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Mean-field soft-spin Potts glass model: Statics and dynamics
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A soft-spin Potts glass model is introduced and solved in the mean-Seld limit. Near the glass-

transition temperature T, both the statics and the dynamics are considered with emphasis on estab-

lishing the connections between the two approaches. For some parameter values of the Hamiltoni-

an, the Potts glass transition is continuous while for others it is discontinuous. For both cases there
is a continuous freezing as T, is approached from above. Connections are made between this work
and previous work on p-spin {p p 2) spin-glass models as well as to lattice Potts glass models.

I. INTRODUCTION

In a recent paper we studied the statics and the dynam-
ics of the mean-field p-spin (p y2) interaction spin-glass
(SG) model. ' The basic motivation was to investigate a
class of models exhibiting spin-glass-like transitions
where the Edwards-Anderson order parameter qEA is
discontinuous at the SG transition temperature T, .'

In this paper we report similar work on a mean-Seld
soft-spin Potts glass (PG} model. The basic motivation
here is as follows. First, we want to establish the generic
nature of the p-spin (p ~2) work for SG models with
discontinuous qEA. For some parameter values we find
that the PG model introduced here undergoes a glass
transition where qEA is continuous at a glass-transition
temperature which we denote by T . For this case the
dynamical theory and the usual static theory give the
same T~ as in the mean-field Ising spin-glass model. The
dynamical theory predicts a continuous slowing down as
T is approached from above. For other parameter
values, we show that the PG model used here undergoes
a glass transition at a temperature T„with qEA discon-
tinuous at T„. However, as T„ is approached from
above the spin autocorrelation function continuously
slows down and freezes at T„. In Ref. 5 T„has been re-
lated to the temperature where nontrivial metastable
solutions to the (TAP) Thouless-Anderson-Palmer equa-
tions for the PG first exist. In non-mean-field models,
the long-time dynamics is then governed by activated
transitions between the difkrent TAP states. In strictly
mean-field models, however, activated transport cannot
take place because there is no distinction between sur-
face and bulk free energies. Thus, transition between the
TAP states involves cooperative motion of all the spins.
As a consequence of this, and the infinite free-energy bar-
riers between distinct TAP states, in the mean-Seld model
T„signals a dynamical transition from ergodic to noner-
godic behavior. In the equilibrium replica-based calcula-
tions given here we give a prescription for obtaining T„

from the static theory. At a lower temperature Tz & T„,
the static theory predicts a true equilibrium transition
with a discontinuous qEA at Tz. At this transition tern-

perature there is no latent heat but the specific heat is
discontinuous. Elsewhere Tz has been interpreted as a
Kauzmann temperature where the configurational entro-

py vanishes. Similar results were found previously for
the p-spin model. ' Second, we will show that the dynam-
ics on the ergodic side as T~Ts+ or T~T~+ is consider-
ably richer than in the usual Sherrington and Kirkpatrick
(SK) model or in the p-spin (p & 2) SG model. We find
that the exponent governing the continuous slowing
down depends explicitly on a coupling constant charac-
terizing the Hamiltonian and is therefore nonuniversal.

The plan of this paper is as follows. In Sec. II we in-
troduce the model and derive the dynamical equations of
motion for the quenched average (over the random bond
interactions) correlation functions. In Sec. III an approx-
imate solution to these equations is presented. For some
parameter values continuous PG transition is obtained
and for others the glass transition is discontinuous. The
asymptotic results seem to be consistent with the results
of a direct numerical integration of the dynamical equa-
tions. In Sec. IV replica methods are used to discuss the
equilibrium PG transitions. Here we also discuss connec-
tions between the static and the dynamic approaches. In
Sec. V a few additional comments are made, and in the
Appendix a lengthy equation used in the text is quoted.

II. THE DYNAMICAL MGDKL

A. The model

(2.la)

The usual lattice mean-field (infinite ranged} p-state PG
Harniltonian is

p —1

H= —g g J;J((b;P; .
Q=1l+J

Here (a,b, c,d, . . .} denote the p —1 spin components,
(i,j ) denote lattice sites, and I JJ I denotes the random in-
teractions which are assumed to be Gaussian distributed,
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&(J;, )=
(JJ) N

2J
(2.1b)

p —1

g e e =p5ti, —1,I /'

a=1
(2.3b)

The N dependence in Eq. (2.1b) is chosen such that a
well-defined thermodynamic limit exists. The P; are the
usual Potts variables' which are chosen from the set of p
vectors Ie'I (!=1,2, . . . ,p), in a (p —1)-dimensional
vector space,

in '0, I &a
p'"X 1, l=a (2.1c)p+1 —Q

1 1)a
P —Q

The static PG theory for the Hamiltonian given by Eq.
(2.1a) is relatively simple to construct. ' However, be-
cause we are mainly interested in the dynamical theory
for the PG transition we consider here a soft-spin gen-
eralization of Eq. (2.1a). Standard field-theoretic
methods can then be used to treat the relaxational dy-
namics of the PG transition. To proceed we first write
down a ((} PG field theory We. require the 4 term to be
random and frustrated according to Eq. (2.1a) and the P
and P terms to have the correct Potts symmetry. The
appropriate field theory is ( —ap &P;& ~ )

I
ea

PH = —P g g J; P;P&+
a=1i &j a=1i =1

g3 p —1

+
3 g g Q.b, kid';Pl

a, b, e, =1i =1

p —1

+ —„a, b, c,d =1i =1 (2.2a)

where p= T ' and the Boltzmann's constant is taken to
be unity. The l'Mid theory given by Eq. (2.2a) may be
viewed as the equivalent lattice representation of the con-
tinuum Lagrangian given by Zia and Wallace. ' This is
only true if the coordination number of the lattice is
infinite, and this makes the field theory inSnite ranged
thus making it amenable to mean-Seld treatment. Note
that the last three terms in Eq. (2.2a) are single-site terms.
Q and T are the Potts coupling constants given by'

y e.'=0.
/=1

It is relevant to point out that the "hard" Hamiltonian
given by Eq. (2.la) cannot be simply recovered by a limit-
ing process from Eq. (2.2a). Specifically, Eq. (2.2a) can-
not be made to coincide with Eq. (2.1a), by an appropri-
ate choice of ro, g3, and T,b,d. This is different from the
usual soft-spin versions of the p-spin interaction SG mod-
els. ' %e therefore expect, and we will show, that the
glass transitions for Eq. (2.2a} are only qualitatively simi-
lar to those for Eq. (2. la). In particular, using the
replica-symmetry-breaking scheme the "hard" model, the
PG transition is discontinuous for p & 4 and continuous
for p &4 (Refs. 8 and 9). Here we find that the dividing
line for continuous and discontinuous transitions depends
both on p and on the coupling constant g3. This, howev-
er, seems to be the only apparent difference between the
glass transitions predicted by the Hamiltonians given by
Eqs. (2.1a) and (2.2a).

B. Dynamical equations

A purely relaxational dynamics is used for 4;(t) and is
assumed to be given by I.angevin equation

5$;(t)
(2.4a)

( p(t)g,'(t') )
&
—— 5;,5„5(t t') . — (2.4b)

Equations (2.4} ensure a correct approach to equilibrium.
In the dynamical calculation the physical quantities of in-
terest are the spin-spin correlation function

C.b(t t') =5„C(t —t')= g—((t;(t—)P,'(t') )
i=1

and the linear response function

G„(t t') =5„G(t —t')—
(2.5a)

Here I 0 is a bare kinetic coeScient, which sets the micro-
scopic time scale, and g(t) is a Gaussian random noise
with zero mean and variance:

/ IQb =g e ebe
/=1

Tabcd u 0~abed +fOFobcd

with

~.b,d= ,'(5.b5,d+5 5bd+-5.d5b }

/ I / IFabed= ~ eaebeced .
/=1

Some identities which will be of use below are

g eaeb =75abI /

l=l

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.3a)

~&y;(t))
e

a~'(t )
'

Here the angular brackets denote an average over g and
the random interactions, and h; is an external magnetic
field. %e have also used that C and 6 are diagonal in the
vector indices a, b. Causality yields the relation,

(2.5b)

G(t) = —8(t)B,C(t), (2.5c)
with 8(t p0}=1and 0(t &0)=0.

To carry out the averaging over the quenched random
interactions we use the dynamical functional integral for-
mulation of De Dominicis' and Janssen et al. ' Since
this procedure is now standard we only quote the results
here. In the %~00 limit, the mean-field equation of
motion for 4);.(co), the Fourier transform of P;(t), aver-.
aged over the random interactions is
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p —1 dMI
P;(c0)=GO{co)[f (co)+h (co)]—Go(co)gi g Q,i f P;(~i)P';(~ —co()

b, c =]
p —1 dQP] dQP2

G—o(co) g T,b,d f z P;(co, )P;'(co&)P;"(co co—i co—i),
(27r)

(2.6a)

with Go(co) a renormalized bare propagator can be derived from Eqs. (2.6), (2.5c), (2.2), and (2.3). In
the ergodic phase we obtain

and

Go '(co}=ra ico—I 0
' —p f dt e'"'G(t},

0 (c0)= C(t =0)
i co—+ ra I (c0)

(3.1b)

and ff (cd) a renormalized noise term

if,'(co)fj (co')) =2n5(co+co')5 J5,b

I 0
00

(2 6c) with the equal-time spin correlation function given by

1C(t =0)=-
fp

=
t ro pC—(t =0)—2p (p 2)g—&C (t =0)

III. APPRQXIMATK SOLUTIQN QF DYNAMICAL
EQUATIONS

In this section an approximate solution to the dynami-
cal equations given by Eq. (2.6} is presented, using the
causal relation given in Eq. (2.5c), and the glass transition
predicted by them is discussed. In the dynamical ap-
proach our goal is to determine T, and characterize the
critical slowing down as T~T, from above. Here T,
denotes either T~ or T„. The behavior for T g T, is most
easily examined using the equilibrium methods discussed
in Sec. IV. It is important to note that unhke the case of
the SK model, ' we are not able to make general state-
ments, valid to all orders in g3, uo, and f0, about the crit-
ical behavior as T~ is approached from above. For the
parameter values corresponding to the continuous PG
transition it will be clear from the results of this section
and Sec. IV that T can be easily determined in general.
For parameter values where there is a discontinuous PG
transition our results are more questionable. In order to
control our approximations we consider here only param-
eter values where the discontinuities at T„are them-
selves a small expansion parameter. The validity of our
approximations are con6rmed in Sec. IV where we make
a connection with the equihbrium theory of the PG tran-
sition. These points and the reliability of the exponents
characterizing the critical slowing down as T~T, will
be discussed further below. Finally, we point out that it
seems likely that one could obtain an exactly solvable PG
Geld theory by constructing a dynamical PG version of
the exactly solvable (( model suggested by Amit and Ro-
ginsky. ' Although we have not pursued this approach
here, it appears that such a theory would be equivalent to
the present approximate theory.

We treat the g3 and T terms in Eq. (2.6a) in the one-
loop approximation. Corrections will be discussed below.
An equation for

C(ca)= f dt e' 'C(t) (Im co&0)

+C(t =0}[uo(p+1)+3fop ]J
' . (3.1c)

I"(~) is a renormalized kinetic coefficient:

I '(c0)=1"0 '+p f dt e'"'C(tj
0

+2p (p —2)g3 f dt e'"'C (t) .
0

(3.1d)

Notice that when p =2 (the Ising limit ), Eq. (3.1) reduces
to those obtained by Sompolinski and Zippelius. ' For
use below we note that in the time domain
P(t)=C(t)/C(0) satisfies the equation

vo '$(t)+$(t)+Xi f dt) p(t —ti )p(ti )
0

+~i f dt~ P (t —ti)P(ti)=0, (3.2a)
0

with (((t =o)=1 ~0 =—rpl 0, and the nonlinear coupling
constants are given by

2=
P' o 0

(3.2b)

Finally, we note that it is important that we consider
C(c0) rather than the Fourier transform of C(t) As dis-.
cussed in the context of the dynamics of the p-spin mod-
el, ' the formulation based on C(co) enables us to take
C(t =0) to be continuous at T„and avoid specifying the
Langevin force correlation function in the nonergodic
phase. This correlation function is determined by the
C(co) and the Iluctuation dissipation theorem. With this
step we also avoid the usual unstable replica-symmetric
(RS) solution. These points are directly related to the
work of Houghton, Jain, and Young' on the Sk spin-
glass model. These ideas were also used in our earlier
work' on the p-spin model with p ~ 2.

The interesting critical properties of the Eq. (3.2a) have
been considered previously by Gotze in a diferent con-
text. ' As a consequence we will be brief in describing
the phase transitions predicted by Eqs. (3.1) and (3.2).
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lim C(t)=qEA ——q-:
f~ oc] ro

(3.3a)

Assuming that C(o]) has a time-persistent part with a
nonzero q and a decaying part, Eqs. (3.1) and (3.2) yield
the equation of state

I e+2p'(p 2)g in-'

tro

iq 2Z'4 —2)gee'
&+ +

ro ro

which can be written using Eq. (3.2b) as

$2q +q (g] —$2)=q(A, ]
—1) .

(3.3b)

(3.3c)

(i) The continuous transition. Since q must be greater
than zero, it is clear from Eq. (3.3c) that for small A2

there is a continuous transition at a critical temperature
given by

(3.4)

An explicit T can then be determined from Eqs. (2.6c)
and (3.1c). Here ]Li, =J /(Ts) and ro, is ro at T . Near
Ts Eq. (3.3c) predicts q-t with t= 1 —T/Ts, so that the
exponent for q is unity as in the SK model. Here we will
not be any more explicit with the coeScient for q since
our equihbrium results (cf. Sec. IV) indicate that replica-
symmetry-breaking (RSB) methods are needed to correct-
ly determine q below T~.

(ii) The discontinuous transition. The PG transition is
continuous until the second term in Eq. (3.3c) becomes
negative. Since A, ] =1 at the continuous transition the re-
quirement is A,2&1 implies a continuous transition while
A,~) 1 implies a discontinuous transition. As mentioned
above, in order to make the theory reliable the strength
of the discontinuity is controlled by letting

A,2 ——1+a, (3.5a)

with e ~ 0 but small. Since we 6nd that the discontinuous
transition occurs before the continuous one we let

k) ——1 —6, (3.5b)

with b ~O. Equations (3.5b) and (3.2b) will lead to an
equation for T„. With Eqs. (3.5), Eq. (3.3c) becomes

A. PG transition (T=T, = T~ or Tz )

We first locate T, for the continuous transition and
then the discontinuous transition. We then determine the
critical properties as T~T,+. First define the Edwards-
Anderson order parameter:

q =—+—(e —4h) ~iy2

2 2
(3.6c)

Therefore, there is a physical nontrivial solution at a crit-
ical temperature given by, here ]M, =J /T„,

Pc
orC

ro
(3.7a)

The Edwards-Anderson order parameter at T„ is given
by

(3.7b)

Finally, we note that Eq. (3.2) gives a continuous freezing
to a nontrivial value of qEA as soon as a physical nontrivi-
al long-time solution to Eq. (3.2) exists. Analytically, this
follows from a local stability analysis of Eq. (3.2) similar
to the one discussed in Ref. 1 for the p-spin interaction
SG model. Below we confirm this fact numerically.

%e conclude this subsection by discussing higher-loop
corrections to Eqs. (3.3). The general theory, as well as
Eq. (3.3), give an equation of state for q as a power series
in q and in terms of coupling constants which in our ap-
proximate theory we have denoted by A,

&
and k2. Since

we are at most considering a weakly discontinuous transi-
tion it follows in general we require an equation of state
of O(q ) only [cf. Eq. (3.3c)]. ' The higher-loop correc-
tions can then only renormalize the coupling constants in

Eq. (3.3c). Since the hard-PG model has sinular SG-like
transitions ' we conclude that these renormalizations do
not remove the transitions predicted by Eq. (3.3c) and
that our approximations are not serious. These observa-
tions also apply to the static theory given in Sec. IV.

A(x)=I ~

2
I (x)=A,z, (3.8)

with j. the gamma function. On the transition line, i.e.,
at T=T, the asymptotic behavior is

S. Dynamics as T~ T,+ =T+ or Tz+

We first present a few analytic results for the critical
behavior as T~T,+ for both the continuous and the
discontinuous transitions. Since the derivation of these
asymptotic results rests on several assumptions, we have
attempted to verify these by a numerical solution of the
integral equation. The numerical results seem to lend
support to the analytical analysis.

(i) Continuous transition. As shown earlier the line
defining this transition in the A] A, z plane is given by
k, =1, 0& A,2 & 1. Following Gotze, ' the neighborhood
of this transition line is conveniently parametrized by a
quantity x, which satis6es the equation 0 & x & 1

(1+e)q —q (e+b, )+qh=O . (3.6a) y(r - )-a /r" -"]", (3.9a)

q —q e+qh=0 .

The relevant nontrivial solution is

(3.6b)

At T„we will find b, =O(e ) and q, =O(e) so that Eq.
(3.6a) is consistently

where A is a positive constant. Note that when A, 2
——0,

x =0, and we recover the results for the SK model. For
A,2~1, x~1 and C(t~ao) decays very slowly. The
zero-frequency kinetic coe5cient, which controls the crit-
ical slowing down, vanishes as the T~+ is approached as
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~

T T
~

(1+x)i(1—x} (3.91}

&, = I [2A(x) —1]/A, (x) I
—ttt(x)/I 1+[1—A(x)]~I

(3.10}

The exponent (1+x )/(1 —x ) increases dramatically as
X2~1. Furthermore, the critical exponent changes as
one moves along the transition line thus yielding a line of
critical points instead of an isolated transition point.

In order to verify the asymptotic results presented
above the integral equation for P(t) [cf. Eq. (3.2)) has
been numerically solved for several values of the coupling
constants k, . For the continuous transition A, z was taken
to be 0.684 (corresponding to x = —,

'
) and the renormal-

ized zero-frequency kinetic coen][cient was determined
numerically for several values of A, In Fig. 1 a plot of I
obtained numerically as well as analytically [see Eq.
(3.91)]as a function of b, A, =(A,„—A, ) is shown. It is clear
that for A,„—A. less than about 0.01, the results of the
asymptotic analysis and that of the numerical solution
coincide. It was also veriSed that the exponent, charac-
terizing the vanishing of I'( T, a=00) depends on the value
of x in a way consistent with Eq. (3.91).

(ii) The discontinuous transition. The dynamics near
the discontinuous transition, de6ned by the equation
A, , =2~A, z

—A, 2 with 1 (A,t & 4, is much more complicat-
ed than the continuous transition. For the discontinuous
transition the coupling constants A, , and A,2 are
parametrized according to

where t =T/T„—1 is a measure of the distance from the
transition line in the Q, &, A,2) plane.

At T= T„, the asymptotic behavior of P(t) can be ob-
tained and is given by

y(r 00 )-q +8/r" (3.12)

with 8 being a positive constant. Note for this transition
P(t ~ aa ) goes to nonzero value q, at T=T„unlike in

the case of the continuous transition. Using a series of
rather complicated arguments, Gotze has argued that the
zero-frequency kinetic coeScient should vanish as
T~r~+ as"

1{T =0}
~

T T— (3.13)

where y is the second solution to the equation

A,(x)=A(y), (3.14)

with 1 ~y ~ 3.
For the discontinuous transition, the numerical solu-

tion sho~s a continuous slowing down as T& is ap-
proached from above. Analysis of the data indicates that
the zero-frequency kinetic coefficient I (T,co=0) goes to
zero algebraically as T~T~+. The precise value of the

nonuniversal exponent does not seem to be in agreement
with that suggested by Gotze. '

and
I&. EQUII ISRIUM DESCRIPTION OF THE PG

TRANSITION

A2 —— —Wt(x)[1 —A(x)]/I 1+[1—A(x)]'[,
A,~(x)

4.2 i

|'
2. I

O

(3.11}
In this section we use equilibrium statistical mechanics

and replica methods to discuss the PG transition for the
Hamiltonian given by Eq. (2.2a). Our main aim is to re-
late the dynamical transitions discussed in Sec. III to
equilibrium transition. In order to make the theory as
exact as possibly we consider parameter values where the
PG transition is continuous or only weakly discontinuous
as in Sec. III. It is then possible to obtain the mean-Seld
free energy in terms of an order-parameter expansion
which can be consistently truncated at low order (at least
near T, ).

The replica trick is used to perform the average over
the quenched randomness. ' The average free energy F
is given by

0.0
0.00 O.Ol

h, x

0.02 PE= lim —(Z"—1) . —1
(4.1a)

FIG. 1. Zero-frequency coe5cient I (T,co=0) for the con-
tinuous transition as a function of hA. ( =A,„—A, ). The parame-
ter vo appearing in the integral equation [cf. Eq. {3.2a}]has been
set to unity. The curve labeled 1 corresponds to the asymptotic
result given by Eq. (3.9b} while curve 2 represents the numeri-

cally obtained values.

Z"= J ff gd P;. exp —g PH( P;)
a=1 a i cx= 1 (4.11)

Here n denotes the number of replicas, bar denotes an
average over the random interactions, and
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Here (a,P, . . . ) denote replica indices and H('P; } is the
replicated Hamiltonian given by Eq. (2.2a) with an addi-

tional rephca superscript o.. By performing the indicated
averages in Eq. (4.1a) the free energy per site for E~ 0o

can be written as

Here max denotes maximum and

—ln I ff dP, exp( H—,ff), (4.2b)

G[C Q]=
4 g g [C:b]'+

4 g g [Q:I']'
a=1 a, b =1 a&Pa, b =1

1=max lim —G[C, Q] .
n~O 7f

(4.2a)
with

a, a

po n p —1 g3 n p —1

H.s=
2 X g 4:4:+

3 g g Q.b, k:C4;
a=1 a =1 a=1 a, b, c=1

n p —1 n p —I n p —I

+
4 & X TobdCC& &u 2 g g C b0 &b 2 & g Qobd

a=1 a, b, c =1 a=1 a, b =1 a&P a, b =1
(4.3)

Here C,b is the single-site equal-time spin correlation function and Q,g is the usual replica order parameter In t.his
paper we search for an isotropic PG phase, and we assume C,b is independent of the replica index

C,b =5,bC,
QaP g QaP

With this and Eq. (4.3) we obtain

n n p —1

G[C Q]= (p —1)C ++(p —1) g [Q P] —ln J gdP, exp —g H ++ g g Q'~P;P~
~wP o;,a a=1 a+P a =1

where 0 is the single-replica Hamiltonian:

(4.4a)

(4.4b}

(4.5a)

p —1 p —1 p —1

H. = ,'(ro uC) -g 0—:0:+ 3 g Q.b Ckbd:+ 4 g T.b.dk:4'b0:0a (4.5b)
a =1 a, b, c =1 a, b, c,d =1

We expand the last term in Eq. (4.5a) in powers of Q . The continuous transition can be characterized by truncating
the expansions to third order in Q ~ while for the discontinuous transition terms up to [Q ~] are needed. The expres-
sion for the free energy when fourth-order terms are included is long and is quoted in the Appendix. Here attention is
focused on the continuous transition and thus expanding 6[C,Q] up to O([Q~]3) yields

2

G[C,Q]= (p —1)C + (p —1) g [Q'~] n ln J—ff dP, exp( H) [Gz—] (p ——1) g [Q ~]
4 a

3 3

6
[G2]'(S —1) X Q'Q"Q" —,2 [G3&'(S —1)V —2) X [Q']'+0(Q')

a~p~yga ~WP

(4 6)

Here H is the single-replica Hamiltonian given by Eq. (4.5b) and

(4.7a)

(4.7b)

where the angular brackets denote a statistical mechanical average with respect to H and the last equalities in Eqs.
(4.7) follow from symmetry. It is worth noting that in the Ising spin glass the last term in Eq. (4.6},namely, [Q ~],
does not exist, and this is the critical difference between the behavior of the models. In what follows we evaluate 63 at
the tree level, and in general it vanishes when p =2, which is the Ising limit.

Using the free energy in Eq. (4.6), we can now discuss the continuous PG transition, find the condition when the tran-
sition is continuous, and compare these results with the dynamical theory presented in Sec. III. Previous work on the
lattice PG (Ref. 4) and on the p-spin (p ~2} SG model' suggests that a replica-symmetric solution with nonzero q
would be unstable everywhere and consequently cannot be used to locate the transition temperature. These studies also
suggest that only one replica-symmetry-breaking ansatz ' is needed to characterize the continuous PG transition. Con-
sequently, the free energy depends only on two PG parameters: q and the break point x. The different replicas overlap
with strength q, or they do not, and the fraction of replicas that overlap is given by y = 1 —x. The parameters q and x
are determined variationally using Eq. (4.6), with q(x) =q8(x —x ), 0 (x & 1. With this Eq. (4.6) becomes
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G[C,Q] C
pn(p —1) 4

1 I
/fdic,

2 2

q (1—p[G2] ) — (G2) (1—x){2—X)q + [G&j p (p —2)(1—x)q +O(q ) .
12

(4.8)

In order to establish a connection between the predic-
tions of the equilibrium and the dynamical theories, we
evaluate 62 to one-loop order and 63 in a tree approxi-
mation:

with A,2 given by Eq. (3.2b). The variational equation for
x yields (recall that by definition 0 &x & 1)

(4.10b)

and

6,= —2gi [62]'

G2
'

ro ——pC—+G2[uo(p+1)+3fop ]

{49 } This in Eq. {4.10a) yieldsq=Oor

—1
1 p,

2(1—A2) P 2
(4.10c)

C(T=Ts)=CO, =G2(T=Ts)= 1

~Oe

(4.9c)

with ro given by Eq. (3.1c}. Near Tr the variational equa-
tion for q yields

r

0= 1 — q+q 2(2 —x —A2) (q=q/ro), (4.10a)
T'

J

(4.9b)

Note that from Eq. (4.9b) and the variational equation for
C, BG/BC=0, it follows that, at Ts,

From these results we conclude the following. (1) There
is a continuous PG transition at Tg given by p =f p, .
This is in accord with the dynamical theory. (2) The na-
ture of the PG transition changes at A, 2

——1. This is also
in agreement with the dynamical theory (3} x&0 for
A,2&0. A nonzero x indicates RSB which is important
here at 0(t = 1 —T/Ts ). For p =2, x =A,2

——0, and we re-
cover the usual SK result where there is no RSB ansatz at
O(t )

12,21

%e next consider the discontinuous PG transition
which occurs at A,2

——1+@, e«1. For this case the
discontinuity at T, is of O(e) and the q terms in Eq.
(4.8) are needed. From Eqs. (Al), (A2), and (A3) the free
energy to O(q ) is given by the maximum of

G[C,Q] C 1
1 + H (1—x ) 2 1u

pn(p —1) 4 p(p —1), 4 r 2
P — 3 — 3 2

2 2g
(1—x )q 2 —x — p (p —2)

3 3

P 0 — —2
3 4 2

„(1—x) x —3X+3—(2—x) p (p —2) +O(q ) .g3 5

8r' r
(4.1 1)

—q [x —3x+3—(2—x)2&2] (4.12a)

ol

q (1+x—x )+q (1—X—e)+bq=O. (4.12b)

At T„X(T= T, }= 1 since the free energies in the
paramagnetic (PM) phase must equal the PQ free energy.
The critical q( =q, ) therefore satisfies

q —eq +hq =0 . (4.12c)

This result is identical to Eq. (3.6b) from the dynamical
theory. The variational equation for x is

1—
q 6 4 8

(4.13)(0&x &1) .

At T,(=T„or Tz, cf. below) the variational equation for
q for e((1 is

0=(1—A, i)q+q (2—X—&2)

With Eqs. (4.12c) and (4.13) we next discuss two dis-
tinct PG transitions. As already noted, Eq. (4.12c) is
identical to Eq. (3.6b). Therefore Eq. (4.12c) first has a
physical solution (q & 0 and real) at a transition tempera-
ture given by Eq. (3.7a) and the critical order parameter
is given by Eq. (3.7b). x(T= T„)=1 so that Epo =FpM
as is required. For the discontinuous transition we have
therefore established a precise connection with the
dynamical theory. %e next note the important fact that
with x =1 and Eqs. (3.7} Eq. (4.13) is not satisfied. Fur-
ther, Eqs. (3.7) in Eq. (4.13) lead to an unphysical nega-
tive value of 1 —x. This situation is identical to that ob-
tained before for the p-spin (p ~2) SG model: The
dynamical transition corresponds to a transition where q
is given by Eq. (4.12c) but where the variational equation
for x is not satisfied and x is Sxed to be at its physical end
point x(T=T„)=1. Several comments are in order
here. First note that Eqs. (4.12) have been obtained by
dividing out a common factor of 1 —x. For x =1 this
step is problematic. Nevertheless, Eq. (4.12c) is identical
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to the equation of state obtained from the dynamical
theory. Physically, x=1 indicates there is no replica
overlap and that the order parameter describing the tran-
sition at T„ is Q which does not appear in Eqs. (4.2).
In Ref. 5 the equation of state given by Eq. (4.12c) is ob-
tained from the TAP approach. There it is also shown
that the transition at T„which is given by the mean-6eld
dynamical theory represents freezing into a therrno-
dynamically metastable state that has an infinite lifetime
in mean-field theory. Here we have shown that T„can
also be obtained from usual equihbrium theory with some
caveats. This point is discussed in more detail else-
where.

The true equilibrium PG transition occurs when both
Eqs. (4.12c) and (4.13) are first satisfied. Denoting the
critical parameters for this transition by primes and this
equilibrium transition temperature by Tz one obtains

I
2&or ' =1-

K 0~

(4.14a)

(4.14b)

Note that T„&Tx and q, gq,' as for the p-spin (p &2)
SG model. The free energy for T ~ Tx is

PF C2

&p,(p- 1) 4 PP
2 3+' ",' (4.15)

6r
with 1 x-t '=1——T/Tx. As in the usual SG transi-
tions Epo & FPM. From Eq. (4.15), it follows that there is
no latent heat at Tx and that the specific heat is discon-
tinuous at Tz. In Ref. 5 Tz is interpreted as a
Kauzmann temperature where a con6gurational entropy
vanishes.

In Ref. 1 a more complete discussion on the nature of
these types of transitions for the p-spin interaction SG
model has been given. The same comments also apply
here. Finally, we remark that a complete replica-stability
analysis proves that the PG phases considered here are
locally stable for T not too far from T, .

V. MSCUSSION

%e conclude this paper with the following remarks.
(1}Here we have gone to some length to establish the

connections between the dynamical approach and the
static approach. %'e have also been careful to treat only
weakly discontinuous transitions where we have some
control on our perturbative results. These two points are
important. It is easy to de6ne a 6eld theory, do a one-

loop approximation, and conclude from the dynamical
approach that freezing takes place. However, it is also
easy to construct 6eld theories where such a conclusion is
wrong. For example, in Sec. III if we set p=0 then we
would still predict a (strongly) discontinuous freezing at a
critical value of A, z. However, the exact field theory is
then a noncritical regular single-site Potts model which
clearly does not undergo any phase transition. This point
has been raised before by Siggia in a diferent context.

A legitimate theory for both the spin-glass problem
and the structural glass problem should be able to treat
the dynamical and equilibrium properties on equal foot-
ing. "' Even in the case of a kinetic-glass transition,
where the system gets stuck in a very long-lived metasta-
ble state, we believe that this state should be describable
by a static theory (at least in the sense of analytic con-
tinuation).

(2} In general it is known that in the PG model there
are additional transitions at lower temperatures. It
would be interesting to physically interpret these addi-
tional transitions. In many glasses, i.e., structural
glasses ' ' and it has been suggested for KBr-KCN
mixed crystals 2s there are multiple transitions which are
due to the freezing of difFerent degrees of freedom.

(3) It is interesting to note that the Parisi-type solu-
tions ' of the PG as well as the p-spin (p & 2) SG model is
considerably simplier than the corresponding solution of
the SK model. " Because of this simpli5cation it should
be easy to calculate2z 6uctuation eFects around the upper
critical dimension" (d=6, and for some quantities d=8)
in the ordered phase of the PG. For these models it
should be possible to explicitly determine whether or not
a Parisi-type solution can exist for lower dimensions.

For the case of a continuous PG transition a
renormalization-group calculation for the dynamical
theory would also be of interest. It is possible that
below some dimension fluctuations tend to make the
dynamical exponents in Sec. III universal. 30 It has al-
ready been argued that the nonuniversal dividing line
between continuous and discontinuous PG transitions be-
comes universal below six dimensions.
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APPENDIX

In this appendix we quote some results which are used

in the text. With one RSB ansatz and to 0(q ) the free

energy is given by Eq. (4.2a) with
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——(1—X )(2—X )(LLbq )~Gz g [G„b,] ——(1 —x )(2—x )(pq ) G z g G4„bb8 g c 8

+ (1—x)(2—x)(3—x)(pq) Gz(p —1)[1+4(p—1)]+ (1—x) (pq) Gz(p —1) +O(q') .
32 2 32

Here Gz and Gz,b, are given by Eqs. (4.7) and G4 b a =Gz(&ob& a+& &ha+& a&b } . (A3)

(A2)

To obtain Eq. (4.11)we have used Eqs. (4.9a), (4.9b), and

It is straightforward to estabIish that the tree corrections
to Eq. (A3) do not aff'ect our results if T is near T„and to
O(e).
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