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Microscopic models are presented to elucidate the concept of interfacial charge-spin coupling.
At the interface between a ferromagnet and a paramagnet, the spin subbands are loosely coupled, an
interfacial conductance may be defined for each, and a result of their inequivalence is that an elec-
tric current flowing from a ferromagnetic metal into a paramagnetic metal will be partially spin po-
larized, i.e., will have an associated current of magnetization. The inverse is also true; nonequilibri-
um magnetization present in a paramagnetic metal can be detected as an open circuit voltage across
an interface between the paramagnet and a ferromagnet. Using this effect, a new technique to mea-
sure conduction electron relaxation times is described.

I. INTRODUCTION

The purpose of this paper is to introduce a new con-
cept. In the following paper we describe details of an ex-
periment that demonstrates its viability while providing a
new technique to measure the conduction electron-spin
relaxation time 7',. The concept can be described in the
following way. Historically, investigators have always re-
lated an electric current to a gradient (within bulk metal)
of electric potential and, more generally, to a gradient in
temperature. At an interface between two metals, the
electric current is related to differences, across the inter-
face, of the voltage and temperature. Similarly, they
have always related a current of magnetization to a gra-
dient (in the bulk) or difference (at an interface) of none-
quilibrium magnetization. We propose, and our spin in-
jection experiment1 demonstrates, that in fact there exists
a coupling between charge and spin, which implies the
following at an interface between ferromagnetic and
paramagnetic metals: a current of magnetization will ex-
ist in proportion to the voltage difference across the inter-
face; and an electric current will be related to a difference
in magnetization potential? —H*=(M /X)—H, across
the interface. In slightly different words, an electric
current that is driven, by a difference in voltage, into the
paramagnet from the ferromagnet will have associated
with it a current of nonequilibrium magnetization that is
driven into the paramagnet. By the same token, when
nonequilibrium magnetization is induced in the paramag-
net, the difference in magnetization potential at the inter-
face with a ferromagnet results in an associated electric
current (or a difference in voltage, if there is no external
circuit connecting the ferromagnet to the paramagnet, or
if they are connected by a high impedance voltmeter)
across the interface. Although electronic-spin injection
into metals has already been introduced,>* the general-
ized idea of a coupling between charge and spin at an in-
terface is a new concept; it has not been considered in
previous treatments of magnetization transport.

Torrey® pioneered the study of the diffusion of none-
quilibrium magnetization under the influence of an ap-
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plied magnetic field gradient, using the particular system
of a fluid of nuclear spins (of spin §). He showed that a

current of nonequilibrium magnetization is given by
Jy=—DV(M—-My)=—-DVM , (1)

where D is the coefficient of self-diffusion, M is the mag-
netization (magnetic moment per unit volume), My=XH
is the equilibrium magnetization (which is proportional
to the applied field H), X is the volume susceptibility, and
8M is the nonequilibrium magnetization. These ideas
pertained to the flow of nonequilibrium magnetization in
a continuous material.

Flesner, Fredkin, and Schultz,® and Magno and Pifer’
have studied bimetal systems by electron-spin resonance
(ESR) and transmission electron-spin resonance (TESR),
with the goal of analyzing interfacial electronic charge
and spin transmission. The former authors proposed
general boundary conditions for transverse magnetization
at the interface between two paramagnetic (at least not
ferromagnetic) metals, metal i =1,2. Within the bulk, on
either side of the interface, there is, from Eq. (1), a
current of magnetization (J,,); = —DV8M;. A difference
of 8M /X (where X is the static susceptibility) across the
interface
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will contribute to a current of magnetization across the
interface. There may also be relaxation processes at the
interface which destroy magnetization (a sink of magneti-
zation) so that the net magnetization current in the bulk
may be different on each side of the interface. Flesner
et al. choose phenomenological coefficients b;; to relate
(Jpr); to (6M /X);, and demand conservation of magnetic
current (including the effect of sinks at the interface) to
arrive at boundary equations for the interface:
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where for metal i, 8M; is the nonequilibrium magnetiza-
tion 8M;=g;BAn;/2, y is the gyromagnetic ratio
Y =gB/#, B is the Bohr magneton, g is the g factor (spec-
troscopic splitting factor), and An; is the number density
of nonequilibrium spins. In describing the general case
where nonequilibrium magnetization is an oscillating
function of time, the b; could be complex. In their
analysis, Flesner et al. take the b;; to be real, and require
b, =b,; by detailed balance.

The coefficients b;; are not simply related to transmis-
sion or reflection probabilities. One may gain a little bit
of insight into their meaning by the examination of limit-
ing cases. When b,=0 there is no spin-spin coupling
across the interface, and the interface acts like a sink of
magnetization. The surface relaxation rates are described
by b,, and b,, for the respective sides of the interface.
The relaxation rate is measured (from the increased
linewidth, the procedure is briefly described in a coming
section) by reflection electron-spin resonance from both
sides of the bimetal sample. If |b, | is large (b, may
include both direct and indirect spin transfer; in the
former case, a spin is physically transported from one
side to the other, in the latter case a torque is applied be-
tween spins across the interface), magnetization may be
transmitted across the interface. This is called the strong
coupling limit, and one can only deduce an overall inter-
face relaxation parameter R =b, +b,,+2b,,. This is
measured (from the line shape and a computer fit) by
transmission electron-spin resonance through the bimetal
sample; a broadened TESR line is observed at the average
g value of the two metals.?

Prior to the work presented in this article (excepting
Aronov’s proposal), the transport of charge and the
transport of magnetization across a bimetal interface
have always been treated independently; an electric
current is driven by a difference in voltage, and a current
of magnetization is driven by a difference in nonequilibri-
um magnetization at the interface. The concepts present-
ed herein assert, and the spin injection experiment de-
scribed in the following paper demonstrates, that these
transport processes are not independent. Rather, a
difference in voltage at a ferromagnetic-paramagnetic in-
terface will drive a magnetization current, and a
difference in magnetization potential will drive an electric
current. Charge and spin are coupled at the interface,
cross terms must be included in describing the transport
processes, and thus Egs. (2) need to be generalized to in-
clude a term proportional to the electric potential
difference across the interface. Similarly, the electric
current density must contain a term proportional to the
difference across the interface of the magnetization po-
tential. The bulk transport equations [Eq. (1) and Ohm’s
Law] need to be generalized, as well, to include terms
proportional to an electric field and 8M /X. In a bulk fer-
romagnet this term may be large. In a bulk paramagnet
it is negligible. At the interface of a paramagnet with a
ferromagnet, it is equally important as the other terms in
Egs. (2).

Aronov was the first to suggest, in Ref. 3, that spins
could be driven into a bulk metal at a ferromagnetic-
paramagnetic interface. Tedrow and Meservey had ear-
lier demonstrated that spins can be injected into the
quasiparticle states of a superconducting film.*%°
Silsbee!! extended the idea of charge-spin coupling, and
proposed that a nonequilibrium magnetization in a
paramagnet will result in an associated voltage step
across the interface with a ferromagnet. This proposal
motivated the spin injection experiment. In another arti-
cle,? the authors have used the formalism of nonequilibri-
um thermodynamics to identify the magnetization poten-
tial as the thermodynamic variable associated with the
flow of nonequilibrium magnetization, and developed the
linear dynamic equations of motion for a system of parti-
cles that carry charge, kinetic energy, and magnetic mo-
ment under the influence of differences (or gradients) of
voltage, temperature, and magnetization potential. The
relevance of charge-spin coupling to bulk transport pro-
cesses is developed in that publication. In this paper mi-
croscopic models will be used to elucidate the idea of a
coupling between electronic charge and spin at
ferromagnetic-paramagnetic interface (“interfaces” are
taken to be of limited conductance; further remarks are
found in the subsequent article). We will see that one can
“tag” electrons with a magnetic moment and detect the
tagged particles at other positions in the material. Using
this concept we have created a new nonresonance tech-
nique, which is described in Sec. III, to measure conduc-
tion electron T,’s in zero field. In Appendix A some of
the ideas used in discussing interfacial transport are for-
mally developed. Appendix B contains a solution to the
Bloch equations with a diffusion term. In the following
article we offer details of the spin injection experiment:
we describe the cryostat and samples, present and analyze
typical data, and discuss the results within the framework
of concepts developed herein.

II. THE CONCEPT

In this section we will first investigate how spins can be
injected from a ferromagnet into a paramagnet. Next we
examine how the injected nonequilibrium spins behave
within the paramagnet. Finally, we will see what hap-
pens when the nonequilibrium spins in the paramagnet
are in interfacial contact with a second ferromagnet. The
geometry of a pedagogical model is depicted in Fig. 1. In
the middle is a slab of bulk paramagnetic metal of thick-
ness L. On either side, a thin ferromagnetic film, each a
single domain whose axis of magnetization is confined to
lie in the plane but may be chosen in any direction in that
plane, is in interfacial contact with the paramagnet. We
choose the axis of magnetization of the left film to point
up. When a switch is closed, a battery drives a current
through the film into the bar. On the right, we may
choose an impedance Z to connect the second film to the
bottom of the slab via an external circuit.

A. Injection

Consider the interface between the left ferromagnetic
film and the paramagnetic metal. Figure 2(a) represents
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an overidealized Stoner ferromagnet, on the left, in equi-
librium with a free electron paramagnet on the right be-
fore the switch is closed. Now apply an electric potential
V, across the interface to drive a current from left to
right [refer to Fig. 3(a)]. Aronov proposed that if the
Fermi surface in the ferromagnet lies entirely within one
spin subband, then the current would be carried entirely
by electrons of that spin orientation. Magnetization
would be injected into the paramagnet at a rate propor-
tional to the electric current. Associated with the
transfer across the interface of each electric charge e is
the transport of a magnetization S, where B is the Bohr
magneton. The injected magnetization current!? J,, asso-
ciated with the electric current J, is trivially argued to be
the number current of carriers, J, /e, multiplied by the
magnetic moment 3 that each carries:

=L 3)
e
For a real ferromagnet the Fermi surface will contain
both spin subbands, but in a substantial imbalance [Fig.
2(b)]. The reduced efficiency of magnetization injection is
described by a dimensionless phenomenological
coefficient 7 < 1,

(1 z

N

FIG. 1. An illustration to demonstrate charge-spin coupling
at the interface between a ferromagnet and a paramagnet. A
ferromagnetic film is on each side of a thin slab of bulk
paramagnetic metal. The films are taken to be single domains
and the magnetization lies in the plane of the films. In most of
the discussion the films are aligned (¢ =0°). A current is driven
through the left ferromagnetic film into a bulk paramagnet of
thickness L less than §;. Some fraction of the injected electrons
are spin polarized. In the paramagnet, the electrons diffuse ran-
domly and lose spin memory in a time T,. A nonequilibrium
magnetization 8M results in the paramagnet. If Z is a low im-
pedance ammeter, a current will flow through Z that is propor-
tional to 8M. If Z is a high impedance voltmeter, it will mea-
sure a voltage that is proportional to 8 M.
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Iy = —’?eﬁje , (4)

If the spin subbands are weakly coupled to each other,
and spin relaxation at the interface is neglected, an inter-
facial conductance per unit are, gg;;‘v", may be defined (an
expression is developed in Appendix A) for each. The pa-
rameter 77 may then be defined in terms of sums and
differences of g 4,4y, and g,,. This follows directly from a
calculation of the magnetization injected from a nonideal
ferromagnet into a paramagnet for the simple case of a
Stoner ferromagnet with subband imbalance and for a
paramagnet whose band structure is free-electron like. It
will help to refer to Fig. 3(e). In this figure a voltage is
applied across the interface of a nonideal ferromagnetic
film and a paramagnetic metal, and the paramagnet with
nonequilibrium magnetization is in interfacial contact
with a second nonideal ferromagnet [Fig. 3(0)]. Current
can flow between the “up” subbands of the paramagnet
and ferromagnet, and between the “down” subbands of
the two materials. In Fig. 3(e) current flows from the
up-spin subband of the ferromagnet to the up-spin sub-
band of the paramagnet (the dotted line above Ef,, ;)
and charge neutrality requires an equivalent loss from the
down-spin subband (the dotted line below Ef., souwn)-
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FIG. 2. (a) The density of states of the 3d band of an ideal-
ized Stoner model transition-metal ferromagnet (on the left) in
equilibrium with the free-electron density of states of a (Pauli)
paramagnetic metal. (b) The Fermi surface of a nonideal Stoner
ferromagnet will contain both spin subbands, but in a substan-
tial imbalance.
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FIG. 3. An ideal Stoner ferromagnet is in interfacial contact with a paramagnet of thickness less than §;. The back surface of the
latter is in interfacial contact with a second ideal ferromagnet (see also the pedagogical model of Fig. 1). (a) A voltage — ¥V, is applied
across the interface to drive a current into the paramagnet. (b) Associated with the current is a current of magnetization, and a non-
equilibrium magnetization results in the paramagnet, 8M =pBAn. (c) If the film and paramagnet are externally connected by a low im-
pedance wire, an electric current will flow across the second interface in proportion to 8M. (d) If they are externally connected
through a high impedance circuit, then the Fermi surface of the second ferromagnet will align with the nonequilibrium spins in the
paramagnet. (e) An injector junction with a nonideal ferromagnet. The subbands are in substantial imbalance, and are weakly cou-
pled so that an interfacial conductance for each subband may be defined. Current flows from the down- (up-) spin subband of the fer-
romagnet to the down- (up-) spin subband of the paramagnet, and charge neutrality requires an equivalent loss from the up- (down-)
spin subband. (f) A detector junction with a nonideal ferromagnet. If an external circuit connects the two metals with a low im-
pedance ammeter, currents will flow across the interface between down-spin subbands (right to left) and up-spin subbands (left to
right ). If a large impedance voltmeter is placed in the external circuit, the Fermi level of the ferromagnet will be raised an amount

eV,, calculated in the text.

There is also current flow from the down-spin subband of
the ferromagnet to the down-spin subband of the
paramagnet resulting in the down-spin subband chemical
potential E,, 4,4, Again, charge neutrality requires an
equivalent loss from the up-spin subband, and the up-spin
subband chemical potential Ef,, ,, is the result.

In Appendix A we derive the following expression for
the interfacial conductance per unit area g, for current
from the subband s (where s is up or down) of the fer-
romagnet into the paramagnet [Eq. (A9)]:

2
8= INER (0, X)), o

where N (Eg) is the density of states at the Fermi sur-
face, (v, ) is an (angular) average of the component of
Fermi velocity perpendicular to the interface [defined in
Eq. (A7), (t) is a probability that an electron is
transmitted from the ferromagnet, across the interface,
and into the paramagnet [defined in Eq. (A8)], and these
three quantities are evaluated in the ferromagnet (i.e.,
i=f). One could follow an analogous argument to solve

for the conductance for current from the paramagnet
into the ferromagnet. The result would be Eq. (5), where
now the quantities in the square brackets are evaluated in
the paramagnet. In other words, detailed balance re-
quires

[N(EF)<vx)<t>]p,s=[N(EF)<vx>(t>]f,s . (6)

If the ferromagnet were ideal [Fig. 3(a)], then g4, =0.
For a nonideal ferromagnet, g ,,58 gown-

Assuming that relaxation within the spin subbands
(characterized roughly by an inelastic resistivity scatter-
ing time) is rapid compared with relaxation between sub-
bands (the spin relaxation time), separate “quasi Fermi
levels” may be usefully defined for each of the spin sub-
bands. Let Ep.; be the Fermi energy of the subband s
(up or down) of the material i (f or p). For the injector
[Fig. 3(e)], suppose a voltage — ¥V, is applied across the
interface. Assuming rapid spin relaxation within the fer-
romagnet, the magnetization in the ferromagnet remains
in equilibrium,
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EF;f,uszF;f,dowan[-‘;p +eVy , (7

where Ef,, is the average Fermi level of the two sub-
bands in the paramagnet, and for a negative voltage the
chemical potential in the ferromagnet is raised by
(—e)(—V,) relative to that in the paramagnet. Then the
electric current from the ferromagnet to the paramagnet
is

1
J, = ‘e‘[gup(EF;vaP_Ef,p )+gd0Wn(EF;f,dow“"‘Ep;p )]

:(gup +gdown)V . (®)

The magnetic current from the ferromagnet to the
paramagnet is

JM = %[gup(EF;f,up—EF;p )_gdown(EF;f,down_EF;p )]

=—€'(gup-gdown)V . O
The ratio of J,, to J, is
JM :gup_gdown "B”E"IE , (10)
Je gup+gdown e €

which defines 7,'® under the assumption of no interfacial
spin relaxation, by comparison with Eq. (4). Notice that
if either g,, or g4own—0 (Which implies an ideal fer-
romagnet), then |7 | —1, and we have the result of Eq.
(3).

We can generalize this somewhat, and allow the fer-
romagnet to have more than one band b at the Fermi sur-
face. Then let the parameter 7, describe the transport of
spin polarized current from band b of the ferromagnet
across the interface and into the paramagnet. We define
1, as the ratio, for band b, of the difference between two
interfacial current contributions (that with carriers whose
magnetic moments are aligned with the direction M of
equilibrium magnetization in the ferromagnetic film, and
that whose carriers are antialigned with ) to the total
interfacial current contribution of band b:

ny= Jb,up_Jb,down
b— = .
Je,b gb,up+gb,down

gb,up"’gb,down

(1

The total interfacial current is
Je = E Je,b ’
b

and the parameter 7 for the total interfacial magnetiza-
tion transport associated with electric current J, is

J
=3, ;’b - (12)
b e

Note that if several bands contribute to the interfacial
current transport, one band may be highly polarized
(734 =1, for example), but the net magnetization trans-
port may be small (<<1) if J, 35/J, <<1 and the other
band(s) is (are) weakly polarized.

Tedrow and Meservey®!® have demonstrated spin in-
jection by using a dc tunneling conductance method. The
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quasiparticle density of states of thin films of metals with
small spin-orbit interaction is Zeeman split by magnetic
fields. In high fields this splitting can be resolved by a
tunneling conductance measurement. If the other elec-
trode is a ferromagnet, the imbalance of spin subbands
will cause a preferential tunneling into the spin up (or
spin down) quasiparticle states. One can deconvolve the
asymmetry of the tunneling conductance characteristic to
deduce the spin polarized current parameter “7.” Meser-
vey et al.* measured values of 7 from 0.1 to 0.5 for iron-
nickel alloys for the tunneling process. Their results indi-
cated that the injected magnetization was from the ma-
jority band, i.e., parallel to the ferromagnetic magnetiza-
tion. In comparing different experiments, each purport-
ing to measure 17}, one must recognize that there may be
different mechanisms dominating the interfacial conduc-
tance. Remarks concerning a comparison of our results
with those of Meservey et al. will be found in the follow-
ing article.

B. Transport

Let us now turn our attention to a description of the
behavior of the nonequilibrium spins that have been in-
jected into the paramagnet. Figure 3 represents a
steady-state process wherein a magnetic current is driven
from a ferromagnet into a paramagnet. In Fig. 3(a) a po-
tential — ¥V, is applied across the interface, only the elec-
trons of one spin subband are available to carry the
current, and (as described above) there is an associated
current of magnetization into the paramagnet. In the
steady state, charge neutrality demands that some down
spins are lost to compensate for the injected up spins.
The magnetization diffuses away from the interface, and
eventually relaxes by T, processes (in the limit of zero
external field there is no distinction between transverse
and longitudinal relaxation events, i.e., T,=T,). A use-
ful parameter is the spin diffusion depth, 8, =1/2DT,,
where D is the electronic diffusion constant. The spin
depth 8, is the average distance an electron travels before
its spin is randomized by a collision. Within a spin depth
of the interface, some steady-state nonequilibrium magne-
tization 8M results [Fig. 3(b)] as a balance between the
rate of magnetization injection (a source of magnetiza-
tion) and the rate of destruction of magnetization by T,
processes (a sink of magnetization). The nonequilibrium
magnetization occupies a volume (2 defined by some com-
bination of the sample parameters and §,, and the equali-
ty of injection and relaxation rates in the steady state im-
plies

TZ
8M=Im—6‘=ﬂAn R (13)

where An is the difference in number density between up
and down spins.

C. Detection

How might one detect this nonequilibrium magnetiza-
tion? The answer is simple'! and provides some new in-
sight on the nature of interfaces. There is an inverse ar-
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gument to that for the injector. If a second paramagnet
is in interfacial contact with the paramagnet that has
some nonequilibrium magnetization, its chemical poten-
tial will align with the average [Ef,, in Fig. 3(b)] of the
two spin subbands, and, because of the stringency of the
charge neutrality condition, will be uninfluenced by the
8M. However, consider the case of an ideal ferromagnet
placed, on the right, in interfacial contact with the
paramagnet. Again, due to the weak coupling (in the ab-
sence of interfacial relaxation) between spin subbands, an
interfacial conductance exists for each subband. This is
just the inverse of the injector picture. If an external cir-
cuit were to allow a current to pass from paramagnet to
ferromagnet, i.e., Z a low impedance ammeter, only car-
riers in one spin subband will be available for the trans-
port process. This is depicted in Fig. 3(c); there is a
current through the interface which is proportional to
the nonequilibrium magnetization in the paramagnet.
More formally, we can say that a difference, across the in-
terface, in the ratio of nonequilibrium magnetization to
the susceptibility (8M/X), —(8M/X)r (equivalently one
can think of a difference in the number of nonequilibrium
spins) will drive a particle current. We suppose the fer-
romagnetic material to have a short enough relaxation
time that the magnetization in the ferromagnetic film is
always in equilibrium, or (8M /X)r=0. We see that an
ammeter inserted at Z would measure an electric current
proportional to the nonequilibrium magnetization 8M,.
Note that if 8M, were of the opposite sign (if the down-
spin subband were high and the up-spin subband low),
the current would be of the same magnitude but would
flow in the opposite direction. If this external circuit is
now opened, i.e., if one chooses a high impedance for Z,
the effect will be to raise the Fermi surface at the second
film by an amount eV, that is sufficient to prevent the
difference in 6M /X at the interface from driving a
current past this second film. This is depicted in Fig.
3(d). Hence, a high impedance voltmeter would measure
an electric voltage ¥V, proportional to the magnetization
in the paramagnet, and such an idealized ferromagnetic
film can be used as a magnetization detector, as well as a
magnetization injector.

One can think of a ferromagnetic film as a spin polariz-
er, and make an analogy to polarized light experiments.
Suppose an electric current, initially of equal numbers of
spin up and spin down electrons, is driven through the
ideal ferromagnetic film on the left in Fig. 1. The film
preferentially passes electrons of a particular spin orien-
tation into the paramagnetic material. Note that we
must not draw the analogy to a light polarizer too close-
ly. The ferromagnetic film is many mean-free-paths thick
and we do not mean to imply that any particular electron
will be instantaneously transmitted or reflected, nor to
imply that a ‘“beam” of electrons is transmitted ballisti-
cally through the sample. However, the notion of a
current that enters the film on one side with random spin
orientation but leaves the other side with a net polariza-
tion along the axis of magnetization of the film may be
conceptually useful. The second film, on the right in Fig.
1, works in the same way as a spin analyzer. Spins from a
nonequilibrium magnetization in the paramagnet that are
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incident on the second film will pass through the
analyzer, if they are aligned with its magnetization, and
be detected as a current by a low impedance ammeter, or
as a raised chemical potential by a high impedance
voltmeter. Now imagine that the direction (axis) of mag-
netization of each film can be independently manipulated
(in reality, this is true to an extent). The two films are in
parallel planes, and the magnetization is confined to lie in
the plane. Beginning with the two axes aligned, there is a
maximum of current through the second film. As either
of the axes is rotated, a current of equal magnitude but
opposite sign through the second film will occur when the
axes are antialigned (a=). In between aligned and an-
tialigned, the current through the second film will be pro-
portional to the projection cosa of one axis on the other.
Indeed, measuring detector current (or voltage) as a func-
tion of angle a would be one way of demonstrating the
spin-charge coupling, and data from this kind of mea-
surement are presented in the following paper.

We can calculate the detector voltage ¥, in a straight-
forward way. Please refer to Figs. 3(b) and 3(d), and note
that for an ideal Stoner ferromagnet, the Fermi surface of
the detecting film will align with the top of the spin up
subband of the paramagnet. Therefore, ¥, can be calcu-
lated in the paramagnet, where one can make use of sim-
ple free-electron expressions. The energy eV, will be the
difference between the top of this band and Ep,,, a
difference which is proportional to the number of non-
equilibrium spins An =8M /B. The relationship between
An and V, is given by'*

E.. +e
—S-A—len=2 Fie

B EF;P

Assume that ¥, is small, and that N ,(E), the density of
states of a single spin subband of the paramagnet, is ap-
proximately constant and equal to N,,(E;). We find

vV
Ny (E)E . (14)

SM X
?—:N(EF)eVd:BE‘eVd ’ (15)

where N(Ey) is the density of states at E; for both sub-
bands, which gives

_BWM
A=y (16)
Here X is the Pauli paramagnetic susceptibility,
BZ’"kF 2
= =pB°N(Eg) , (17)

for free electrons.

For a nonideal ferromagnetic detector, it is easier to
conceptualize the process and perform the calculation by
thinking of the current from the paramagnet to the fer-
romagnet. Recall our comments and results of Sec. IT A
and Appendix A. In Fig. 3(f), Er,, is still the average
Fermi level of the spin subbands of the paramagnet.
Nonequilibrium magnetization has caused a different oc-
cupation for the subbands, and the chemical potential of
the subbands is given by
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EF' ,u
N Y ey - B (18)

EF ,p,down
Suppose that an external circuit exists and a current
flows. The current from the paramagnet to the ferromag-
net is given by

1
Jo= ;[gup(EF;p,up_EF;f)+gdown(EF;p,down_'EF;f )]

(19)

(EF;p —EF;f)(gup +gdown)

SM
+ Ei(—-(gup

1
e

—&down ) (20)

In Eq. (19) we see that there is a forward (paramagnet to
ferromagnet) current between the spin up subbands, and
a back (ferromagnet to paramagnet) current between the
spin down subbands. When a high impedance voltmeter
is inserted in the external circuit, no current flows
(J,=0), and we get

B oM gup —&down
eX gup +gdown

1
_;(EF;p—EF;f)=

From Fig. 3(e) we identify the left-hand side as V,, and
from Eq. (10) we identify the right-hand side to achieve

Vd=ﬂﬁe—2—1‘i . 1)

Here the g, are defined in terms of the paramagnet, but,
by detailed balance [Eq. (7)] they must be the same as in
the ferromagnet. We thus learn that, under the assump-
tion of no spin relaxation at the interface, the magnetiza-
tion transport parameter 7 is the same for injection as for
detection.

In another paper,’ the equality of injection and detec-
tion efficiencies is derived more generally using an On-
sager relationship in a linear-response formalism. Also
note that the spin injection experiment is not sensitive to
the sign of 77 because M, in Eq. (21), is also proportional
to 7 so that ¥, is proportional to n%. The sign of 7 could
be measured in a different experiment. For example, M
could be created by a static field and saturation by mi-
crowaves tuned to the conduction electron-spin reso-
nance. Then the voltage at a detector film would be
linear in 7.

III. MEASUREMENT OF T,

Historically, electronic-spin relaxation times have been
measured by the electron-spin resonance technique at mi-
crowave frequencies. In a transmission measurement
(TESR), a metal foil sample is placed between two mi-
crowave cavities, and a large static magnetic field H [3.2
kG for o=27(9 GHz)] is applied. Transverse magnetiza-
tion is induced (by the microwaves) in the electromagnet-
ic skin on one side of the sample, decays by bulk and sur-
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face relaxation processes, and is detected as radiation
from within the skin on the opposite side. When o=y H
(where y is the gyromagnetic ratio of the electron) the
spins precess at the same rate as the rotating, electromag-
netic microwave field, and there is resonant transmission.
Deviations (of either @ or H) from the resonance condi-
tion result in a diminished signal as the spins, which have
spent different lengths of time in the interior of the foil,
fall out of phase with each other, and the relaxation time
T, may be deduced from the width of the resonance.'’
The physics is closely related to the Hanle effect and the
spin-injection experiment, which are described below.
For conduction electron-spin resonance (CESR) one mea-
sures the reflected microwave power in a sample cavity.
Near resonance, w; =y H (where w; is the Larmor fre-
quency and y is the gyromagnetic ratio), the complex im-
pedance of the sample skin changes rapidly with field or
frequency. This is detected as a change in cavity Q and
change in reflected power. Again, the relaxation time
may be deduced from a width of the resonance.'®

One disadvantage of ESR is that it must be performed
in kilogauss fields. Many metals have g anisotropies
which contribute to the relaxation process in appreciable
fields, in some instances making the ESR unobservably
broad. Many other systems, such as superconductors or
spin glasses, have properties of interest that are altered or
destroyed in these fields. By utilizing the coupling of
charge and spin at a ferromagnetic-paramagnetic inter-
face, one can apply highly sensitive, relatively simple,
electronic measurements to probe spin transport at zero
or near zero magnetic field.

Briefly the approach is as follows. Spin polarized elec-
trons are injected into a metal bar of thickness d and
width a at position r=0. These electrons will diffuse a
distance 8, before losing memory of their initial polariza-
tion via a spin relaxation process characterized by the
time T,. The signal at a ‘“spin detector” probe will fall
off exponentially with distance from the injector with a
characteristic length, essentially 8,, and the experimental
measurement of the signal amplitude versus probe sepa-
ration will give a direct measure of the spin depth §;.
However, it is experimentally difficult to prepare a num-
ber of nearly identical samples with detectors at increas-
ing distances, just to perform one measurement on each.
Alternatively, the Hanle effect,!’ familiar in optical
pumping, may be used to measure T',; the spin magneti-
zation may be destroyed by application of a transverse
magnetic field which causes a spin precession. The field
effectively randomizes the spins, because spins injected
into the metal at different times in the past have accumu-
lated different phases of precession. In the limit of a very
small transverse field [(yBT,) << 1], each spin precesses
only a small angle (much less than 1 rad) before relaxa-
tion; all the spins within §; at any instant of time will
have roughly the same phase (i.e., orientation) as that
with which they entered and will contribute coherently to
a nonequilibrium magnetization 8M. The characteristic
field for destruction of the polarization is (yT,)”".
When yBT, > 1 (a large transverse field), each spin typi-
cally precesses more than 1 rad before relaxation. Be-
cause spins enter and relax at random times, at any given
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instant there will be a broad distribution of spin orienta-
tions, and very little net magnetization. There is no
longer any phase coherence, and the nonequilibrium
magnetization is destroyed. When yBT, =1, the magne-
tization is diminished by about half its zero field value
[for a Lorentzian line, (yT,)~! is the half width in field
at half maximum]. Therefore, a plot of nonequilibrium
magnetization as a function of applied transverse field
would be a bell-shaped curve, centered at B =0.

This is the same physics as TESR, which is a resonant
phenomenon performed with frequency and field related
by w=yH. Now, however, the reader must rotate at fre-
quency o to observe the effect of a deviation of field, AH,
from the resonant value. All of the electrons acquire an
extra phase, with respect to that of the microwave field.
The electrons traverse the foil diffusively, and there is a
distribution of arrival times at the other surface. When
(yAHT,)~'=1, a typical electron has precessed an extra
phase of 1 rad before its spin is randomized by a scatter-
ing event. There is a distribution of phases of the elec-
trons arriving at the second surface at any given instant.
This distribution is shaped, in part, by the scattering fre-
quency (T,)”'. Hence, the signal is diminished for devi-
ations of field (or frequency) from resonance. The TESR
line shape relative to the resonant field is essentially the
same as the Hanle signal relative to zero field.

Consider the spin-injection approach more carefully.
Figure 4 depicts the true geometry of the experiment that
we have performed;' we have foresaken the pedagogical
geometry of Fig. 2 for one which is more readily fabricat-
ed, and which has experimental advantages described
below. An electric current is driven through a spin polar-
izing injector at x =0 into a thin bar of pure paramagnet-
ic metal. The ferromagnetic film injector and detector
previously described serve as spin polarizer and spin

injector detector

0_.__

'
'
i
'
]
1
1
1
Il
1
'

0

FIG. 4. The true geometry of the spin-injection experiment.
There is no classical voltage drop across the detector because
there is no net current upstream of the injector.
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analyzer. The moments enter the bar polarized along 2.
At x =L, a detector measures a voltage ¥, proportional
to the nonequilibrium magnetization (also along 2, for
aligned films) in its vicinity. The electrons diffuse away
from the origin in both directions, though eventually all
of the electrical current is returned to ground at the left
end of the bar. Any drift of the magnetization associated
with the electric current is completely negligible com-
pared with the diffusive displacements of the injected
spins.

Notice also that there is no net electrical current for
x >0. By considering a Fourier expansion solution to
Laplace’s equations, it can be shown'® that the right end
of the bar and the detector at x =L are very nearly at the
same potential. More specifically, for point injector and
detector centered on the bar, and for distances long com-
pared to an electronic mean free path (so that ballistic
effects are not considered),

— Ps  _wisLsa
rmL)= 3 57—e : 22)

n=1

where r,, is the classical “mutual” resistance between in-
jector and detector at distance x =L, p, is the resistance
per square (p, =4.5X 1077 Q at 4 K for the Al samples),
and q is the width of the bar (about 100 u). For a detec-
tor at L =a, and for 30 mA drive current, the voltage
drop from injector to detector is only a few picovolts.
For line injection and detection at x =0 and x =L, which
is more likely the case for our samples, the dimension of
the experimental geometry is reduced from three to two,
the relevant scale is the thickness of the bar d, and the
mutual resistance is given by

— Ps_ _nrLsd
rnl)= 3 S e . 23)

n=1

In our samples a =~2d, so the leading (and dominant)
term is similar in magnitude for each model of the classi-
cal voltage distribution.

The spin polarized electrons diffuse away from the ori-
gin a characteristic distance §;,. Within the volume
Q=ad§, the magnetization is given by Eq. (13). A spin
analyzing detector at x =L will measure a voltage pro-
portional to this magnetization. In the presence of an
externally applied magnetic field (along ), the response
of the magnetization is given formally by the Bloch equa-
tions with a diffusion term.!®?® A quantitative treatment
of the problem is given in Appendix B where we solve the
Bloch equations with a diffusion term along X. This one-
dimensional model is expected to be valid as long as the
spin depth is long compared to the sample thickness,
8,>d. We will find that the spin depths for all of our
data, except those at the highest temperature, obey the
condition §; >a >d.

The solutions, from Eq. (B21), are found to be
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where (1+b,)"! is the Fermi liquid exchange enhance-
ment, m* is an effective mass, D the electron diffusion
constant, k; the Fermi wave number, A4 the cross-
sectional area of the sample, and the functional form for
F; is given in Appendix B. We will use this expression to
fit our experimental results in the following paper.

There is a family of solutions, and a unique solution be-
comes determined by the relative orientation of the mag-
netization in the ferromagnetic films. There are two in-
dependent solutions of interest, i.e., two functions
F;{yBT,,L /8,}. The first, F,, is plotted in Fig. 5(a) for
the parameters of data in Fig. 2 of the following article.
Recall from Appendix B that this solution corresponds to
the injected magnetization pointing along £, and the
detector measuring magnetization along 2 as well. Thus
when the injector and detector are perfectly aligned the
signal is ‘““absorptive” in appearance. The second, labeled
F, in Appendix B, is plotted in Fig. 5(b) for the same pa-
rameters. This solution represents injected magnetization
along 2, and a detector sensitive to magnetization along

X. In zero field, the detector senses no spin coupled sig- -

nal because the injector and detector are orthogonal.
When a field is applied along +9, the moments precess in
a direction that aligns them with the detector, and a posi-

Magnetization (arb. units)

Magnetization (arb. units)

-100 =50 0 50 100
Field (G)

FIG. 5. Magnetization along 2 is injected at x =0. (a) The
magnetization along £ at detector x =L as a function of external
magnetic field applied along J, for typical experimental parame-
ters. (b) The magnetization along X at detector x =L as a func-
tion of external magnetic field applied along J, for the same pa-
rameters as (a).
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tive signal results. When a field is applied along —9, the
moments precess in a direction that is antiparallel with
the detector, and a negative signal is detected. Thus
when the injector and detector have their axes of magne-
tization perpendicular to each other, the injected signal is
‘““dispersive” in appearance. The adjectives absorptive
and dispersive are introduced solely because they de-
scribe the appearance of the Hanle signal in terms with
which the reader may be familiar. They do not describe
the physics of the signal. For arbitrary alignment, the
general solution is a linear combination of F, and F,,

V4« F,cosa+F,sina ,

where «a is the relative angle between injector and detec-
tor.

The parameters appropriate to the curves in Fig. 5 cor-
respond to the limit L <<§;; the probes are closely
spaced compared with the spin diffusion length. In this
limit the line shape is independent of the electron
diffusion constant D, and the width of the line gives the
relaxation time T,. If the inequality is not satisfied,
L >8,, then the line shape is more complicated with
sidelobes where the spin coupled signal has reversed sign.
The sign reversal occurs at a field such that the spins pre-
cess 7 radians during the mean diffusive transit time be-
tween the injector and detector. In this experimental re-
gime, the results can, in principle, be analyzed to give
both the conduction electron-spin relaxation time T, and
the electron diffusion constant D.

Several qualitative features of the predicted Hanle sig-
nal can be listed. The amplitude should be directly pro-
portional to the drive current. The signal should be in
phase with an audio frequency ac drive current. The sig-
nal should appear for applied fields perpendicular to the
injected magnetization, i.e., for fields applied along X or
9. If the applied field is parallel to the magnetization,
along Z, then there will be no torque on the spins and
hence no Hanle signal.

The case of a field applied at an angle ¢ from 2 in the
-2 plane is analyzed as follows. Recall that the Hanle
signal is the result of an applied transverse magnetic field
B which causes each moment to precess; when yBT, > 1
there is no phase correspondence among spins and the
net magnetization is destroyed. When an external field,
B=B?, is applied at angle ¢, the spins precess about an
axis 7 parallel to the field. Let the injected magnetization
(in zero field) be 8My2. The effect of the field will be to
force a precession of 8M about the field with a cone of
semiangle equal to ¢. The precession, if yBT, >> 1, des-
troys the component of magnetization perpendicular to B
but preserves the component 8M cosé which is parallel to
B. The detector will then sense (when yBT, > 1) a volt-
age proportional to the projection of the unaffected
magnetization onto the axis of the detector:
(8M cosg)(cosd). The amplitude of the Hanle signal is
proportional to the difference in the magnetization at
zero field, which is 8, and the magnetization at fields
B> (yT,)”!, which is 8M,cos*p. It follows that the
Hanle signal amplitude, as a function of field orientation
angle ¢, should vary as



37 COUPLING OF ELECTRONIC CHARGE AND SPIN ATA ... 5321

amplitude (@) < (8My—8M, cos’d)=8M,sin’p .  (25)
The signal width and shape should be independent of ¢.

IV. SUMMARY

The concept of electronic spin-charge coupling at a
ferromagnetic-paramagnetic interface has been intro-
duced in the contexts of bimetal interfacial transport
studies, and of ESR measurements of the conduction
electron-spin relaxation time T,. Microscopic models
have been presented to explain how the spin-charge cou-
pling results in spin injection and detection. A frame-
work was developed for analyzing the efficiency of inter-
facial spin transport in terms of a conductance formula
derived in Appendix A. The relaxation time T, and
diffusion constant D can be measured by application of a
small transverse magnetic field which results in a Hanle
effect: the diffusing spins are dephased and the magneti-
zation is destroyed. The formal solution to the Bloch
equations with a diffusion term is derived in Appendix B.
The expected qualitative features of the signal are dis-
cussed.
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APPENDIX A

We wish to calculate the conductance of an interface
between two metals, arriving at a form that we can use in
a definition and analysis of the interfacial magnetization
transport parameter 7. We consider an argument general
enough to include both the cases of a tunnel barrier and
conduction through small pinholes (hole radius a <<
mean free path /), the Sharvin limit.2! Some remarks
relevant to large pinholes are included at the end of this
appendix.

The calculation is done in the context of a single spin
subband, the weak transmission limit is assumed so that
equilibrium electron distributions may be assumed on ei-
ther side of the barrier, and the arguments, for the sake
of simplicity, are given for the case of no spin orbit mix-
ing of spin and orbital states. The argument does not as-
sume conservation of transverse wave vector as do many
of the standard treatments of interface tunneling,22 in or-
der to allow application to the small pinhole problem
(Sharvin limit) as well as to the more general tunneling
problem,; it is restricted to elastic tunneling. Using a per-
turbation language and considering the one-electron
states to be standing wave states for motion perpendicu-
lar to the interface (the X direction), we write the current
per unit interface area transmitted across the interface
from left to right j; _, z as the sum over initial occupied
states on the left of transitions to empty states on the
right:

X

Eglkg)=Eg 21T| VkER(kR ) l 411’2

| Vikp,kg) | 2fL(EL ) 1—fRr(ER)] | .

(A1)

Here L; is the length of a normalization box for the metal to the left of the interface, V(k;,kz) a tunneling (or
transmission) matrix element for transfer of an electron from left to right, E; (k; ) the dispersion relation, and f (E; )
the Fermi function for the left metal. Combining this with the corresponding expression for the right to left current,
and defining W(k, ), the transition rate through the interface of an electron in state k; , by

Ly d’kg

27
w = —— _— 2
(k)= JdERS(E, —Ep) Exthn1=Ex Tr V. ES LT 402 | Vik,,kg) |2, (A2)
the net interfacial current is given by
L, d’k;
jo=(— Wk —
Joe=(—e) [dE fEL(kL)=E AV E ] 4 (k) fL(E)—fR(E)], (A3)

where a subscript L has been omitted after performing the integral over the & function. For the k; standing wave states
we interpret the transition rate W(k;) as the product of a collision rate (i.e., attempt frequency) with the interface,



5322

MARK JOHNSON AND R. H. SILSBEE 37

v, (k;)/2L, and a transmission probability t(k; ). Using the assumption of a small applied voltage to replace the

difference of the two Fermi functions by a derivative, yields

. d?k, 1
Jnet=(—'e)de fEL(kL)=E 8’ | VkEL(kL)l 5

d%; v (ky) | t(ky)
8‘IT3 l VkEL(kL ) I

eV

2 JE (k)=E

Noting that the single spin subband density of states
may be written as®>

d’k
N(E)= [ =

, (AS)
Eptk)=E 873 |V, E; (k)|

Equation (A4) may be written in a more intuitively useful
form as an interface conductance per unit area,

; 2
g=L=SNoEN o, ) (o), (A6)
Vo2
using the definitions
d’k v (k)
<Ux >LE f ~ 3L I L I
Ef(kp)=Ep 8g3 |V E (k)|
X[iN(Ep)]™', (A7)
and
d’k v (k)| tlky)
()= fE (k, )=E 3L | L)
%)=L 87 [ ViEL(kp)|
X[IN(Ep) v ) 17" (A8)

Equations (A5)-(A8) give formal meaning to the simple
idea that the conductance is proportional to the product
of the density of states, an average velocity normal to the
interface, and an average transmission probability; and it
is an adequate definition for the calculation of interfacial
magnetization transport parameter 7 for a nonideal Ston-
er ferromagnet, as performed in the text. One could fur-
ther use this result as a starting point for analyzing and
comparing experiments wherein the interfacial transport
involves different mechanisms, such as tunneling versus
conduction through pinholes, requiring only the assump-
tion of undisturbed Fermi distributions either side of the
interface. The principle of detailed balance, which is evi-
dent from the symmetry of the expression for the partial
current in Eq. (A1), assures that the current could equally
well be written in terms of the right-hand metal, i.e.,

NR(EF)(UX >R<Z)R =NL(EF)<vx >L(t>L .

For the case of small pinholes (/ <a) of radius a, with
surface density over the interface of N,, the effective
transmission probability is ¢’ ~ma’N, »» OT just the fraction
of the area covered by pinholes.

Equation (A6) can be further generalized to apply to
any band bs of the metal, where b is the band index (such
as 3d or 4s) and s is the spin subband index (up or down):

df (E)
va(kL)lt(kL)(—eV) - ‘ZE
(A4)
[
o2
8bs = Nos (Ep) v, )t ) s
> ;

and this can be used to treat the case of a transition-metal
ferromagnet in which more than one band contributes to
the conduction.?® Finally, note that one can make
definitions'® similar to Eq. (A6) that are useful for the
analysis of spin transport experiments of entirely different
genre, such as spin polarized photoemission spectrometry
and inverse photoemission spectrometry.

The preceding calculation is appropriate for the case of
small transmission probability, ¢ <<1, such as tunnel
junctions or Sharvin pinholes. Another limit of interest
is when conductance is restricted by the resistance of the
materials; for example, large pinholes (the Maxwell limit,
I >a). In this case there is an electric field throughout
the interfacial region, and one can perform a Boltzmann
calculation?® which is similar to the above derivation.
For holes of fractional coverage ¢’ and radius a, the con-
ductance of each hole is approximately the “spreading
conductance” oa, and the conductance per unit area is

’

g~N,0a=o0a zezN(Ep)v,.-I% . (A10)

ma

This is analogous to Eq. (A6) with the interpretation
t—t'l /a.

APPENDIX B

In the experiment depicted in Fig. 4, magnetization is
injected with a definite orientation (e.g., along %) at x =0
into a one-dimensional bar (the transverse dimensions are
less than a spin depth §,). It diffuses away from the ori-
gin (along £X) and is eventually relaxed by a T, process.
In a metal, and in zero field, there is no distinction be-
tween a longitudinal relaxation event T, and a transverse
relaxation process T, and we will consider them to be
the same. An external field applied along $ may destroy
the magnetization by dephasing the spins. In the limit of
a vanishing field, each spin precesses only an infinitesimal
amount before relaxation, and all the spins remain at
nearly the same phase with which they entered. When
yBT, > 1, each spin typically precesses more than 1 rad
before relaxation. Since spins enter and relax at random
times, there is no longer any phase coherence, and the
bulk nonequilibrium magnetization is destroyed. This
process is closely related to TESR theory,'® and is de-
scribed by steady-state solutions to the Bloch equations
with a diffusion term along X, a sink term proportional to
1/T,, and a source term (at x =0) in the boundary con-
ditions. The Bloch equations,'® with B=Bj, are



37 COUPLING OF ELECTRONIC CHARGE AND SPIN AT A ...

M. M_B 2 DazM‘ (B1)
ar - YME T PR
M, M_B M, D oM, (B2)
ar M P
dM M a*M

y Y y

-—_2.D ) B3
7t T, +D—— (B3)

In the spin-injection experiment, magnetization is in-
jected at strictly dc, or at very low audio frequencies
(4-20 Hz). However, this need not be the case, and the
experiment could be performed at any frequency o, with
the result that the “resonant” field would be shifted up by
the usual Larmor relationship o=y H. We will begin
with the most general solution, which is also most closely
related to the TESR problem. Thus we anticipate general
steady-state solutions that are harmonic in time with
frequency o, take the sum [(B1)+i(B2)], and let
M =M, +iM,)=M _ ,e'” which gives

’M +,0 1 , B 4
ax2 ——DT2[1+I(O)—Y T2)]M+,Q . (B4)

We will seek decaying spatial solutions of the form e
and define

*xx
b

1
DT,

K2+.=_ [1+ilo—yB)T,] . (BS)

Then
1
K+real=—\—/—21.)T
2
1 le—vB)T
T \2DT, V1+£(B)

V1+f(B),

b

where

f(B)=[1+(wo—yB)*T3]'*. (B6)
There are also solutions to [(B1)—i(B2)]. Letting
M_=M,—iM,, we have

FM_, 1

-—5-;2;=B-7—,;[1+i(a)+1’BT2)]M_,0 , (B7)
and define

W= D‘T2 [14i(w+7BT,)], (BS)
where

ko= LS B)

V/2DT,
. 1 (w+vB)T,
™" \/2DT, V1+f(B)
The solutions for M and M _ will be given by
K, x —K_x
M, =A4_e*"+C,e *, (B9)

M_ =4 e "+C_e
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We now specialize to the case of the dc spin injection
experiment, and let w—0. Assume the steady-state
boundary condition that at x =0 there is a flux of magne-
tization injected into the region x >0 with polarization
along 2,

Im

z

2

and there is no flux of magnetization with X or J polariza-
tion:

Jy =—DVM,=0 at x=0,

x

=—DVMZ |x=0 ’ (B10)

Ju,=—DVM,=0 at x=0.

We have used J, M, /2 because by symmetry half the inject-

ed current diffuses towards x <0 and half towards x > 0.
We solve for the half plane x >0, and assume that M;
(i =x,y,z) vanishes at x — 0. ‘This implies

A,=A_=0. (B11)

It follows that M, and M, are given by

K_X

M,=YM, +M_)=1[C e “T4+C_e "],
1 1 -
M=—M,-M_)=—
x=o; M, —M_)=71[C.e
The above boundary conditions, Egs. (B10), require
k,C,—x_C_=0,
.IMz

2D

K K_X

+*_C_e *- ].

(B12)

k,C,+k_C_=

Equations (B12) are satisfied by the choice
172

1/2 (B13)

and
I,
“= Vi
Substitution of Egs. (B13) and (B11) into (B9) gives
Iu

z
=——[xk —iK
+ 2 | K, | 2D +real +1m]

Xe "t cos(K , imX ) —i sin(k , imx)] (B14)

and
Iu

_=—z K_ —1 s
2|K_|2D[ real K lm]

Xe T [cos(k_ipmx ) —i sin(Kk_;px)] . (B15)
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Consider first the case where the spin analyzer is sensi-
tive to magnetization along 2, i.e., along the direction of
injection. Then we wish to solve for the z component of
magnetization at the position of the detector, M, (x =L ).
Note that (for ©—0)

‘K+|2=|K— 2E|K|29
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o = 1 —yBT,
™ V2DT, V1+f(B)’
_VI1+f(B)

Kreal =
eal /""‘"'2 D Tz

For the same boundary conditions at x =0, one can solve
for the x component of magnetization

Kireal =K _rear Kyim™ —K_im J
and (dropping subscript z from J M, for convenience) M,=— ﬁ [Kpeat SIN(Kiy L )+ Kigp COS(K L ) e —Keeall
K
M,= -5—’—1"{—55—[:(,”, cos(Kjp, L ) — ki, sin(k;L ) Je ~Hreall (B17)
K
(B16) We can turn these into functions of a reduced field
b=yBT, and a reduced injector-detector separa-
where tion /=L /V/'2DT,.
J
172
Iy | T 1 s b b b VI4/f(b)
M,=—" |—=| —— |VI+f(b)cos |———= |- —=—=——sin ARREA
=% || Fo |V VItf(b) | VItfb | VItf(b)
172
Iu | T
. (B18)
=5 |3 F,{b,l},
172
Ju | T 1 b Ib ——— l v
M =— |— e A A VI1+£(b)sin | ——u— —1V1+£(b)
=2 || T | Vierme | Viere | TV O AT
172
Juy | T,
[
where which is Eq. (24) in the text. D may be determined from

fB)=(1+b>)12.

Note that F‘(O,I)zVie“/il, and F,(0,/)=0. Then, in-
serting (B18) and (B19) into Eq. (21) of the text
172

M g2 L | T,
v, =dBM 7B " |21 pony . (B20
47 Xe ~ xe? 24 |2D o1 (B20
where?®
1 Bm*kg

= _ B21

X 116, #n? (B21)
is the exchange enhanced susceptibility, m* is an

effective mass, and we have used

_m8 1
JM_eA

with A4 the cross-sectional area of the sample. Substitut-
ing (B21) into (B20) yields

v R (1+by) I,
d;i— ezm*kp 24
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the Einstein relation

(14bo)o,(T)

D=D(T)=—;
e’N*(Ej)

, (B23)

in which N*(E[) is the density of states at the Fermi sur-
face, determined by a specific heat measurement, and
0,,(T) is the dc conductivity of the sample, which may be
measured in a separate experiment on a similarly
prepared control sample of comparable dimensions.
When one puts in the numbers for the constants, one ar-
rives at

I, —
Vg =8.4X 10‘5n2-j\/T2/DF,-{b,l] , (B24)

where all units are cgs except V,; and I,, which are given
in volts and amps, respectively. The subscript i in the
solution (B24) is to be chosen as 1 (2) when the magneti-
zation of the detector film is chosen to be in the £ (X)
direction. If the angle between the magnetizations in the
two films is @, the function F; should be replaced by the
linear combination F, cosa + F, sina.
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injector detector

FIG. 4. The true geometry of the spin-injection experiment.
There is no classical voltage drop across the detector because
there is no net current upstream of the injector.



