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Theoretical spin-orbit constants for the V'+, Cr'+ {z= 1 —3), and Mn'+ ions in KMgF3 have been
calculated by means of the theory of Blume and Watson [Proc. R. Soc. London, Ser. A 270, 127
(1962); 27j,, 565 (1963)] and the approximate cluster Hamiltoniau of Misetich and Buch [J. Chem.
Phys. 41, 2524 (1964)]. The modified one-center spin-orbit parameters appearing in the latter Ham-

iltonian have been obtained by means of Hartree-Pock-Roothaan calculations on the octahedral

MF& clusters {Mis the 3d ion) including the cluster-lattice interaction. The 3d-orbital deformation,
deduced from the cluster calculations, appears as a key factor in determining the spin-orbit con-
stants and their reduction with respect to the free-ion values. Covalency efFects are less important
in this highly ionic compound. Ligand contributions to the spin-orbit constants are smaller than
10%. The variation of these constants with the metal-ligand distance R has also been determined
from calculations at die'erent values of R. According to the results of this and previous work, the
spin-orbit constants behave as local observables, fairly independent of the e8'ects of the rest of the
lattice on the cluster wave function. The theoretical coupling constants agree rather well with avail-

able experimental values.

INTRODUCTION

The analysis of the optical spectrum of the transition-
metal ions in crystals generally requires consideration of
spin-orbit couphng. In 3d ions this interaction represents
a fraction (between 0.1 and 0.01) of the 3d-3d electron-
repulsion energy but its e8ects are quite substantial. As
is well known, spin-orbit coupling may split the elec-
tronic states of the transition-metal ion, giving structure
to the spectral bands, and can mix electronic states of
different spin multiplicity giving rise to a partial relaxa-
tion of the b,S=O selection rule. Thus electronic transi-
tions which are forbidden in the absence of spin-orbit
coupling may borrow intensity from some nearby spin-
allowed transition through the spin-orbit mixing. This
interaction is also important in the interpretation of the
electron resonance spectra of these systems' since it
contributes to the g factors, zero-field splitting, and line
sh, apes.

Unfortunately, accurate spin-orbit constants are only
rarely available as experimental observables in a crystal
or molecular environment. For instance, the determina-
tion of these constants from the observed Sne structure of
the optical spectra is generally complicated by the pres-
ence of other perturbations of analogous size, such as
low-symmetry Selds' or Jahn-Teller distortions.

The information available on crystal spin-orbit con-
stants reveals that these quantities are generally smaller
than their free-ion counterparts. This reduction was at-
tributed by Owen to the metal-ligand orbital mixing as-
sociated to the bond formation, and, in particular, to the
covalency of these bounds. On the other hand, Marsha11
and Stuart argued that the covalency should increase the
spin-orbit constant. According to them, the observed
reduction may be explained by assuming an expansion of
the 31 orbitals in passing from the free ion to the crystal,
in similar fashion to the reduction of electron-repulsion
parameters.

Radial expansion of the 3d orbitals has been invoked
by Cole and Garrett to provide a correlation between the
effective spin-orbit constant and the electron-repulsion
parameters in both free ions and crystals. This correla-
tion supplies a very useful device to determine spin-orbit
constants from observed values of electron-repulsion pa-
rameters but, as these authors remark, it should not be
interpreted as a theoretical model.

The nonempirical calculation of the spin-orbit con-
stants in crystals has received little attention in compar-
ison with the theoretical signi6cance of these parameters.
As a matter of fact, there have been very few examples of
this type of calculation.

In an important paper, Misetich and Buch derived an
approximate spin-orbit Hamiltonian adequate for
transition-metal clusters from the Bethe-Salpeter Hamil-
tonian. The crystal spin-orbit constants derivable from
the Hamiltonian of Misetich and Buch are linear com-
bination of modi6ed free-ion constants. Misetich and
Watson carefully analyzed the molecular orbital matrix
elements of this Hamiltonian, for the Ni'+:KMgF3 sys-
tem, and showed that the multicenter integrals appearing
in them are negligible. Pueyo and Richardson' used the
Misetich and Such Hamiltonian in combination with
empirical values of the free-ion constant for their study of
the optical spectrum of the (CrF6) ion in CrF3 and
K2NaCrF6. Setyono and Scherz" adopted also this Ham-
iltonian in their recent complete neglect of di8'erential
overlap (CNDO) calculation of the spin-orbit constants
for the Cu + ion in ZnS and CdS.

In this paper we report the results of our investigation
of the crystal spin-orbit constants for 3d systems in the
context of the Misetich and Such approximation. It is
clear that within this model the main theoretical problem
is to determine the modi6eations of the free-ion con-
stants. Since such modi6cations are due to the electronic
relocalization accompanying the formation of the crystal
binding, we have obtained them by means of cluster eal-
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culations based on Hartree-Fock-Roothaan theory. In
this way, an analysis of the crystal spin-orbit constants in
relation with theoretical mechanisms such as the 3d-
orbital deformation, metal-ligand covalency, and other
characteristics of the electronic distribution around the
metal ion in the crystal may be carried out.

The one-center spin-orbit parameters resulting from
the Hamiltonian of Misetich and Buch may be accurate-
ly calculated by means of the rigorous atomic theory of
the spin-orbit coupling developed by Blume and Wat-
son'2" or, as we have recently shown, ' by using
effective core potentials and reduced basis sets. To take
care of the modiffcations required by Misetich and
Buch, ' i.e., to incorporate 3d-orbital deformation efFects
and metal-ligand covalency, we have derived effective 3d
orbitals from the molecular orbitals (MO's) determined
by self-consistent-field {SCF) calculations on octahedral
ML6 clusters, M being the 3d ion and L its six nearest
neighbors. These SCF calculations have been performed
on the (CrFs)" (n =3-5), (MnF&), and (VF6) sys-
tems in KMgF& by following the open-shell Hartree-
Fock-Roothaan methodology of Richardson et al. ,

'

with inclusion of an accurate representation of the crystal
lattice.

Furthermore, the variation of the cluster spin-orbit
constant with the metal-ligand distance has been ob-
tained from these calculations. Knowledge of this varia-
tion would be an interesting piece of information in
describing the modifications of the theoretical electronic
spectrum due to changes in the environment of the clus-
ter, including those produced by the apphcation of exter-
nal pressure.

Our results show that the 3d-orbital deformation is a
key component of the crystal spin-orbit constant. The
covalency contribution is rather small in the Suorides an-
alyzed here but it could be much more important in ox-
ides or chlorides. The ligand contribution to the total
constant is also small. The constants computed here fol-
low well the relations with the atomic expectation values
(r ) considered by Marshall and Stuart5 and by Cole
and Garrett. The variation of the spin-orbit constants
with the metal-ligand distance is only moderate and re-
veals that the covalency effects are short ranged. The
correlation discussed by Cole and Garrett between the
spin-orbit constants and the theoretical electron-
repulsion parameters is satisfied by our theoretical results
for isoelectronic, isovalent, and isometallic sequences of
cations. These results agree rather well with available ex-
perimental data.

The method of calculation described here permits a
straightforward and reasonably accurate determination
of the enects on the spin-orbit constants of diferent
theoretical refinements in the cluster calculatiop.
I.igand-ligand and cluster-lattice interactions, as well as
improvements in the basis set, are examples of these
efkcts. This makes the method particularly appropriate
for theoretical calculations of the optical spectra of these
systems. In these calculations it is not unusual to consid-
er progressive levels of accuracy in the cluster wave func-
tion. The model presented in this work allows for an im-
mediate transfer of this improved accuracy into the crys-

tal spin-orbit constant. This situation contrasts with
those approaches in which empirical spin-orbit constants
are included in otherwise very accurate spectral calcula-
tions.

THEORY

We will describe the spin-orbit interaction in the MI.6
cluster by means of the Hamiltonian of Misetich and
Such:

H = g g (r, )l; s, + g g (rk, )lk;.s;,
i, k

where the indices i and k run over the n electrons of the
open-shell 31" system and the six ligands of the ML6
cluster, respectively. I; and lk; are orbital angular
momentum operators referred to the metal ion and to the
kth ligand, and s, is the electron spin angular momentum
operator. g (r; ) and g~(rl, ; ) are modified spin-orbit func-
tions of the metal and ligand free ions. In the simplest
form they can be expressed in terms of a one-electron
operator:

g(r) = 'a—21 BV(r)
r Br

a being the 6ne structure constant and V(r) the central
6eld seen by the valence electron. An alternative and ac-
curate way of representing these functions can be formu-
lated in terms of effective core potentials and reduced
basis sets. ' The word "modified" in the context of the
theory of Misetich and Buch implies the consideration of
the cluster electron density instead of the free-ion density.
We describe below how to incorporate such modi6cation.

If we write H~ in the form

H =gt;s;,

(4)

its matrix elements in the strong-fiel
~

aSI Msy ) basis
can be expressed in terms of the one-electron spin-orbit
constants g«and g„defined by'

The indices t and e in these constants stand for the
ti (g, ri, g) and the e (8,s) symmetry species of the octa-
hedral group. If the tzg and e~ orbitals are pure metallic
3d atomic orbitals {AO s), as it is in the case in crystal-
field theory, g« ——g„=/id. In general, however, these
functions are molecular orbitals expressible in the form'

where N, and X, are normalization constants, d, and
d, 3d atomic functions, k„A, , and A, covalency pa-
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rameters, and X„X,and X ligand symmetry-adapted
functions

X,(e)=—,'N (~ee )(s, —~&+s4 —s, ),
X (e}=z'N(oes)(x, —y2+x4 —yz),

X (g)= ,'N(—~t2g)(zp+y3 —zg —y6),

g (rt}= ,'N(—ntzg )(z, +x3 —z~ —xs),
P„(g)= ,'N(n—t2e)(y, +xz —y~ —x~) .

The normalization constants N(see), N(tres), and

N(mtze) diff'er from unity by contributions from ligand-
ligand overlaps. Notation in Eq. {9) follows the coordi-
nate system of Ref. 15 depicted in Fig. 1.

Equations (7) and (8) resemble the traditional minimal-
basis description of the valence MO's (Ref. 17}. In this
description d, and dMo coincide with the free-ion 3d
AO. However, Eqs. (7) and (8) become general if the de
and dM~ functions are allowed to have different radial
parts {and diff'erent from the free-ion 3d AO) and g„X,
and X differ from the pure-ligand functions. In particu-
lar, these equations are compatible with SCF calculations
performed within a valence space containing an arbitrary
number of basis functions. In this case, it is always possi-
ble to transform the actual MO's into the forms of Eqs.
(7}and (8), as we show for the 3d case in the Appendix.

The important point here is to notice that the d, and

d, o functions are obtained from a cluster SCF calcula-
tion followed by the MO transformation discussed in the
Appendix. In the calculations reported here we use a
valence space with two 31 functions. The first one, 31~,
is the 2$ Slater-type (STO) function of Richardson
eg al. ' The second function is the innermost STO of
3dl. Our SCF calculations give d, and d, functions
with difFerent radial forms. They are also difFerent from

the 31 AO. As we will see, this 3d-orbital deformation
produced by the SCF process has signifjcant effects on the
spin-orbit constants, as discussed by Marshall and Stu-
art.

The orbital deformation has been traditionally de-
scribed by means of a radial scaling of the free-ion AO.
This means that the changes produced in this AO during
the formation of the cluster can be collected in a single
parameter per MO. The description given here through
the d, and 1, functions is much more general, being
limited only by the flexibility of the SCF process. How-
ever, if the orbital deformation is not too large, as it has
been the case in our calculations, the d, o and dMo func-
tions can be regarded as radially scaled versions of the
free-ion AO. In our basis

R (d ) =31(A, r),

R (dM~) =31M(pr),

where R(d, ) and R(d, ) are the radial parts of the
d~Mo and d M functions, respectively. The scaling factors
A, and p, can be related to the nephelauxetic parameters
discussed by Jorgensen. Once the d, and d, func-
tions have been determined, A, and lit, can be ob-
tained by maximizing the (R (d, o)

~
31(A, r) ) and

(R (d, )
~
31~(pr)) overlap integrals, as discussed in

the Appendix. This procedure gives scaled functions
having minimum square deviation with respect to the
R (d ) functions, i.e., it gives scaling factors consistent
with the R (d ) function as a whole. Other criteria
leading to a better simulation of speci6c parts of the
given wave function may be preferred, depending on the
wanted apphcations. Scaling parameters smaller (greater)
than unity represent an expansion {contraction) of the
31~ AO. We also relate these parameters to the spin-
orbit constants below.

The spin-orbit coupling constants g«and g„can be ex-
pressed as combinations of basic spin-orbit integrals by
substituting Eqs. (7)-(9} into Eqs. (5) and (6). Misetich
and Watson9 have shown that all two-center integrals ap-
pearing in such expression are negligible (they are all
smaller than 1 cm '}due to the highly localized charac-
ter of the g (r, ) and g (rk, ) functions around their
respective nuclei. Taking into account this result we can
write

g„=N,'[gd„+ ,'A,~~(nt„)'(L -], .

g„=N,N, [gd„,'AA~—(o—e,e )N (m t2e )gL ] .

(12)

(13)

)iI, 6

FIG. 1. De5nition of the coordinate system.

These have been the equations adopted in this work to
compute the spin-orbit constants of the ML6 cluster.
They clearly show the two main factors affecting the 6nal
values of these constants, namely, (a) the metal-ligand co-
valency, explicitly appearing here in the form of the fa-
miliar A, and k parameters but also indirectly affecting
the spin-orbit constants through the normalization con-
stants N, and N, ; (b} the 3d-orbital deformation, appear-
ing into the atomic parameter gd«and gd„.

Vfe will detail now the calculation of these atomic pa-
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rameters. In principle, they are given by the radial in-

tegrals:

(1MQ
~

gM( }
~

1MQ)

(1MQ
~

gM(r)
~

dMQ)

4 = &2pr. I
k'( t. )12pL&..

(14)

In this work, however, we compute them by means of a
procedure that incorporates (a) the accurate atomic
theory of the spin-orbit interaction developed by Blume
and Watson, ' ' ' and (b) the results of our SCF calcula-
tions which provide a measure of the 3d-orbital deforma-
tion by giving the d, and dM functions.

The calculation is made in two steps.
(i) We compute theoretical spin-orbit parameters

g'h"'(d"-sL) associated to the free-ion d"-sL multiplet, by
means of the rigorous expressions given by Blume and

Watson' and the Boric coeScients' which include the
specific 3d-3d interactions for a given multiplet. For the
1, d, and d cases considered in this work, these
theoretical parameters become

P"'(d F)-=g, —(114/7)M (3d, 3d)

—
—,",M (31,3d),

g'""'(d"- D)=g —24M (3d 31)+—"M (31 3d)

g'"""(d - S)=g —7M (3d 3d)+ —'Mi(31 3d)

The spin-orbit constant g„which contains the eifects
of the bare nucleus and the interaction of the 3d orbitals
with the closed shells, is given by'

3

g, =—,'Za (r )3d —g [4M (3d, ns} ', V'—(3—d, ns) ", N—(3d—,ns)+ —",N (3d, ns)]

—g [12M (3d, np) ——', Vo(3d, np) ——",, V2(3d, np} pN (—3d, np) ', N'(3—d,—np)+ —",N '(3d, np)] .
n=2

The M, N", and V" radial integrals in Eqs. (17)-(20) are given by'

M"(ab)=(a /4) f rirzR (ri)Rh(r2)(rz/rI )s(ri r2)dridrt—

N (ab)=(a /4) f r, r2R, (r, )Rh(r2)R, (ri)Rh(r, )(r2/r', " ')e(r, r2)dr, dri, —

V (ab)=(a'/4) f r, r,'R. (r, )R„(r,)(r, /r',"+")(r,B/Br, —i, B/Br, )R,(r, )Rh(r, )dr, dr, .

(20)

(21)

(22)

(23)

In these formulas e(r, —rz) =1 if r» r2 and it is zero
if r, g r2. Using Eqs. (17)-(23)and the basis sets adopted
in this work's 2~ we obtained the atomic parameters
g'" '(d" L) coll-ected in Table I.

(ii) The gd«and gd„spin-orbit coupling parameters
are computed with the formulas in Eqs. (17}-(19),but us-

ing the dgo and d MQ functions obtained from the cluster
SCF calculations instead of the free-ion 3d AO. In this
way, we introduce "octahedral" spin-orbit constants with

t2g or eg character and incorporate in these parameters
the desired 3d-orbital deformation. To recall the use of
this difFerent basis set and the octahedral character of the

new parameters we will denote them as gd,',""'(tzses I)-
and gd,',""'(tz e~ sI ), the -parentheses making reference
to the cluster electronic state in which the SCF equations
have been solved. Recall that in spite of this molecular-
looking notation these are still one-center parameters.

The use of the dgo and 1MQ functions in Eqs.
(17)-(19) deserves a few comments. First, we have to
compute g, using Eq. (20). In order' to compute the

gd,',""'(tz ez~ I) constant -we introduce 1, and find a
value that can be called g, (tt). To obtain gd,',""'(tz ei'

I") we require d, and d, , as it would be the case if
were using Eq. (15), and find a value that can analogously

TABLE I. Experimental and theoretical spin-orbit parameters (cm ') for the V +, Cr'+ (z =1-3),
and Mn + ions.

Ion

+2+
Cr+
Cr +

Cr3+
Mn+

3d
3d'
3d'
3d
3d'

Term

6g
5D
4p
6g

gtheor(de SL}a

170
212
218
252
307

expt b

168
212'
232
276
327'

g
expt

g/t
hero(dn SL}

0.9882
1.0000
1.0642
1.0952
1.0651

'Computed with Eqs. (17}—(19) and basis sets from Ref. 18.
Reference 20.

'Reference 37.
Reference 38.
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be called g, (te). However, the presence of two dilerent
radial deformations in the d basis, corresponding to
the tzg and eg symmetries, would require a detailed dis-
cussion related to the calculation of the 3d-3d two-
electron integrals in Eqs. (17)-(19). We avoid such com-
plexity by computing these interactions with the free-ion
basis sets. This approximation does not introduce appre-
ciable errors at all because, on the one hand, the 3d defor-
mation is not large and, on the other hand, these 3d-3d
interactions are a very small part of the total ('"~'(d"-sL)
parameter. Thus the quantities gd'""'(tzsez~ I') -comput-
ed with Eqs. {17)-(19)contain the same 3d-3d interaction
as the P" '(d"-sL) ones but they differ from the latter in
that g, is g, (tt) in gd,'," '(t use~~- I ) and g, (te) in
gd'" '(r e"I)te 2g g

The gd«and gd„parameters computed in this way can
still be improved by correcting them from the errors in-
troduced in the free-ion calculation. Such correction
may be easily incorporated if we first obtain the empirical
ratio k =p"r/g'""'(d"-sL), where p"i' is the observed
free-ion coupling constant, and then write

(24)

Values for these empirical ratios have been collected in
Table I.

Equations (24) and (25) are the final forms we used to
obtain the gd«and gd„parameters required in Eqs. (12)
and {13). Notice that these quantities will depend on the
metal-ligand distance R because the 3d-orbital deforma-
tion included in the d, and d, functions and estimat-
ed by means of cluster SCF calculations should change
with R.

The ligand parameter gL cannot be computed in the
same way as gd«and gd„ in Eqs. (24) and (25) because
there is not an experimental free-ion value to determine
the ratio k. The theoretical parameter computed with
the basis set of Clementi and Roetti 3 turns out to be 224
cm '. Misetich and Buch and Misetich and Watson
adopted a free-ion value of 220 cm ' found by extrapola-
tion from observed and calculated data for the sequence
Fi+, F +, Ii+, and neutral Ii. On the other hand, Eqs.
(12) and (13) show that the contribution of gL to the final
spin-orbit constants includes as a factor half the square of
a covalency parameter. Since these parameters are hard-
ly larger than 0.35 in the Auorides analyzed here, we see
that gL will be multiplied by a factor smaller than 0.08 in
these e uations. In the much more covalent Cu +:ZnS
and Cu +:CdS systems Setyono and Scherz" found that
the contribution of gL to the final constant is 7%. Thus
uncertainties in the estimation of gl, including radial ex-
pansion elects, mould represent, at most, 1 or 2 cm in
the final value of the total spin-orbit constant. It seems
then worthless to explore such eS'ects in gL. According-
ly, we have adopted the criterion in Refs. 8 and 9 and
have used in this work the extrapolated value gL ——220
cm

HARTRKE-FUCK RESULTS AND DISCUSSION

TABLE II. Theoretical values of the metal-Auoride equilibri-
um distance 8, (A) for octahedral (MF6)" ions. M=V'+,
Cr'+ (z =1-3),and Mn +.

System

V +.KMgF
Cr+ KMgF
Cr + KMgF
Cr'+.KMgF
Mn +:KMgF3

Configuration

t2g(3)
t2g (3)eg{2)
tqg(3)eg(1)
t.,'(33'

Multiplet

2.055
2.195
2.056
1.897
2.066

The open-shell Hartree-Fock-Roothaan methodology
of Richardson et a/ '.has been used to compute the elec-
tronic structure of the (CrF6)" (n =3—5), (MnF6)
and (VF6) systems in KMgF~, at several values of the
metal-1igand distance R. The metallic basis sets have
been taken from Refs. 18 and 22, and the fluoride basis
from R,ef. 10. These bases are formed of Slater-type or-
bitals {STO). The frozen-core approximation'5 has been
adopted in the calculation, the valence shell being formed
by the 3s, 3p, 3d, 3d', 4s, and 4p metalhc AO's plus the 2s
and 2p AO's of the six fiuoride ions. As commented
above, the 3d AO is a 2$ function and 3d' its innermost
STO. Insufficient core-valence ortho gonahty usually
occurring in frozen-core calculations has been corrected
by means of core-projection operators as described in
Refs. 24 and 25. All ligand-ligand integrals have been ac-
curately computed by following the renormalization pro-
cedure described by Kalman and Richardson. The
cluster-lattice interaction has been introduced by means
of an accurate lattice potential (as described in Ref. 29).
This potential is made of the nuclear and electronic con-
tributions of the lattice ions. The orthogonality between
the cluster wave functions and the AO's of the lattice
iona is enforced by means of adequate lattice projection
operators. This lattice effective potential is included in
the Fock operator of the cluster before the SCF process.
In this way, the resulting cluster MO's are consistent
with the external environment.

These SCF calculations lead to the determination of
the ground-state nuclear potentials, along the totally
symmetry vibration of the cluster, and then to the equi-
librium metal-ligand distance R, . These values of R, 's

are collected in Table II. They diler from the values
determined by x-ray diffraction or by analysis of the ob-
served isotropic superhyperfine constant A, (Ref. 28) by a
few hundredths of an A (Ref. 29).

Covalency parameters A, and A, and normalization
constants N, and N„required for the calculation of the

and g„parameters, have been deduced from the
canonical MO's, as discussed in the Appendix. For the
d~ systems (CrF6) and (VF6), having empty the
mainly metal„antibonding e MO, the covalency parame-
ters and normalization constants have been estimated
from the "average" tzses- T,„state with an electronic en-

ergy equal to the average energy of the T,s and T2g
states of this configuration. In these cases, the ground-
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state equilibrium distance is computed from the SCF
solutions of the t 2g- A z state and the optical spectrum,
including the spin-orbit constant, from the SCF solutions
of the t2 eg- T,„state.

Let us examine now the numerical results. First, we
will comment on the efFects of the 3d-orbital deformation
on the spin-orbit constants. In Table III we collect the
atomic parameters gd«and gd„[Eqs. (24) and (25)] com-
puted with k=1 at several vtlues of R. For the Sve sys-
tems investigated here we see that gd« is smaller than the
free-ion value and tends to such limit at larger distances.
On the contrary, gd„ turns out to be nearly independent
of R; it is also smaller than the free-ion value but greater
than gd«.

The behavior of these parameters correlates with the
3d-orbital deformation, as measured by the scaling pa-
rameters of Eqs. (10) and (11}.These parameters appear
in Table IV. First, it may be interesting to remark that
scaling parameters obtained by simulating the (r ") ex-
pectation values differ very slightly from those collected
in Table IV. For instance, in this table we read a value of
A, =0.9803 for Mn +:KMgF3 at R=4.00 a.u. This pa-
rameter turns out to be 0.9787 and 0.9827 for n =1 and 3,
respectively.

Numbers in Table IV reveal that the d,Mo orbital
significantly expands with respect to the free-ion 3d AO.
This eSect increases when R decreases. However, the de-
formation experienced by the d, function is much
smaller. It is also difFerent for different distances: this
function slightly expands at larger distances (the Mn +

ion is an exception} but it suSers a contraction at shorter
distances.

In agreement with the arguments by Marshall and
Stuart, the scaling parameter A, ~ 1 correlates with a
reduction of the gd«parameter. Also, the larger expan-
sions of the d, functions are consistent with gd«values
smaller than the gd„ones.

At this point it is interesting to remark that the rela-
tions

gdtheor(tx ey Si ) g3gtheor(dn SL )

gdtheor(tx ey Sl ) (g+)3/2gtheor(dn Sl )

(26}

(27)

which would hold if gd,',
"' '(tz ey- I ) and

gdrtheor(t3 ey-SI'} were proportional to (r )3& (Ref. 5),
are very well satisfied in the present calculation. In Table
V we collect the values of (dr'r" '(t

&see A, -e ) and

gdrt,
"' '(t2eee A& -e) for the (MnF6) ion computed by

means of Eqs. (26} and (27). Deviations from the values
in Table III are in all cases smaller than 3 cm ' and de-
crease at large distances. From this result we can con-
clude that the present 3d deformation may be fully cap-
tured by the scaling approximation. Our numbers sug-
gest that this is so because this deformation is essentially
produced by changes in the first term of g, . This term
has the form considered by Marshall and Stuart. The
modifications induced by the 3d deformation in the 3d-
core interactions appearing in Eq. (20) are negligible.

In applying Eq. (20} we have assigned a population of
2(21+1) electrons to the closed-shell orbitals. In our
frozen-core calculation this is totally correct for all but
the 3s and 3p functions forming part of the valence shell.
The two electrons occupying the mainly 3s MO do not

TABLE III. gd«(first row) and gd„(second row) spin-orbit parameters (cm ') for the V +:KMgF„
Cr'+:KMgF3 (z = 1-3),and Mn +:KMgF& systems computed by means af Eqs. (24) and (25), and k= 1.

R {a.u. ) Cr+:KMgF3 Cr2+:KMgF3 Cr3+:KMgF R {a.u. ) V2+:KMgF Mn2+:KMgF

3.05

3.15

3.425

3.59

3.99

4.19

4.39

4.59

152.9
191 4
162.1
192.2
169.2
193.3

180.4
195.8
184.2
196.6
187.1
197.1
189.3
197.3
192.2
197.3
211.5
211.5

179.6
204.8
185.6
205.2
190.1
205.9
193.7
206.5
196.8
206.8
198.9
206.9
200.6
206.8

218.1
218.1

208.1

236.6
213,1

237.0
217.5
237.6
222.2
238.7
225.4
239.4

229.5
239.8

230.9
238.4

251.7
251.7

3.00

3.20

3.40

3.60

3.80

4.00

113.7
153.9
125.0
152.7
132.7
153.1
138.1
153.9
141.9
154.6
144.7
155.1
146.8
155.4
148.4
155.4

169.6
169.6

249.2
292.2
264.6
294.4
274.7
296.9
281.5
298.9
286.2
300.3
289.6
301.1
292.1

301.4
294.0
301.5

307.2
307.2
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TABLE IV. Scaling factors corresponding to the d,M (Srst row) and d,MO (second ro~) functions.

R (a u ) Cr+ KMgF Cr'+.KMgF Cr'+ KMgF 8 (a u ) V +:KMgF3 Mn +:KMgF3

3.05

3.15

3.26

3.425

3.59

3.772

3.99

4.19

4.39

4.59

4.99

0.9213
1.0383
0.9336
1.0220
0.9429
1.0124

0.9580
1.0009
0.9629
0.9974
0.9668
0.9945
0.9699
0.9919
0.9738
0.9875
1.0000
1.0000

0.9480
1.0203
0.9561
1.0115
0.9620
1.0063
0.9669
1.0024
0.9711
0.9988
0.9739
0.9959
0.9762
0.9933

1.0000
1.0000

0.9439
1.0217
0.9503
1.0147
0.9558
1.0098
0.9619
1.0056
0.9660
1.0030

0.9713
0.9980

0.9730
0.9925

1.0000
1.0000

3.20

3.40

3.60

3.80

0.9081
1.0640
0.9264
1.0277
0.9391
1.0110
0.9479
I.D027
0.9541
0.9977
0.9587
0.9941
0.9621
0.9910
0.9648
0.9882

1.0000
1.0000

0.9358
1.0397
0.9526
1.0226
0.9638
1.0151
0.9713
1.0112
0.9765
1.0086
0.9803
1,0064
0.9831
1.0042
0.9852
1.0021

1.0000
1.0000

TABLE V.
and (27).

gd«and gd„spin-orbit parameters (cm ') for the Mn + ion as computed with Eqs. (26)

8 (a.u.):

gd«:
gd(,

3.00

251.7
294.8

3.20

265.6
295.4

3.40

275.0
297.3

3.60

281.5
299.0

3.80

286.1

30D.3
289.4
301.0

4.20

291.9
301.3

4.40

293.8
301.4

TABLE VI. g«(first row) and g„(second row) spin-orbit constants (cm ') for the V'+:KMgF„
Cr'+:KMgF3 (s = 1-3),and Mn2+:KMgF3 systems.

R (a.u. ) Cr+:KMgF3 Cr +:KMgF3 Cr +:KMgF3 8 (a.u. ) V'+:KMgF3 +. g 3

3.05

3.15

3.26

3.425

3.59

3.772

4.19

4.39

4.59

172.7
196.5
176.3
195.3
179.2
194.8

184.S
195.0
186.7
195.3
188.6
195.5
190.3
195.8
192.6
195.9
212
212

2D4.0
213.9
206.3
213.1
208.1

213.0
209.7
213.2
211.4
214.3
212.8
213.9
214.2
214.3

232
232

241.5
242.7
243.6
241.6
245.4
241.0
247.4
240.8
248.9
240.8

251.2
240.8

252.3
239.9

276
276

3.00

3.20

3.40

3.60

3.80

138.9
146.8
141.7
144,4
143.4
143.9
144.6
144.3
145.5
145.0
146.3
145.8
147.1
146.6
147.9
147.3

168
168

286.1

315.1
294.2
313,1
299.6
312,7
303.6
313.1
306.8
313.7
309.3
314.3
311.5
315.0
313.2
315.7

327
327
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belong completely to the metal 3s AO, as weB as the six
electrons of the mainly 3p MO do not belong entirely to
the 3p AO. Nevertheless, the distortion of these closed-
shell AO's is very small and the electron assignment we
have made does not introduce any appreciable change in
the values of the spin-orbit parameters.

Let us see now the effects of the metal-ligand covalency
on the spin-orbit constants. To appreciate this effect we
will compare the gd«and gd«parameters presented
above with the constants computed by means of Eqs. (12)
and (13}. In using these equations we have computed the
metallic parameters gd«and gd„ from Eqs. (24) and (25)
with the values of the empirical ratio k collected in Table
I. The resulting g«and g„constants appear in Table VI.
From the numbers in this table we deduce several con-
clusions.

First, in agreement with Marshall and Stuart, the g«
constants increase for increasing covalency, the effect be-
ing larger at shorter distances. This spin-orbit constant
increases with R, as the gd«parameter does, although
the increasing ratio is greater for the latter, as can be seen
in Fig. 2. This figure reveals two significant results: (a)
the 3d deformation effect is important even at larger dis-
tances, given the existing difference between gd«(R) and
the free-ion values (R = co ) and (b) the effects of the co-
valency disappear at relatively short distances, as indicat-
ed by the merging of the gd«(R) and g«(R) curves.
Thus, as expected, the covalency behaves as a quantum-
mechanical short-ranged interaction.

In Fig. 3 we can see analogous g„(R} and gd„(R)
plots. It is noticeable the near-R independence of these
"symmetry-mixed" spin-orbit parameters. A second
difference with the tz~-t2s parameters is that here the co-
valency tends to reduce the values of the spin-orbit con-
stants, with the exceptions of Mn~+:KMgFi and
Cr+:KMgFi at very short distances. As a third
difFerence we observe in this figure that the atomic and

O
SQQ & ~~~~wwmewwe e 2+lNn

Iw~~~~
Cl

+f2~~~a%%%%

2+V~~aawauwa~~~

I I I I i

S.S S.e 4.0 4.4 4.8

FIG. 3. R dependence of the g„(solid lines) and gd„(dashed
lines) spin-orbit couplings constants for the V +:KMgF3,
Cr'+:KMgF3 (z = 1-3), and Mn2+:KMgF3 systems. ¹te.
Free-ion values have been represented by hexagons.

cluster parameters do not merge in the range of E. exam-
ined. This behavior seems to be related to the anomalous
long-range R dependence of the it covalency parameter,
a possible artifact of our SCF calculations. We finally
notice that, as it should be, the g«and g„constants tend
to coincide at large distance (Table VI), the (CrF6) be-
ing the single exception. This exception might also be re-
lated to an anomalous prediction of the R dependence of
the covalency in this system. A better description would
require inclusion of configuration interaction involving
charge-transfer states but we have not considered this
refinement in this work.

Let us compare now the theoretical spin-orbit con-
stants with the available experimental data. In Table VII
we collect the constants computed at the theoretical equi-
librium distance and their reduction with respect to the
free-ion value. As commented above, accurate empirical
data are scarce and some results may be in appreciable er-
ror.

For the (MnF6) ion we can compare our g«
——308

and $„=314cm ' with the 320 cm ' given by Mehra
and Venkateswarlu ' for RbMnF3. Although these num-
bers are not immediately comparable, given the difFerent
crystal lattice and equihbrium distance, the agreement is
reasonable. Our result agrees well with the semiempirical
one given by Cole and Garrett, 304 cm ', for Mn + in
RbMnF3 and KMnF3.

For the (UF6) ion Sturge et al. i estimated the spin-
orbit constant from values of 10Dq, the angular momen-
tum reduction factor k, and the g factor. Using the ap-
proximate equation

g =2.0023 —(8/3)k g„/IODq (28)
FIG. 2. R dependence of the g„(sohd hnes) and gd„(dashed

Hnes) spin-orbit coupling constants for the V +:KMgF3,
Cr'+:KMgF3 (z = I -3), and Mn2+:KMgF& systems. Note.
Free-ion values have been represented by hexagons.

and tarring g= 1.9720, 10Dq = 12 000 cm ', and
k =0.96, they find $„=142cm ', in very remarkable
agreement with our 145 cm ' in Table VII.
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TABLE VII. $«and g„spin-orbit constants (cm ') and their reduction {%)with respect to the cor-
responding free-ion values, as computed at the theoretical equilibrium geometry of the M'+:KMgF3
systems. M= V +, Cr'+ (s =1-3),and Mn +.

0«
Reduction

Reduction
ga
Ca

Cr+.KMgF

186
12

195
8

681
2427

Cr +:KMgF3

211
9

214
8

750
3057

Cr +:KMgF3

249
10

241
10

808
3336

V +:KMgF3

146
13

145
13

697
2676

Mn +-KMgF

308
6

314

885
3059

'8 and C electron-repulsion parameters (cm '), taken from Ref. 34, have been computed through
cluster-in-uueuo calculations.

For the (CrF6) and (CrF6) iona we do not find any
empirical estimation of the spin-orbit coupling constant.
For (CrF6), our calculation gives values about 10%
lar er than those reported by Wong et al. i2 for
Cr +:KzNaGaF6, 225 cm ', and Ferguson et al. i for
KiNaCrFs, 227 cm

To conclude the discussion we would like to refer to
the linear correlations between spin-orbit constants and
electron-repulsion parameters discussed by Cole and Gar-
rett in their study of the spin-orbit interaction in
transition-metal compounds. It seems natural to ask
whether these correlations appear or not within the
theoretically calculated quantities. Theoretical electron-
repulsion Racah parameters for the octahedral clusters
analyzed here were computed by Francisco et al. i They
are included in Table VII. In Ref. 34 the electronic ener-
gies of all the d" states were first computed, by means of
the frozen-orbital approximation, from the SCF solution
of the ground state. The T,„state introduced above
were used for the d systems. The Tanabe-Sugano ma-
trices' were then fitted to these theoretical electronic
transitions through a linearization procedure. i Thus,
for a given cluster, the spin-orbit constants of this paper
and the electron-repulsion parameters of Ref. 34 come
from the solution of the same electronic state. The
electron-repulsion parameters, however, were obtained
from cluster-in Uacuo results. Given the uniformly small
ffetecosf the cluster-lattice interaction on the d-d transi-

tions, as computed in Ref. 36, we think that the following
comparison and quahtative conclusions deduced from
Table VII would be reasonably consistent.

From this table we see very clear qualitative correla-
tions for the isovalent sequence: V +, Cr +, Mn +, the
isometallic series: Cr+, Cr +, Cr +, and the isoelectronic
pairs V +, Cr +, and Cr+, Mn~+. In the isoelectronic
and isovalent sequences both Racah parameters and
spin-orbit constants increase with the nuclear charge, and
in the isometalhc series these parameters increase with
increasing ionization. Clearly, these few examples do not
allow for generalizations but these qualitative trends hold
quite well.

On the other hand, the work by Florez et uI. shows
that for the (MnF6) cluster the theoretical 8 and C pa-
rameters are fairly independent of the metal-hgand dis-
tance. This behavior contrasts with the clear R depen-
dence of g«shown in Fig. 2, but it is consistent with the

near independence of 8 shown by g„(Fig. 3). Such result
may be understood if we recall that the theoretical 8 and
C parameters are obtained through a process that mixes

tis t2s, -tzs es, an-d es-es electron-repulsion interactions.
In conclusion, our results suggest that the theoretical
spin-orbit constants might well correlate with theoretical
electron-repulsion parameters through isovalent, isome-
tallic, and isoelectromc sequences. For a given cluster,
the R dependence of the electron-repulsion parameters
would more resemble the behavior of g„ than that of g«.

We have used the Hamiltonian of Misetich and Buch
in combination with Hartree-Pock-Roothaan calculations
to compute crystal spin-orbit parameters and examine the
efects of 3d-orbital expansion and metal-ligand covalen-
cy on these quantities. The V +, Cr'+ (z =1-3), and
Mn + ions in KMgF3 have been studied. The
modi6cations of the spin-orbit radial functions induced
by bonding effects have been obtained from the SCF re-
sults by means of a procedure that permits an easy
transference of any theoretical refinement in the cluster
calculation into the computed spin-orbit constants.
However, the ligand constant (L has been taken from
earlier estimations because the equations of the Misetich
and Buch formalism reveal that the uncertainties in this
parameter have a negligible effect on the Snal spin-orbit
constant.

Our calculations show that the 31-orbital deformation
plays a significant role in determining the final value of
the spin-orbit constants. %e have considered only two
3d functions in the valence space but this small extension
of the number of 3d functions is enough to show the im-
portance of the mechanism advanced by Marshall and
Stuart.

The metal-ligand covalency turns out to have a minor
contribution to the spin-orbit constants considered in this
work. This picture may be different in more covalent sys-
tems such as oxides and chlorides.

The ligand contributions are also small, never larger
than 10% of the final constants. Analogous results were
found by Setyono and Scherz" for Cu + in ZnS and CdS.

The theoretical spin-orbit constants show the reduction
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from the free-ion values detected in the empirically deter-
mined quantities. This reduction is essentially produced
by the 3d-orbital expansion. The variation of this expan-
sion with the metal-ligand distance is presented and dis-
cussed in this paper.

The work by Florez er a/. has shown that the lattice
effects have a minor in6uence into the covalency parame-
ters and nephelauxetic ratios determining the crystal
spin-orbit constants. Due to this, the results presented
here may apply to other 3d 6uorides as well.

Finally, the method proposed in this work gives
theoretical spin-orbit coupling constants in rather good
agreement with available experimental data. Thus, it ap-
pears that these theoretical constants would be accurate
enough to be used with confidence in the study of the op-
tical and electron resonance spectra of 3d ions in
fluorides.

M N

ggdkae f;=gq f;=Nd, (A7)

It is clear that the new d, and d, functions differ
from the free-ion 3d AO because they depend upon the
details of the particular cluster SCF calculation, through
the ck and dk coeScients

Normalization of the d, o and d, o functions gives

1/2

' 1/2

Introducing the d, and d, functions in Eqs. (A4)
and (A5) we get the traditional single-3d-basis form of
Eqs. (7) and (8):
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APPENDIX

t=N, (d, +c N, 'X ),
e =N, (dMo+c, N X, +c.N X.),

with

cN, —',
A,, =—c,N, ',

(A10)

(Al 1}

(A12)

(A13)

hf
r = g ckg3e(k)+c X

k=1
(Al)

We proceed to prove that Eqs. (7) and (8) are compati-
ble with SCF results obtained within an extended 3d basis
set. The valence MO's deduced from such SCF calcula-
tions will have the form

(A14)

3dsr(r)= g m; f, , (A15)

The scaling factors appearing in Eqs. (10) and (11) can
be computed as follows. Let, for instance, the 3d AO and
the new d~M functions be expanded over the basis set:

e = g dkg3d(k)+c, X, +c X
k=1

(A2} N
dMO(r)

being cz, dk, c, c„and c the SCF coeScients, and M
the number of 3d functions used in the SCF calculation.
If these 3d functions are in turn expressed in terms of N
basis functions f;: (A17)

The scaled 3dsr(kr) STO function can be written as

3d (A.r)=A, '~2+ m;[(2g;) /6!]'~2r exp( A,g,r)—
Ad(k)= & akf . (A3) and the scale factor A, may be computed by maximizing

the overlap integral:

Equations (Al) and (A2) become
N M

r= g g cka;kf;+c.X„,
i=1 k=1

(A4)

S(A, )=(3d (A, )
I d,

=A, ~ gh; (Ag;+g ) (A18)

M
e= g g dka;kf, +c,X, +c X (A5}

The 3d part of each of these MG's can be written as a
new 3d function expanded over the same basis set, name-
ly,

where h;, =2 m;nj(g;g, ) ~

The equation BS(A.)/N, =O is a polynomial in A, that
can be solved iteratively by using the expression

N
—1

g h;J(kg;+g)) 2 g h; g;(Ag;+gj )

M N

g pc~a;kf;= gI;f; =N d"'
i k

(A6) (A19}
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