E;m, n) =4J(S')bg(K)g„(K,E;m, n)+ J(S')b[g.,(»,E;m + l, n)+g„(»,E;m l, n )],
(6a)

(6b)

«+6J&s') )g. ( E;, )= 4J( S').(( )g,(,E;, )+J&S').[g„(,E; +1, )+g„,(,E; —1, )], (6c)

(E+6J(s'), )gbb(», E;m, n ) =5 „+4J(s*)bg(»)g~b(»,Elm n)+ J(s')b[g, b(», E;m +1,n)+g, b(», E;m —l, n)],
(6d)

where we have delined ((»)=-,'(cosk„d+cosk„d) and d the distance between the nearest-neighbor spins S and S'b. Be
fore we write down the equations for CsC1 structure, we must remember that a spins and b spins form alternative layers.
In fact, it may be regarded as the simplest idealized superlattice. If we denote the distance between neighboring layers
by d, then each sublattice has a period 2d along the z direction. Thus, we label the layers of a sublattice by integers
0, +I,+2, . . . and the b sublattice by half-integers +I/2, +3/2, . . . . The equations of motion for the Green's func-
tions are then

(E+SJ(S')b)g„(»,E;m, n)=5 „+4J(s'),g(»)[gb, (»,E;m + ,', n)+g—b,(»,E;m ——,', n)],

(E+SJ(S'),)gb, (»,E;m', n ) =4J(S')bi)(»)[g„(»,E;m'+ ,', n )+g—„(»,E;m' ,', n—)]-,

(E+SJ(S')b)g,b(», E;m, n') =4J(S'),rf(»)[gbb(», E;m+ ,', n')+—gbb(»,E;m ——,', n')],

(E +8J(S'), )gbb (»,E;m ', n '
) =5 „+4J (S')

b i)(»)[g,b (»,E;m '+ ,', n ') +g,b—(»,E;m '
,', n '—

) ]—,

(7a)

(7b)

('7c)

(7d)

where m, n are integers and m', n' are half-integers. We
have also defined the function rl(») =cosk, d cosk d.

0 J&s').
(9b)

III. METHOD OF SOLUTION

The bulk magnetic properties and spin-wave spectra of
ferrimagnets can be calculated from the Green's func-
tions which we proceed to find by solving Eqs. (6) and (7).
We first define the matrix Green's function

In a similar fashion, we have from (7) the matrix equation
for CsC1 structure,

(El D')g(», E;m,—n) F,g(», E;m—+ l, n )

Fig(», E;m ——l, n)=5 „I,(10)

where the matrices O', I'
t, , and I'z are dined by

g(», E;m, n)=
g (K, E;m, n) g b(», E;m, n)

gb~(», E;m, n) gbb(», E;m, n)

—SJ&s'&„4J&s'&.q( )
'

4J & s'&, q(») —SJ(s'&. (10a)

The system of coupled equations (6) can then be written
in the form of matrix equation

(El D)g(», E;m, n)—

0 4J(s').g(»)
F]—,0 0

—F[g(»,E;m +1,n)+g(», E;m —l,n)]=5, l
(9)

0 0
F =

4J ( S')by(») 0
(10c)

where we have also defined the 2+ 2 unit matrix I and

—6J&s*&, 4J(s'&.g(»)
'

4J(s'&, g(») —6J&s'&. (9a)

Equations (9} and (10}are written down for a particular
layer m. For the bulk ferrimagnetic crystal, we combine
equations for all layers together and obtain the superma-
trix equation. This is, for CsC1 structure,
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~ EI—D'

El —D'

—F) —F2

g(K, E;2,n )

g(K, E; l, n )

g(K, E;O, n ) = 5O„
—F2

El —D'
g(K, E; —l, n )

g(K, E; 2—, n )

5—1n

5—2n

Every matrix element in this equation is itself a 2& 2 matrix, and every row represents the equation of motion for one
layer of the crystal. When we set O'=D, and F, =Fz F, E——q. (11)becomes the equation for the NaC1 structure. Equa-
tion (11) is not difficult to solve because its coefficient matrix is a tridiagonal one, and all the matrix elements along any
of the diagonals are the same. The easiest way is to introduce the z-component Fourier transform

g(K, E;m, n) = gg (K,E;q )e
Z q

(12)

where X, is the total number of unit cells in the z direction, ao is the period in the z direction. For the case of the NaCl
structure, ao =d, and for CsCl, ao =2d. Substituting (12) in (9) and (10), and remembering the relation

iqao(m —n)
mn= ~Z

we Snd for the NaC1 structure

E+6J&S'&,
—J(S')b [4/(K)+2 cosqd ]

—J(s'), [4$(K)+2cosqd] g„(K,E;q) g, (K,E;q) 1 ()

E+6J(s'&. gb. (K E'q) gbb«E q)'

(12a)

(13)

and for the CsCl structure

E+8J(S')b
—4J(s'), rr(K)(1+e'

4J&S ),q(K)(1+e- ' ) E+Lr&S ).
(K,E;q) g.b(K, E;q)' '1 0

gb, (KE;q) gbb(K, E;q ) 0 1
(14)

Equations (13) and (14) can be solved simply by finding the inverse of the coefficient matrix. Thus, we find from (13) the
solution for the NaCl structure

gaa(K, E;q ) ga(b,KE; q) E+6J& S'&, 6J(S'&.y, (k)
gba(»'q ) gbb(K E 'q ) [E E+ (k)[E E— (k)] ——6aJ (S'),y, (k) E —6aJ(S'),

where we have de6ned

Ez(k) = —3J(S'),(1—a)+3J(S'),[(1+a) —4ay, (k)]'ii,

yi(k) = —,'(cosk„1+cosk d+cosqd ) .

(15)

(16)

The mean values (S'), and (S')b are independent quantities. We introduce a parameter a = —(S')b l(S'), for con-
venience. The minus sign reflects the fact that the spins are opposite in a sublattice and b sublattice. In the following
we shall assume a & 1 without loss of generahty.

The bulk spin wave has two branches with spectra determined by (16). E+(k)=0 when y, (k)=1, and hence
represents the acoustic branch while E represents the optical branch because it remains finite when y i(k) = 1. In gen-
eral, E+ (k) )0 and E (k) (0. The negative energy is understood in the following manner. As elementary excitations,
we consider the magnon vacuum as the ground state. Therefore magnons excited out of the 611ed sea constitute the
acoustic branch with energy E+ and the optical branch with energy E

Since both (S'), and (S')b depend on temperature, the parameter a is, in general, a function of temperature.
Therefore the spin-wave spectra for ferrimagnets, even expressed in the unit of J(S )„depend on temperature. This is
in contrast to the antiferromagnets for which c= 1, and the spin-wave spectra of both branches are independent of tem-
perature when expressed in the same unit.

Similarly, we find from (14) the Green's functions for the CsC1 structure

gaa(K, E;q ) gab(K, E;q ) E+sJ&s').
gbo(K E q) gbb(K E'q)'[E—E (k)[E —E (k)] —«J&S'&,yi(k)e

where the spin-wave spectra are given by

sJ&s ).y, (k).-'"
E-SaJ(S'&. (18)
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and

E (k)= —4J&S*&.(1— )+4J&S'&.[(1+ )'—4 y,(k)]'"

yi(k)=cosk„d cosk d cosqd .

Substituting (15) or (18) in (12) and then back in (5), we find the retarded Green's functions in Wannier representa-
tion. For instance,

2& S'&.(E+63 & S'&. )

&ON, „[EE+—(k)][E E—(k)]

2& S*&,(E —6mJ & S*&,)=
&,~, ~~ [E—E,(k)][E—E (1

)]""""
(20a)

(20b)

IV. RESULTS AND OISCUSSIONS

We now attempt to calculate the mean values & S'&, and & S'& b from the Green's functions by means of a method
that has been used in Refs. 14 and 15. We first introduce the auxiliary functions 4, ( T) and 4i, ( T) defined by

4, ( T)= I gg[g„(e,E+i0+;q) g„(z—,E iO+;q )—],2~x,X,

ques(T}= J & gg[gsb(~, E+iO+;q) gss(~—,E iO+;—q)],
2m%ON,

(21a)

(21b)

where P= 1/ksT with the Boltzman constant ks. The purpose of introducing these auxiliary functions can be made
clear from the following example. If S, =Sb ———,', then we find from (20) with the aid of the Iluctuation-dispersion
theorem'5'

&s.-s+
& =2&s'&,e.(T},

&s;s, &=2&s'&,~,(T) .

But since & S, S,+ & =—,
' —

& S'&, , & Sb Sb+ & =—,
' —

& S*&i, for spin —,', we obtain immediately that

&S'&, =—,'[1+4,(T)]

& S'& =-,' [1+4 ( T)]

For general spin values, it has been shown in Refs. 14 and 15 that

[S,—4,(T)][1+4,(T)] ' +[S,+1+4,(T)][4,(T)]

[1+4.(T)] ' —[4.(T)] '

&s &, =
[Si,—@i,( T)][1+@i,( T)] ' ~ [Sq+1+@b(T)][4b(T)]

[I+@b(T)] ' —[@b(T)]

(22a)

(22b)

(23a)

(23b)

(24a)

(24b)

However, the function 4 involves the Green's functions which depend upon & S'&, and a; Eqs. (24) must be solved self-
consistently.

For simphcity, we consider the ground state (T =0) only. The factor (e~ —1) ' is zero for E ~0 and is —1 for
E &0. The auxiliary functions for the NaCI structure are then from (21) and (15)

o dE {[E {k)+6J&S*&,]5{E—E (k))—[F. (k)+6J&s*&,]5(E—E (k))I
@,(0)=-

NON, ~ [E~(k) —E (k)]

gt[E (k)+6J&S'&, ]/[E (k) —E (k)], (25a)

[[E (k)—6aJ& S'&, ]5{E—E (k) )—[E (k) —6aJ& S'&, ]5(E E(k) )I—e(0)=- .N, N, X
'

[E'.(k) E (k)]

y[E (k) —6 J&S'&,]/[E (k) —E (k)] .
0 z

(25b}
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TABLE I. Mean spin values of ferrimagnet with NaCl struc-
ture at T=0. For each set of values of S, and Sb, we give (S*),
and, below it, a.

TABLE II. Mean spin values of ferrimagnet with CsCl struc-
ture at T=O F. or each set of values of S, and Sb, we give (S'),
and, below it, a.

1.0 1.5 2.0 2.5 0.5 1.5 2.5

0.5

2.0

2.5

0.433
1

0.944
0.476
1.458
0.316
1.967
0.238
2.473
0.192

0.923
1

1.433
0.651
1.943
0.486
2.451
0.388

1.422
1

1.928
0.741
2.436
0.589

1.922
1

2.426
0.794

2.422
1

0.5

1.0

1.5

2.0

2.5

0.447
1

0.958
0.481
1.468
0.320
1.975
0.241
2.479
0.194

0.941
1

1.449
0.655
1.957
0.489
2.463
0.391

1.441
1

1.946
0.743
2.451
0.592

1.941
1

2.444
0.796

2.441
1

It is observed that terms involving E+(k) do not contrib-
ute to the integral. This rejects the fact that all the nega-
tive energy states are filled in the ground state of the sys-
tem.

Using the explicit expressions (16) and (17), we can
solve the coupled equations (25) for (S'), and a at T =0
with given single-particle spins S, and Sb. We have made
the calculation on s computer for several choices of S,
and Sb. Our results are posted in Table I. Numbers in
the llrst line for each S, are (S'), and in the second line
are a. We have computed S, &Sb cases, but results for
S, &Sb can be derived by interchanging the sublattices.
It is noted that the special case S,=Sb or a= 1 corre-
sponds to the two-sublattice sntiferromagnet. Our re-
sults for a= 1 agree completely with those given in Refs.
12 and 17. We note further that the computed mean spin
values for all cases are smaller than the single-particle
spin in contrast with ferromagnets. It is now well known
that at T =0, the mean spin value in a ferromagnet is the
same as the spin quantum number. tb On the other hand,
it has been pointed out' ' that (S'),+S, in antifer-
romagnets because of the zero-point vibration of the
magnon. In the present case of fetrimagnetism, as we
have explained previously, the ground state T =0 has all
the negative energy states Med by magnons. It is this

many-body efFect that results in (S'),&S,.
The above calculation applies ss well to the CsCl struc-

ture except for the replacement of the coordination num-
ber 6 by 8 in (25). We present the results in Table II.
Once more we find that when a= 1, our calculation yields
the same result as those for antiferromagnets obtained in
Refs. 12 and 17.

%e have discussed the bulk properties of two-
sublattice ferrimagnets by means of the Green's-function
matrix method. Explicit expressions of the Green's func-
tions are calculated by solving the coupled equations in
matrix form. The mean spin values over individual sub-
lattices are calculated self-consistently. The method in-
troduced here can be applied to treat the surface spin
waves of ferrimagnets of either the NaC1 or CsC1 struc-
ture. It can also be generalized without diSculty to
treat the multisublsttice ferrimsgnets as well as interface
problems. The major advantage is that the resulting
equation of motion is formally the same as that of a
single-lattice ferromagnet. Since the CsC1 structure is a
structure of alternating layers of a snd b ions, it msy be
regarded as the simplest superlattice. Therefore our
method should be useful in the treatment of magnetic su-
perlattices with or without surface.
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