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In magnetic semiconductors, a charge carrier is dressed with a cloud of lattice spins due to the
strong exchange coupling between the carrier and the local moments, and forms a so-called magnet-
ic polaron. %e formulate a theory of the ground state of magnetic polarons in antiferromagnets for
electrons from the conduction band as well as those bound to impurity centers. Vfe discuss how the
orbital motion of the electron is influenced by its magnetic interaction with the lattice. %'e also
determine the structure of the lattice-spin cloud surrounding the electron.

I. INTRODUCTION

In magnetic semiconductors, the exchange coupling
between the charge carrier and the lattice spin is often
strong in comparison with either the carrier kinetic ener-

gy or the lattice-lattice exchange interaction responsible
for the long-range magnetic order. Through this cou-
pling the conduction electron is capable of polarizing the
lattice spins. In analogy with an ordinary polaron, one
refers to an electron dressed with lattice spins as a mag-
netic polaron. If the electron is not in the conduction
band but bound to an impurity center, it is specifically
called a bound magnetic polaron.

Because of this strong carrier-lattice exchange, the
magnetic, optical, and transport properties of a magnetic
semiconductor may be altered. I.et us cite a few random
examples. In Eu-rich EuO, which is a ferroma net, the
electric conductivity suddenly increases by 10' -fold as
the temperature is lowered through the magnetic transi-
tion temperature. It is believed that this insulator-
metal transition is caused by a sudden decrease in the
ionization energy of the bound magnetic polaron cen-
tered at the oxygen vacancy site. In antiferromagnetic
substances, the magnetic polarons manifest themselves in
the form of ferromagnetic spin clusters which were exper-
imentally detected in EuSe and EuTe. ' In dilute mag-
netic semiconductor alloys, such as Cd& „Mn„Se or
Cd, „Mn, Te, new features in the magnetooptical spec-
tra have been observed which are attributable to bound
magnetic polarons in )he sample.

To trace the development of the polaron theory, one
probably should begin with Zener who first recognized
the importance of the carrier-lattice exchange interac-
tion. It is through this coupling that conduction elec-
trons in metals are capable of collectively mediating an
indirect exchange between local moments embedded in
the lattice, thus forming a subject of intensive research by
itself. At the same time, the question of how properties
of a charge carrier from the conduction band are afkcted
by its strong magnetic coupling with the lattice was con-
sidered. As to the concept of the bound magnetic po-
laron, it was 5rst proposed as the underlying mechanism
responsible for the insulator-metal transition in EuO cit-

ed above, and was further pursued by a number of au-
thors. Instead of giving an extensive reference list
on the past theory of polarons, we refer the reader to a
recent review article, ' and in addition mention a few re-
cent contributions to the theory of carrier-lattice ex-
change interaction in ferromagnetic and antiferromagnet-
ic materials. For ferromagnets, the magnetic polaron
plays an important role around the ferromagnetic transi-
tion temperature and in the paramagnetic region, where
its property is expected to be strongly influenced by
thermal fluctuations of the lattice moments. This was
studied by several authors. For antiferromagnets, on
the other hand, magnetic-polaron effects exist even at
absolute-zero temperature. Accordingly, the ground-
state properties of the magneticgolaron "' have been in-
vestigated. A dynamic study of polarons in antifer-
romagnets has also been made.

The present work is an extension of our previous
theory ori the ground state of the magnetic polaron in an-
tiferromagnets. Although that work represents a erst
quantum theory in the Seld, its validity is limited to the
case of weak coupling between the spin of the charge car-
rier and the lattice moment. %'e now present a quantum
theory valid not only in the weak-coupling case but also
in the more realistic strong-coupling limit where the
carrier-lattice exchange is much stronger than the
lattice-lattice coupling. The theory is based on the varia-
tion method. Regarding the exchange coupling constants
of the electron with various lattice moments as given pa-
rameters, we first obtain the ground-state magnetic ener-

gy by a variational procedure in Sec. II. In Sec. III we
again use the variation method to discuss how the elec-
tron orbital should adjust itself to take advantage of its
magnetic coupling with the lattice spins. Both electrons
from the conduction band and those bound to impurity
centers are included in the discussion. For conduction
electrons, the question of whether or not they can be
self-trapped in the potential well created by their magnet-
ic interaction with the lattice is addressed. For bound
electrons, we discuss how their binding energy is
influenced by the magnetic interaction. In Sec. IV the to-
tal lattice spin carried by the electron is calculated. In
Sec. V we make a brief remark in concluding the paper.
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0=PA(cs P y )ass (2.4)

For antiferromagnetic semiconductors containing a
charge carrier, either free or bound to an impurity center,
a model Hamiltonian representing the magnetic interac-
tion may be written as

HI=I Qs;.S,——,
' g J(R;}cr S;, {2.1}

8(s,S„.. . ,SN)=$(s)0(Si, . . . ,S~), (2.2)

where g depends on the spin coordinates of the charge
carrier and 0 on the lattice spins. Let us use the sublat-
tice magnetization direction of the antiferromagnet as the
quantization z axis. Referring to this axis, we assume
that P is a equal admixture of up and down spinors,
representing a carrier spin 6xed along the transverse x
direction (say, by an external magnetic field). Explicitly,

(2.3)

where S; denotes a lattice spin localized at the i site and
the Pauli spin operator —,'cr represents the spin of the
charge carrier. The interaction between localized mo-
ments responsible for the antiferromagnetic order is
denoted by the Srst term. By assumption, this interaction
is con6ned to nearest neighbors and is of Heisenberg.
form with a positive and site-independent coupling con-
stant I. The second term represents the interaction be-
tween the spin of the charge carrier and the lattice spins.
This interaction, also in Heisenberg form, is assumed to
be ferromagnetic. Hence, the coupling constant J is posi-
tive, whose value may vary with the lattice position R;.
The actual functional form of J(R; }depends on the spa-
tial distribution of the charge carrier; it is through this
interdependence that the orbital motion of the charge
carrier may be altered by its magnetic coupling with the
local moments.

If, for the time being, we regard the coupling constants
J as given parameters and if we further neglect the spin-
orbit coupling of the charge carrier, the Hamiltonian Hjc
in (2.1) may be treated as an independent unit separate
from the orbital part of the total Hamiltonian for the
charge carrier. In this way the ground state energy of
HM (or more precisely, its upper bound} is Srst obtained
by using the variation method. The magnetic-polaron or-
bital is then adjusted so as to minimize the total energy
(i.e., the orbital plus the magnetic energy).

In constructing a trial ground-state wave function of
Hsc, we invoke the adiabatic approximation. This ap-
proximation was also used in our weak-coupling theory.
In the strong-coupling limit where J &&I„ the lattice mo-
ments precess around the carrier spin rapidly while they
adjust to each other at a much slower rate. The adiabatic
approximation is then again valid. In other words, a
product-type wave function may be assumed:

(@l~l@& &nls, . ln&=&nls, .In) .

Thus we can eliminate the spin coordinates of the charge
carrier from the expectation value and obtain

(8lH

l8)=I+�(Qls;

S ln)
f&J

——,
' g J(R; )(0

l S;„ l
0) .

Let us first consider the matrix element (0 l S,'SJ
l
0 )

representing the interaction between two neighboring lat-
tice spins. In our model Hamiltonian, the lattice spin S;
stands for the sum of the spin of all electrons localized at
the i site, each having a spin of A'/2. The wave function
Pss in (2.4) may be expressed as a product of up spinors,
and the efFect of applying the rotation operator to Pss is
equivalent to the product of rotated up spinors. It is ob-
vious then

(2.5)

(nls, s, ln&=s2(X, U, X,U, l~,"~,. lX, U,X,U, ),
(2.6)

where A, is an abbreviated notation for the rotation
operator at the i site which acts on the up spinor U;, and
cr, is the Pauli spin operator associated with an electron
localized at the i site.

The matrix element on the right-hand side of (2.6) may
be evaluated using the explicit form of the rotation ma-
trix, 2

cos(P/2)e r —sin(P/2)e
A(a, p, }=

sin{P/2)e f ~y al/2 cos(—P/2—}c, t +
I

(2.7)

in a representation in which

where A is the rotation operator for angular-momentum
eigenfunctions. When J7 is applied to Pssc, an eigenfunc-
tion of the spin operators S and S„ it results in the
transformed spin function under a rotation of coordinates
through Euler angles cc, p, and y. Note that in the trial
wave function attached to each lattice site the magnetic
quantum number M assumes its maximum possible value
of S representing the quantum number of the lattice spin.
The physical meaning of the trial function is transparent;
it represents an arrangement of spins on the lattice with
their orientations varying from site to site in a manner
favored by the magnetic Hamiltonian in (2.1). The Euler
angles specifying the orientation of the local spin at each
site are the variation parameters to be determined by
minimizing the expectation value of the magnetic Hamil-
tonian H~.

To calculate the expectation value of the ground-state
energy according to (2.1) and (2.2), we note that, with 1t

given in (2.3),

For the lattice part, we take a trial function which is a
product of spin functions associated with various lattice
points 1abeled by i:

U= o
J

After some straightforward algebra we obtain

(2.8}



37 THEORY OF MAGNETIC POLARONS IN. . .

&A;u;%' u ~cr, o ~%;u,% u &=cosp;cosp +sinp, sinp, cos(a, —a ) . (2.9)

The remaining matrix element, & 0
~ S;„~0 &, in (2.5) may

be similarly evaluated. First,
E = ——,'AS I+DE

(2.17)

&0 [S;„[0& =S&%;u,
~

cr,„)%,u, & .

%e obtain then

(2.10) N

hE = ——g [J(R;) 2zS—I] — g [J(R, )]2,2,.
' 16zI

I
0 & =S sinP; cosa, . (2.11)

In the limit of strong carrier-lattice coupling, the term
involving matrix elements (2.11) is the dominating one in
the magnetic Hamiltonian. Minimization of this part of
the interaction energy with respect to the angles a, gives

a;=0 . (2.12)

In a two-sublattice model for the antiferromagnet, the i
site and its neighboring j site belong to different sublat-
tices. Accordingly we assume that

p, =m p; . —

Under these conditions we have

(2.13)

&ni S,"S, in&= —S'cos(2P, ) . (2.14}

From (2.5},(2.11), (2.12), and (2.14) we then get

& e
~ H„~ 8 & = ——,

' g [zIS'cos(2p, . )+J(R, )S si~, ],

(2.15)

where z is the number of nearest neighbor to each lattice
spin, and the summation is over the entire lattice. The
angles p; constitute the set of variation parameters. It is
noted that the result in (2.15) may be interpreted in terms
of the classical vector model for spins; indeed, it coin-
cides with the corresponding semiclassical result obtained
by previous authors. This is so because the solution in
(2.12) suppresses all quantum fluctuations of lattice spins
around the carrier-spin direction.

Now we come to determine the variation parameters p;
which will minimize the energy expectation value in
(2.15). The solutions are

m /2 if J(R; ) & 4zSI,

p=
/ger

otherwise .
(2.16)

Based on a vector model for spins, the case p;=m/2
means that the lattice spin at the i site is fully aligned
with the carrier spin. The structure of the magnetic pola-
ron as given by the solutions in (2.16) may be visualized
as one consisting of a ferromagnetic core surrounded by a
halo of enhanced but not fully aligned lattice spins. Of
course, if there is no site for which J(R, ) &4zSI, the fer-
romagnetic core is then absent.

Substituting (2.16) into (2.15), one obtains an upper
bound of the ground-state magnetic energy as

where X denotes the total number of lattice spins and X,
the number of lattice spins contained inside the ferromag-
netic core. The 6rst term in E denotes the magnetic en-

ergy of the unperturbed antiferromagnetic lattice. The
interaction energy between the carrier spin and the local
moments is denoted by hE . As indicated, the summa-
tion in the first term in hE runs over all lattice points
inside the core while the second term involves a sum over
the rest of lattice points situated outside the core.

III. MAGNETIC-POLARON ORBITAL

As stated before, the orbital motion of the charge car-
rier may be affected by its magnetic interaction with the
lattice spins. This is the focus of our discussion in this
section.

Under ihe effective-mass approximation, the one-
particle Hamiltonian for the charge carrier can be writ-
ten as

p20= +V+E
2pal

(3.1)

Here the effect of the crystalline potential has been incor-
porated into the efFective-mass parameter m'. The po-
tential energy V stands for that due to impurities, defects,
etc. , which may be present in the sample. To obtain the
ground-state energy for the total Hamiltonian in (3.1), we
again rely on the variation method. We adopt a trial or-
bital wave function which is localized and hydrogenlike,

P = ( mr 0 ) '~ exp( r /ro), — (3.2)

J(R)=4m Ah f dr P (r)P(r)5(r —R),

where A, a material parameter, denotes the exchange

using ro as a variation parameter adjusted to minimize
the total energy. %e use such a localized function to
represent an electron either in the conduction band or
bound to an impurity center. For the former case, using
a localized function enables us to test whether or not a
band electron will be self-trapped in a potential well
created by the magnetic interaction; if no solution for a
real ro exists in the variation calculation, it is an indica-
tion that self-trapping is not possible.

With the trial function in (3.2) we first evaluate the ex-
change coupling constant J between the charge carrier
and the lattice spins. As the magnetic electrons responsi-
ble for the lattice spin are highly localized at the lattice
site, we may approximate the exchange integral by a con-
tact interaction. In terms of Dirac s 5 function, it is ex-
pressed as
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J(R ) =4 A b, r 0 exp( —2R /ro } . (3.4)

Next, we determine the size of the ferromagnetic core,
within which the lattice spins are fully aligned along the
direction of the carrier spin. According to (2.16) and
(3.4), the radius of the spherical core, R„is given by

coupling strength between the carrier, normalized within
a unit cell of volume 5, and the lattice spin localized at
the same cell. With the wave function P in (3.2), one gets

(2) Type II: Polaron with a core [A «(roih)zSI].
Again we note that the condition for a type-II polaron
depends on ro. Materials with a strong carrier-lattice ex-
change coupling are more favorable for the formation of
this type of polaron.

The radius of the core, R„ if it exists, is given in (3.5).
Substituting this expression for R, into (A7), we have

i 1 (zSI—r03/Ab }'ii
S, =32A pro

Rc= '

ro
0 if A& zSI,

ro
ln

ro zSI

3ro
if A~ —zSI.

(3.5)

As zSIr0 /A 6 & 1 and the extent of the polaron, ro, is ex-
pected to be larger than the lattice constant Ro, the sum

S, is roughly

S]=323 .

The number of lattice spins contained inside the core is
written as

N, =b(R,'/b ), (3.6)

where b stands for the geometric factor 4n/3 if the core
is spherical and each unit cell contains only one lattice
spin.

In order to simplify the task of performing the lattice
sum in (2.17), we assume speciScally a simple cubic lattice
with lattice constant Ro. For the same reason, we also
assume that the feri'omagnetic core, if it exists, is cubic in
shape. The latter assumption amounts to altering the
value of the geometric factor b in (3.6) to 8. The essential
physics of magnetic polarons contained in our results,
however, will not be changed by these assumptions. The
two lattice sums in (2.17), one over the saturated core and
one over the lattice space outside the core, are approxi-
mately evaluated in the Appendix.

From (A7) and (A9), we can calculate the magnetic en-
ergy b,E in (2.17). The result for the case where the po-
laron has a ferromagnetic core is difFerent from that
when the core is absent. Both cases are discussed below.

(1}Type I: Polaron without a core [A &(ro/h)zSI]
Here we have adopted the same classification as used in
Ref. 24, and name a polaron without a core a type-I pola-
ron. It is to be nated that the condition abo~e for the ab-
sence of a ferromagnetic core contains not only material
parameters but, in addition, depends on the spatial extent
of the polaron itself, i.e., on ro. The parameter ro is yet
to be determined in the present work. In any case, this
type of polaron is likely to occur in the weakwoupling
limit where the carrier-lattice exchange is weak in com-
parison with the lattice-lattice exchange.

In this case, the core radius R, =0, and the only lattice
sum which enters the magnetic energy calculation is S2 in
(A9). Under the condition ro «Ro, this term becomes

Using the same procedure we estimate Si in (A9) to be

S2=48zSIA .

The magnetic energy is then obtained as

R3
ZZ."=zbS' 'I 19SA—. (3.8)

The last term represents the magnetic-energy gain due to
the carrier-lattice exchange. Within our approximation,
this energy is a constant independent of the spatial extent
of the polaron. The numerical coeScient, 19, for this
term should be regarded as an order-of-magnitude esti-
mate only. We obtained this particular value by assum-
ing a specific lattice and core structure as shown in the
Appendix. In any case, this term should be close in value
to S times 4m A, which, according to (3.3), represents the
carrier-lattice exchange energy for a carrier normalized
to one unit cell. The first term in (3.8) represents the en-

ergy lass as the lattice spins outside the core are drawn
away from their original antiferromagnetic alignment by
the carrier spin. This term has a rather strong ro depen-
dence; the total number of lattice spins inside the core in-
creases as R, which is roughly proportional to ro.

It is noted that the magnetic interaction term in (3.7) is
diFerent in form from that in (3.8};while in (3.7}it is pro-
portional to A, it depends on A in (3.8}. I.et us explain
this difference by recalculating (3.7) through a qualitative
and classical argument. With the electron spin pointing
along the x direction, the lattice moment becomes canted,
making an angle O with respect to the sublattice magneti-
zation z axis. The total magnetic interaction between the
electron and the lattice is then equal to —AS sin8. The
angular factor sinO should be equal to the ratio of the
carrier-lattice to lattice-lattice exchange coupling
strength. On the average, the coupling constant of the
carrier with one lattice moment is equal to A(h/ro).
%ith

S =16—A2 3ro

The magnetic energy is then given by

AdE
r03 zI

(3.7)

AsmO-
ZSI r03

'

we have reproduced (3.7). On the other hand, if there ex-
ists a ferromagnetic core, the angle O is equal to a con-
stant (n/2}. Hence in this case the magnetic energy is
proportional to A and becomes independent of ro.
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VA'th the magnetic energy calculated for type-I and
type-II polarons, we can proceed to complete the varia-
tion calculation snd determine the polaron localization
radius ro if it exists. %'e consider two cases: one for elec-
trons in the conduction band, snd one for electrons
bound to impurity centers.

f2
z=6, S=—', —1 eV,4g 2

0

A -0.1 eV, I-10 "eV .

The value of ro is estimated to be

A. Magnetic yolaron

We consider the case of a carrier in the conduction
band, for which the impurity potential V=O in (3.1). Us-
ing the trial function in (3.2), one obtains the expectation
value of the kinetic energy as

2m ' 2m *ro

Since the magnetic energy hss a different dependence on
ro for the two types of polaron discussed above, it is more
convenient to investigate the two cases separately.

(1) Type-I polaron. For polaron without a core, the
negative magnetic energy as given in (3.7) decreases as
ro while the positive kinetic energy decreases more
slowly as ro, Hence, there is no mimmum in the total
energy based on a localized trial wave function. This in-
dicates that excluding the possibility of forming s type-II
polaron (to be discussed next), a free carrier cannot be
self-trapped in the potential well created by its magnetic
interaction with the local moments. In this case, the or-
bital wave function of the charge carrier is not well
represented by (3.2), and the expression for the magnetic
energy in (3.7) no longer applies. For an extended con-
duction electron, its magnetic interaction with one local-
ized moment should be proportional to N, N being the
total number of lattice points in the crystal. Hence, the
total magnetic energy, which is proportional to N, ap-
proaches zero. The magnetic-polaron elect is then quite
unimportant in this case.

(2) Type-II polaron. In this case, the lattice-magnetic-
energy loss inside the core increases as 8, as shown in

(3.8). The dependence of the core radius R, on the spa-
tial extent ro of the polaron is given explicitly in (3.5),
which contains a logarithm factor. Since the logarithm
function is only slowly varying, we msy replace it by a
constant. As sn order-of-magnitude estimate, we assign a
value of 2 to this constant. In other words, we approxi-
mate 8, by

Then, with the lattice-magnetic-energy loss increasing as
ro and the kinetic energy decreasing as ro, a stable point
can be found at

II
rfree =

' I/5

3zbm'S I (3.10}

To be certain that one is dealing with s type-II polaron,
one has to check the inequality 3 ~ (ra lh)zsI, this time
solely in terms of material parameters.

We make an order-of-magnitude estimate, using the
following parameters appropriate for a typical antifer-
romsgnet like EuTe:

8. Bound magnetic yolaron

We consider the case of an electron bound to a singly
charged impurity center. Based on the efFective-mass ap-
proximation, the impurity potential V in (3.1) is Coulomb
in form and its expectation value with respect to the trial
function in (3.2) is

(3.1 1)

where e is the dielectric constant of the material. Again
we consider the possibility of forming the two types of
polaron separately.

(1}Type-I bound polaron. From (3.7), (3.9), and (3.11)
we have the total energy

f/2 e 2

2ppg ro harp

(3.12)

Without the last term, the energy minimum occurs at
ro ——ao, where ao is the e8ective Bohr radius of the
donor e1ectron, i.e.,

Qo = 4

Pl e
(3.13)

%'ith the magnetic interaction present, the energy
minimum exists only if

A 1 &~o
zI 12 ~~&

(3.14}

IIr free ~O

The core radius R, is then also roughly equal to one lat-
tice constant. With such a small radius it is not too
dif6cult to satisfy the condition of existence of a core as
lang as A ~&I.

Apart from the stability condition, one has to check
that the kinetic energy of the carrier at such a small 1o-
calization distance is not large enough to allow it to es-
cape from the potential well created by its magnetic in-
teraction with the lattice. The result of this comparison
is obviously sensitive to material parameters. For the pa-
rameters used above, the magnetic energy is indeed larger
than the kinetic energy. It seems then that in materials
like EuTe, the free electron from the conduction band
msy be self-trapped to form a tiny magnetic polaron with
a ferramagnetic core.

Incidentally, in estimating the kinetic energy of a tiny
palsron of the dimension of s few lattice constants, it
msy be more appropriate to use the free electron mass
rather than the efkctive mass of the carrier. Also, for s
polsron with such a small core, it should be possible to
obtain a better estimate of the core radius and the mag-
netic energy than the approximate results obtained here.
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%hen this condition is satisfied, the donor orbit radius
will shrink from a 0 to a value given below:

Ir bound

' 1/212m'5 A1+ 1—
A2a '

0
(3.15)

To discuss the elect of the magnetic interaction on the
binding energy of the impurity carrier in this case, we
note that as the electron orbital radius shrinks, the
Coulomb-potential-energy gain is compensated by its
kinetic-energy loss. Hence, the increase in the binding
energy of the carrier is mainly due to the last term in
(3.12). In other words, it is attributable to the fact that
there is a change in magnetic energy as the carrier is ion-
ized to the conduction band from the localized state.

When the condition in (3.14) is not satisfied, a stable
solution cannot be found with a localized trial wave func-
tion. This indicates that the charge carrier may become
extended unless there is a possibility of forming a type-II
bound polaron (to be discussed next).

(2) Type-II bound polaron. In this case, the total ener-

gy is given by

For a type-I magnetic polaron, both N, and R, are
equal to zero. Since the conduction electron is not local-
ized, its spatial extent, r0, is much larger than R0. Then

8A
pola ron zI

(4.3}

This result also applies to a type-I bound magnetic pola-
ron so long as its spatial extent is large, containing many
lattice points inside.

For a type-II magnetic polaron, R, is given in (3.5).
Substituting. this into (4.2) gives

II
~p damn =&e~+

83 hr0
zI

1/2' 3
zSlr o'

Ah

[exp(RO/ro) —1]

(4;4)

In the limit of strong coupling where A &~I, the second
term representing the total lattice spin contained in the
halo surrounding the ferromagnetic core may become
much larger than the moment of the core itself.

fi

2m 'r0

2 R
+zbS I—19SA .

Er0
(3.16) V. CONCLUDING REMARKS

Again we replace R, by ro, and discuss the case when the
third term above is smaller than the second one in magni-
tude, or more precisely

zI
e~Aao 3bS2a03

(3.17)

Under this condition, the minimum of the total energy
occurs at

3ezbS Ia'
r bound ~0

e 6
(3.18)

IV. LATTICE SPINS
CARRIED BYTHK POLARON

The radius of the bound carrier shrinks in order to mim-
mize the lattice-magnetic-energy loss. As discussed be-
fore, the increase in the binding energy of the carrier is,
for the most part, attributable to the depth of the mag-
netic potential well.

We have presented a quantum theory of magnetic pola-
rons in antiferromagnets. The ground-state properties
are deduced based on the variation method. Very often
this method cannot account for some finer effects due to
quantum Nuctuations, and the present work is no excep-
tion. Consequently, our ground-state magnetic energy
agrees with that deduced by previous authors based on a
classical treatment of the spina. Nevertheless, the present
work is still diferent from the previous semiclassical
theory; while the absence of quantum fluctuations is a de-
duced result in the present framework, it is assumed from
the very beginning in a classical theory. In addition, the
influence of magnetic interactions on the carrier orbitals
has been discussed in a quantitatively more explicit
ITianner.

APPENDIX: EVALUATION OF LATTICE SUMS

In evaluating the magnetic energy E in (2.17), the fol-
lowing two lattice sums are involved:

From (2.11) and (2.16} we may calculate the total lat-
tice moment carried by the polaron:

C

S,)„,„——X,S+ g J(R; ) .

S, —:g J(R;),

S,= g [J(R;)]' .

(Al)

The first term evidently represents the total spin of the
ferromagnetic core, and the second term comes from the
halo of enhanced spins outside the core. The lattice sum
in the second term is evaluated in the Appendix. From
(A12) we have

82 pro 1 —[I—exp( —R, /ro)]5 )„,„——X,S+
[exp( 80/r 0 ) —1]

n =(n', +n,'+n')'" (A4)

and n„n2, and n3 are integers representing the coordi-
nates of the lattice vector R, .

%e evaluate them on a simple cubic lattice with lattice
constant R0. For this lattice,
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To make it possible for us to evaluate the lattice sums

S, and S2 explicitly, we approximate n in (A4) by a posi-
tive number

—,'( Ini I+ In2 I+ In3 I
)

Since J(R) as given in (3.4) has an exponential depen-
dence on R, the approximation in (A5) allows us to factor
SI into a product of three lattice sums, each to be carried
out along one of the cubic axes. If we further approxi-
mate the spherical ferromagnetic core by a cube of side
length 2E„ the three sums become independent and
equal to each other. We then have

S, =4Ahro +exp( —
I n, I Ro/ro)

where the integer n, in the summation runs from
—R, IRo to +R, /Ro. As a simple geometric series, this
sum can be evaluated immediately. One obtains

3
1 —exp( R, I—ro )

Si ——323 pro
exp Rojro —1

As for the sum Sz in (A2), it is to be evaluated outside
the ferromagnetic core, which is a cube in our approxi-
mation. Then

1 '3 r

$2 ——162 252ro 6 g exp( —2
I n, I Rojro)

lnl l
(R /Rp

exp( —2
I ni I Ro/ro)

'3
(A8)

e erst sum is over the entire length of the crystal and the second one is within the cubic core, After evaluating the
two geometric series, we obtain

1 —[1—exp( —2R, /ro ) ]3
S,= j.28W'a'r,-'

[exp(2Ro/ro ) —1]

This sum is independent of the total number of lattice points, N, in the N ~ ao limit.
For evaluating the lattice-spin cloud carried by the polaron, we also need another lattice sum outside the core:

N —N

S3 —= g J(R;) .

(A9)

(A 10)

With the same assumption about the lattice and the core structure, this sum is equal to
r 3 r 3

S3 ——4~& o +exp( —In, I o I"o) X exp( —I, IRo«o)
I&1 j &R /Rp

(A 1 1)

where the sum in the Srst term is over the entire crystal and the second one is confined within the core. The sum is
evaluated to be

1 —[1—exp( R,Iro)]-
S3=323pro

[exp(R o/ro )—1]
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