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It is shown that the kinetic exchange Hamiltonian for a partially 61led narrow band contains a
term responsible for hopping of neighboring pairs of electrons in the singlet spin state. In this
way we introduce explicitly the dynamics of the resonant valence bond into the formalism describ-
ing the exchange-mediated high-T, superconductivity. The role of the magnitude of the intra-
atomic Coulomb interaction on the onset of superconducting phase is also discussed.

The purpose of this paper is twofold: first, to extend the
recent works' 3 on real-space pairing of electrons by in-
corporating the processes of hopping of these pairs of elec-
trons located on neighboring sites and in the singlet spin
state into the formahsm of exchange-mediated supercon-
ductivity, This extension follows naturally from our ear-
lier work~ s on the generalization of the kinetic exchange
Hamiltonian due to Anderson7 to the case of a partially
filled band; second, to discuss the effect of electron corre-
lations combined with the kinetic exchange on the onset of
a superconducting phase near the Mott transition to the
insulating phase. In this way we can supplement the mag-
netic phase diagram for the correlated system proposed re-
centlys with the stability conditions for the superconduct-
ing phase.

In the case of a half-filled band the kinetic exchange
formalism leads to the effective Heisenberg Hamiltonian
with antiferromagnetic7 or frustrated9'0 types of equilib-
rium states, depending on the type of lattice and the range
of the interaction. In the case of a less- or more-filled

I

band the situation is not so simple because the virtual hop-
ping processes responsible for the antiferromagnetism
compete with the real hopping processes which may mix
the magnetic sublattices. Those hopping processes are of
two types: the single-particle hopping and the hopping of
pairs of electrons in the singlet spin state, each of them lo-
cated on a different site. All these processes are depicted
schematically in Figs. 1(a)-1(c).

To incorporate those processes in a systematic way we
proceed in the same way as in Ref. 4. This means we
divide the full Hilbert space of the electron states forming
a strongly correlated narrow band into two subspaces: the
lower with no doubly occupied site configurations and the
upper containing the remaining states. This projection
reflects the Hubbard subband structure" for strongly
correlated systems and can be represented by the project-
ed effective Hamiltonians PiHPi and P2HP2, for the
lower and upper subbands, respectively. Their explicit
forms are as follows:
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In these expressions t;t is the hopping integral for the
neighbors i and j, and U is the magnitude of intra-atomic
interaction. We discuss first the part (1) representing the
lowest Mott-Hubbard subband. It is the only relevant
part in the limit of strong correlations U)& U, =8 i ei (e is
the bare band energy per particle) and for the band filling
n ~ 1. The Hamiltonian (1) can be written in a different
form if we introduce the single-particle and the two-
particle operators

FIG. 1. Various hopping processes in narrow-band systems in

partial band Sling case. vie= birdie ni~(1
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b~jt: (b'tb ji b;tibgj )I

1
b;, = (b;ibjt —b;tb, ~) .

The operator b;t creates the electron in a single-particle
state on site i and with spin (r provided there is no electron
with opposite spin on this site. The operator b(j creates a
pair of electrons: one on site i and one on site j, in the
singlet spin state. The uantities fb;t} and fb; } replace
the fermion creation ja; and annihilation fa; }operators
in the limit of strong correlations. Using (3) and (4)
the Hamiltonian (1) can be rewritten as

PIHPl gtrjb(~gj -$(2r(jrjk/U)b jtbkj . (5)

To interpret it more explicitly we assume that r,j t&0
only for nearest-neighboring (NN) pairs (ij). Then

2I 2(
PIHPI Igb(~P& gb(tjb(j $ b(tjbjk, (6)

U &ji U
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where j(k,i) means the site j is NN of both k and i, iek.
The first term represents the hopping of electrons between
singly occupied and empty sites, the second supplies the
binding energy for the NN singlet pairs, and the third the
hopping of those pairs, as illustrated in Fig. 1(c). Thus
the last term provides a translational motion of the singlet
pairs (a "resonant" character of the pair bond). This type
of process takes place only if there is at least one unoccu-
pied site as a NN of one of the sites on which the singlet
pair is located. Hence, it takes place for strongly correlat-
ed electrons only for the non-half-filled case. The Hamil-
tonian (5) generalizes that of Baskaran, Zou, and Ander-
son 3 as well as puts their considerations on a more formal
gl'Oulld.

The operators }b; } and fb(t} possess nonfermion an-
I

ticommutation relations, while the operators (b;j} and
fb;jt} posses nonboson commutation relations. This is one
of the reasons why an exact solution of the Hamiltonian
(6) has not been achieved as yet. Therefore, to make the
problem tractable at this point one replaces2 I s the opera-
tors in (6) by the fermion operators fa( } and ta;t} and re-
normalizes the parameters I and II/O in such a way that
they reflect the restriction on hoppings (single particle as
well as that of pairs) imposed by the removal of the dou-
bly occupied site configurations from the physical space.
This type of treatment follows naturally from the
Gutzwiller variational approach, '2 as well as from oth-
ers. Is'4 In effect, the Hamiltonian (6) is approximated
by

PIHPl I@g a;~~j-
&iJ'&e

E2
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where now l'5

g2 e(I —e) g b,tjb,k,
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and 4 describes the degree of itineracy of electron on a
macroscopic scale I2'I [it reduces to @ (1 —n)/
(1 n/2) -in the limit U/W»1; $V is the bare band
width). Analogously, one can says that (1-4) describes
the probability that a particle is localized on a macroscop-
ic scale; hence the factor (1-4) before the exchange
part.

We have argueds that one can generalize the effective
Hamiltonian (7) to a more general situation, including the
metallic phase near the metal-insulator (Mott) transition,
by including the part P2HP2 and neglecting irrelevant's
terms in (2). Hence, one obtains the effective Hamiltoni-

2I 2EH

ting

a(~j +Uri — (I -e()gb(jtb(j — @(I-4) g b~jtb k,
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(9)

where the explicit expression for the band-narrowing fac-
tor 4 for arbitrary n and U/$V has been given in Ref. 13.
The factor 4 contains renormalization in single-site ap-
proximation. H depends parametricaiiy on the two-
particle correlation function rj &n;tn;~& which is deter-
mined variationally within the approach equivalent to that
of Brinkman and Rice'3 for n I and in the paramagnetic
phase. In the strong correlation limit U) U„ i.e., for
rj 0, our effective Hamiltonian reduces with minor
corrections' to that discussed earlier. 23 However, since
(9) 18 valid also fol' U U~ olle call study all evolutloll of
the superconducting phase from the situation correspond-
ing to nearly localized Fermi liquid to the limit of strongly
correlated electrons U» U, .

In treatment of Hamiltonians (7) (Refs. 2 and 3) or (9)
(Ref. 8) one makes two further assumptions: First, one
assumes that either the band energy part in (7) or the first

two terms in (9) combined together are much larger than
the remaining two. This is because the Hartree-Fock ap-
proximation we are going to make is valid only if either
e]8) (for U~U, ) or [ee+Ug) (for U~U, ) ls sub-
stantially larger than the second-order contribution.
Furthermore, one approximates the second-order terms by
their Hartree-Fock expressions and takes the Hamiltonian
H —j(jlj', to preserve the total number N, of electrons in
the system.

On adopting the Hartree-Fock approximation to (9)
one uses the expressions

b jtb j btj(b J &+(b(~j)b J —(b~tj)(b~j)
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bjt,b I, =b,t &b k)+ &b~$)b;k —
&b,$)&bg, ) . (»)

The nonzero averages of &S;) and &b;Jt) point to the pos-
sibility of a coexistence of antiferromagnetism and super-
conductivity. Here, for the sake of simplicity of our argu-
ment we assume that &S;) 0 if &b;tj)e0. For the same
reason we neglect also the renormalization of NN hop-
ping.

Thus, after taking the space Fourier transform to the
reciprocal (k) space we have that

H gf@(q)sq-p]nq +Uii
ke

Jo—g(dkgQg~ict t-Lt+digcl -gQgt —
I &b) I ),

k

where bg-=J2~&b), &b) &b; ) for NN pairs,
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This equation must be supplemented with the equation for
the chemical potential. To illustrate the results we consid-
er with some the case n 1 with a symmetric form of bare
density of states, po(a) p ( —s). Then, we have for all

p 0 temperatures as well as a gapless spectrum

~k (Jo/W) I ai I
- (Jo/» I )'i: I

and Eq. (15) leads to the following condition for the tran-
sition temperature:

W2@
I

iv/2
po(s) stanh ds .

8JO 8 c

This equation has been solved numerically for the density
of states p (a) 1/W for IsI & W/2, and the result is
plotted in Fig. 2. The equilibrium value of rl was deter-
mined minimizing the expression for the free-energy func-
tional. From Fig. 2 it follows that as U U„T, evolves
continuously to the limiting value kgT, /W=0. 01, related
to the mean-field value of the Neel temperature for the
Mott insulator, kaTIv/W r z/UN~=0 03 by the .factor

However, the energy of the correlated normal phase

yg-(1/z) +exp[i'k (R, —R;)],
J(E)

is the structure factor, ~=zryg, z is the number of nearest
neighbors, and

Jo=- z(1 —4)[1+(z—1)e] .
2r

U

The last factor in (14) is due to hopping of the pairs. We
see that (12) reduces to the Hamiltonian of Cyrot2 and
Baskaranetal 3in the. limit'7rl 0(U&U, ).

The Hamiltonian (12) can be diagonalized by standard
Bogolyubov transformation: One obtains quasiparticles
with energies

Ei- [(~~—u) '+ (Jo I &L I ) '] '",
where p is the Fermi energy. Hence, the self-consistent
equation for the s-wave gap parameter d,g is
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FIG. 2. The superconducting critical temperature as a func-
tion of electron-electron interaction U/W near the Mott transi-
tion. The band-narrowing factor at T 0 has been dragon for
comparison.

[@(rlo)a+Urto] becomes very rapidly of the same magni-
tude as kaT„so that the Hartree-Fock approximation
may not be appropriate for either U/ W» 1.95 or n close
to unity. For T 0 Eq. (16) has the solution

~(0)=J,KZ&b)-2IsI [(J/4a)' —e$]''
where 4o (1-p/p, ) . Hence, close to the Mott locali-
zation we have that 26(0)/kg T, 6.

The antiferromagnetic phase is the stable phase for
U/W~ 2 and the density of states chosen. s This means
that in order to get a stable superconducting phase one
must indeed have the situation with n & 1, since then the
magnetic phase disappears quite rapidly. 6

The main physical conclusions coming from our work
for n & 1 and U & U, are similar to those of Refs. 1-3.
Furthermore, we can make the following prediction which
may help in establishing the nature of electronic states in
(La,Sr)2Cu04 s systems. Namely, if they can be regard-
ed as those on the insulating side of the Mott transition
(U & U, ), then the value of T, should increase with pres-
sure. For the systems with U & U, the opposite should be
true. This is because for U& U, we increase the overlap
of atomic orbitals and enhance the virtual hopping pro-
cesses (increase Jo). On the other hand, for U & U, (i.e.,

on the metallic side of the Mott transition) the net effect
of two processes [cf. Eq. (14)] is a decrease of T, (cf. Fig.
2).

An increase of T, with pressure was observed in both
La-Ba-Cu-0 (Ref. 18) and Y-Ba-Cu-0 (Ref. 19) com-
pounds (it is much larger in the former case).

Summarizing, I have shown that the models of ex-
change-mediated superconductivity' should contain the
term responsible for the hopping of NN pairs. There are
two types of such processes: with and without spin-Aip ex-
change. They favor superconducting states at the expense
of an antiferromagnetic phase for n & l. I have also sug-
gested how to extend the theory to study the onset of su-
perconductivity on the metallic side of the Mott transi-
tion.
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