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%e study the surface critical behavior of semi-infinite systems with an n-component order param-
eter and short-range interactions at a bulk tricriticaI point. The special surface transition is investi-

gated in detail for space dimensionalities d =3—a&3 using field-theoretic renormalization-group
methods. For ep 0 its infrared-stable fixed point is described by a Hamiltonian which contains a

surface interaction of strength O(e' ) in addition to the familiar
~ P ~

bulk interaction of
strength 04,'e). For d —=3, logarithmic corrections of a non-power-law form appear. The renormal-
ization of a proper continuum model is expounded and the implications of the results are discussed,
especially with regard to the adsorption of polymers from a 8 solution.

I. ImROOUCI'ION

In a recent letter' we investigated the surface critical
behauior of macroscopic systems ' at a bulk tricritical
point. Familiar examples of systems displaying bulk tri-
critical behavior are metamagnets, He- He mixtures,
fluid mixtures, and polymers in a 8 solution. If such sys-
tems are bounded by a surface, the local (tri)critical be-
havior is modified in the vicinity of that surface. Just as
in the case of an ordinary bulk critical point, several
classes of surface transitions taking place at bulk (tri}cri-
ticality can be distinguished. " For systems of the
O(n }, short-range interaction type, tricritical analogs of
the familiar ordinary, extraordinary, and special transi-
tions2'3 have been identified, in particular. Although
there exist some studies in the literature, " these sur-
face transitions have been investigated to a much lesser
degree than their analogs for a bulk critical point.

In Ref. 1 we reported results of a detailed
renormalization-group (RG) analysis of the special transi-
tion for space dimensionalities d =3 —e(d ':—3, the
upper critical dimension (UCD}. We showed that the
dimensionahty expansion for e & 0 takes the form of an
expansion in powers of e'~z, notwithstanding the fact that
bulk tricritical behavior is accessible to a conventional
power-series expansion in e. Precisely at the UCD, log-
arithmic corrections of an unusual form (involving ex-
ponentials of square roots of logarithms) were found.
The purpose of the present paper is to give a more de-
tailed exposition of our analysis.

The Sndings just mentioned distinguish the special
transition considered here from all preuiously studied
analogous surface transitions at a bulk critical or tricriti
cal point For the.se the dimensionality expansion about
the UCD always took the same form as for the associated
bulk transition, namely that of an expansion in powers of
e. Of course, there is no a priori reason why this should
be the case. It should also be noted that expansions in
powers of e'~ as well as logarithmic corrections of a

similar unusual form were encountered before in studies
of bulk critical behavior in random Ising systems. 'z

However, the mechanism leading to an e' expansion is

diferent in both cases.
In our case the situation is as follows. Since we assume

the interactions to be of short range, an adequate frame-
work for our analysis is a continuum model with a Ham-
iltonian of the generic form

%= I d x[8(z)X +5(z)X,] . (1.1)

Here Lb and X, are functions of the n-component order
parameter P (x)=(P (x);a=1,2, . . . , n) and its deriva-
tives, x is a position vector CI, and s & 0 measures the
distance from the surface plane z =0. In Xb contained is
in particular the usual bulk term ~ u

~ P ~

s (see e.g., Refs.
4 and 15; which other bulk or surface terms have to be in-
cluded in Xb or X, will be discussed in detail in Sec. II.
Here it will be suScient to recall from Ref. 1 the crucial
importance of including a term 0:u,

~ P ~
in X,. At the

Gaussian fixed point from which the nontrivial infrared-
stable fixed point splits off as d drops below d' =3, both u

and u, are marginally relevant. Moreover, the associated
operators mix under the RG, so that a nonuanishing u, is
generated if u+0, euen if originally u, —=0. It is precisely
this fact which entails that u, is of order e'~2 at the
infrared-stable fixed ~oint and thus gives rise to an expan-
sion in powers of e'

From these remarks it is obvious that a study of the
special transition is certainly very interesting from a con-
ceptual point of view. Another attractive feature of this
transition (which it shares with bulk tricritical behavior}
is that the UCD coincides upwith the physically interesting
dimension d =3. Since for d =3 the theory is asymptoti-
cally free in the infrared, the asymptotic critical behauior
obtained from the perturbative RG calculations de-
scribed below is expected to be exact.

This brings us to the natural question of whether the
results predicted below are accessible to experimental
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veriflcation. As is well known, the experimental observa-
tion of bulk tricritical behavior is more dif6cult than that
of bulk critica1 behavior since it requires the location of a
tricritical point in a space of (up to ) four thermodynamic
fields. A thermodynamic description of surface phases
involves additional surface fields, e.g., a field c, frequently
called surface enhancement, which measures the enhance-
ment of the interactions at the surface. ' (In the general,
symmetryless case further surface fields are needed, as
will be explained in Sec. II.) The special transition we are
concerned with here is described by a mu)ticritical point
at which c takes a special value. (Additional symmetry-
breaking surface fields would have to vanish. ) Compared
with bulk tricriticality we thus have at least one addition-
al constraint to be met. At first sight the experimental
observation of this transition therefore seems to be a
rather delicate task. We nevertheless believe it to be pos-
sible.

The kind of system which seems to us particularly well
suited for experimental inuestigations of the special transi
tion is a polymer immersed into a 8 soluent. As has been
known for some time, 'i the 8 point of such a bulk system
may be understood as a bulk tricritical point. If such a
system is bounded by a wall, the polymer may be prefer-
entially adsorbed by the wall, provided the wall-monomer
interaction is sufliciently attractive. At a critical value of
the interaction strength the polymer changes over from a
nonadsorbed, roughly three-dimensional state to an ad-
sorbed, roughly two-dimensional state. Just as in the case
of a good solvent, 's'9 this adsorption threshold is the po-
lymer analog of the special transition. The advantage of
using polymers is that fewer thermodynamic fields are in-
volved: the 8 point has to be located in a space of only
two thermodynamic variables (e.g., temperature and po-
lymer concentration), and to reach the adsorption thresh-
old a single additional surface variable has to be adjusted
then.

Using familiar arguments (see, e.g., Refs. 18 and 19)
one can show that the wall adsorption of 8 polymers is
described by the n ~0 limit of the semi-infinite n-vector
model to be introduced below; so the problem fits well
into the framework of our present analysis. Actually, one
motivation for the present study was a recent Monte Car-
lo simulation of a simplifled three-dimensional lattice
model for the adsorption of a 8 polymer by van Dieren
and Kremer. These authors modeled the polymer by a
walk which was random away from, but self-avoiding at,
the surface. Such a walk maps onto the n ~0 limit of a
semi-infinite n-vector model with u =—0.

The remainder of this paper is organized as follows. In
Sec. II a proper continuum model is introduced, our
choices of the bulk and surface densities Xb and Li are
motivated, and the renormalization of the model is ex-
pounded. Owing to the larger number of marginal and
relevant variables, the renorrn. ahzation is somewhat more
involved than for the familiar semi-infinite n-vector mod-
el describing surface transitions at an ordinary bulk criti-
cal point, so a more extensive discussion is necessary. In
Sec. III we give the resulting renormalization-group
equations and present our results for the required renor-
malization functions. In Sec. IV the critical behavior at

the special transition is analyzed for d—:3—eg3. Sec-
tion V is devoted to the case d =3. Finally, Sec. VI con-
tains a brief summary of our results, a discussion of the
relation with van Dieren and Kremer's work, and some
concluding remarks. A number of computational details
have been deferred to Appendices A-C.

II. CONTINUUM MODEL AND RKNORMALIZATION

In order to complete the definition of our model, we
must now specify the bulk and surface densities Xb and

X, in (1.1). We assume that the symmetry which is spon-
taneously broken is O(n ). Accordingly Xb as well as X,
will have an O(n)-symmetric part and a part which
breaks this symmetry. For the sake of simplicity, we will
allow in both Xb and Xi only symmetry break-ing parts
that leaue a remaining O(n —1) symmetry with respect to
a common axis specifled by a unit vector e unbroken
Given this restrictive assumption, the Hamiltonian can
be constructed along standard lines (cf. Ref. 3, Sec. II B),
taking into account the following points.

(i) Since we wish to study surface critical behavior at a
bulk critical point, a prime requirement is that Xb be an
adequate bulk density for analyzing bulk tricritical be-
havior in the vicinity of the UCD. Which terms have to
be included in such a bulk density has been discussed in
detail in Ref. 4, so Xb may be gleaned from there.

(ii) As a general rule, all local (bulk or surface) opera-
tors which are relevant or marginal at the UCD should
be included in Xb and X,. By a local operator we mean a
monomial in P and its spatial derivatives, as usual.

(iii) Within a Landau-Ginzburg approximation the spe-
cial transition is described by a Hamiltonian of type (1.1)
with Xb ——

—,'(Vp)~ and X,:—0. In order to decide which
interaction terms are relevant or marginal at the UCD,
we may study their scaling behavior at this Gaussian
fixed point. This is determined by the naive dimensions
of the associated coupling constants: Let M(P) be a mo-

nomial whose naive dimension is p in units of an arbi-
trary momentum scale p. Then a contribution
g' "M(p) to Xb or X& is relevant, marginal, or ir-
relevant at the UCD d' (in this naive power-counting
sense) depending on whether the p dimension
d'"'=d' —dbt or d'"=d' —dbt —1 of the corresponding
bulk or surface coupling constant g' " is positive, zero,
or negative, respectively.

For convenience, we have listed in Table I the relevant
bulk and surface operators for our case, together with the
corresponding dimensions d'" ". Note that we have om-
itted the relevant bulk operator e P ~ P ~; its inclusion is
unnecessary because it can be eliminated through a shift
P(x)~P(x)+5/, at the expense of modifying the cou-
pling constants of the other bulk operators. For a simi-
lar reason it also is unnecessary to include terms propor-
tional to the marginal surface operator $.8,$ or the
relevant surface operator e B,P in X, (cf. Ref. 3, Sec.
IIB). To see this one should recall that the propagator
belongin~ to the aforementioned Gaussian fixed point is
given by
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TABLE I. (a) and (b). Relevant bulk (surface) operators M,(b),

(MJ'"), associated dimensionless coupling constants g b', (g~(")
and p dimensions d b', (d;")) of the respective dimensionful cou-
pling constants.

1 d(l )

2~f(l)pz u 1y14+ y p j g(1)~{1)+gcT
4t j= 1„2,2",3

(2.4b)

(b)
f

d(b)

J =3

N)
1 e+
2 2

1 - 2—,(e i)))i(a'
3I

(a)
l =3

3 +
2 2

1—(e P)(()'
3!

(b)
J=2

1 (~e.y)2

2

5 6'

2 2
—(e (())

III,

3
2 2
—(e P)

Here U, g ', u 1, and gj" are dimensionless bulk or surface
coupling constants. The corresponding operators M
and M'" as well as the dimensions d ' and d'" are given
in Table I. The factors f and f"' are power series in e of
the form

f(1) I +f(1)e+f(2)e2+

which we have introduced to facilitate comparison with
other conventions of normalizing the renormalized cou-
pling constants U and u, . (The fact that the f; and f;"'
must drop out of all universal quantities provides us with
a convenient means of checking explicit calculations. ) Fi-
nally, Xb and Xc( denote the bulk and surface counter-
terms which are required to absorb the ultraviolet (UV)
singularities of the free energy

G„(r;z,z') =
& y.(r,z)y.(O,z') &„„„ F=—ln f d1iI) je (2.6)

ip z I —p)z —z') —p(z+z'))~
~ +e

p 2p

=G ([r +(z —z') ]'~ )

+G ([r?+(z+zi)2]1/2) (2.1)

Gaussian bulk propagator

Gb(1x1)=—„'ir dj21"(
—,'d —1)1x12 ". (2.2)

The index N indicates that Gjv satisfies the Neumann
boundary condition

where r EI" ' denotes the parallel components of
x=(r, z), f—:(2n }' I d" 'p, and Gb means the

and other thermodynamic quantities. We claim that the
Hamiltonian defined by (1.1), (2.4a), and (2.4b) is renor-
mahzable i.e., the counterterms do ttot inuolue any bulk
arid surface operators other than those appearing in the
rest offf and explicitly given in (2.4a) and (2.4b).

To substantiate this claim, we will rely on power
counting. Since we also wish to consider correlation
functions, let us first include source terms in &, making
the replacements

g( b)~g( b)(p x) g(b)+ J(b)(i2x) 1 1 2 3 4

(2.7)
a, G„(r;z=O,z'~O)=O.

Using this together with the fact that

lim (),Gjv(r;z, o)= —5 '(r)
z~0+

(2.3)

(2.4)

g(1) g(()(ter) g(1)+J())(Ijr)j

Here the J,' " are smooth source functions that vanish
at infinity. We then define the generating functional

one can convince oneself that the e8'ect of the above-
mentioned two surface operators, within a (regularized}
perturbation expansion about the Gaussian 5xed point,
may equivalently be described through changes of the
coupling constants g&

' of the surface operators Mj list-(1) (1)

ed in Table 1(b).
%'e are thus led to the following choice of densities:

@""1 [g( )j)=»[&(U,u;Ig(. )j)fz(u, u, ;Ioj)],
(2.8)

z(U, ul, Ig(. )j)= f dt(t)je ~(&g"),

&b =-,'(~4)'+2+fp"
6,

U 141'

4 g(b)
i g(b)J)il(b)+~C& (2.4a)

in which Ig( ~ ) j denotes the set of all spatially varying
bulk and surface interaction constants on the right-hand
side (rhs) of (2.7). Taking functional derivatives of 0 with
respect to kg( ~ ) and setting g( ) =—g (i.e., all sources J
and J'" equal to zero) afterwards, gives us the usual (re-
normahzed) connected correlation functions of the opera-
tors M ' and M'-". Speci6eally, we consider
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(X~,N, X~ ) h

G ' (px, pX, pr;U, III, (g})= ff 5h, 5h p,x;
(2.9)

g(u, u „Ig( ~ ) —=g } )—= —F+cons~ (2.10)

where x—= Ix,-}, X, and r are convenient shorthands.
(Note that in order to simplify our subsequent considera-
tions, we have refrained from including source functions
that couple to the transverse components of P, namely
those perpendicular to e. However, it is an easy matter to
convince oneself that if the cubic fields w and w„as weB
as c' vanish, the reparametrizations required to renormal-
ize the above correlation functions [and given in (2.14)]
also suffice to make their analogs involving transverse
and/or longitudinal components of P finite. )

%e expand

because otherwise we will encounter infrared problems. '

However, this is of no importance for the following con-
siderations concerning the ultraviolet singularities of the
theory, for we may set g( ~ ) =g in the resummed theory. ]
Each individual term in these series may be represented
as a Feynman diagram whose lines correspond to the free
propagator GN introduced in (2.1). As is explained in de-
tail in Ref. 3, the singular behavior of G~ at short dis-
tances gives rise to nonintegrable bulk and surface UV
singularities which should be absorbable by local bulk
and surface counterterms. The general form of such con-
tributions tomb andri is

as well as the other functions generated by 9' in a pertur-
bation series about the Gaussian fixed point. [Strictly
speaking, we must not expand in powers of g( ~ ) unless all

g( } are smoothly varying functions of bounded support, and

N~
d(b) ~(b)P' '(8„} [tf}(x)j ~ ff [p '

g "'(px)j '

i (~1)
(2.11a)

N g(b) ~Ib) g( 1 ) ~I 1)
P"'(5.)"fy(,0)] ff [)u

'
g,""()u,o)j ' g[u ' g,'"(u )] '

i (+1) )
(2.11b)

respectively. Here N, N&, N ', and ¹"are nonnegative
integers, P' ' and P'" are power series in u and u I (renor-
malization functions}, and (8„) is a symbolic notation
for an arbitrary product of N derivatives with respect to
any components of x. In principle, each individual
derivative may act on some (or all} factors of P and/or
the source functions involved. However, derivatives act-
ing on source functions in most cases can be transferred
to the fields P by integrating by parts; the only counter-
terms with spatial derivatives of source functions that we
cannot get rid of in this manner are surface counterterms
involving z derivatives of bulk sources.

Let us suppose, for the moment, that the UV diver-
gences have been regulated by means of a large momen-
tum cutoff A (even though we will ultimately use dimen-
sional regularization). For dimensional reasons, P'b' and
P' ' then must vary as

p(b) p b

P'"= y ~ 'Q'"'(u n)-
1=1

(2.12a')

P"'= y e-'Q"'(u u n)
1=1

(2.12b')

respectively, where d& (d —2)/2 ——means the p dimension
of P(x). In d' —e(d' dimensions it is sufficient to in-
clude all terms with superficial degrees of divergence
5b(d')&0 and 5,(d')&0. Terms with 51,(d')=0 and
51(d')=0 correspond to logarithmic divergences in A.
We will use dimensional regularization in conjunction
with minimal subtraction of poles. ' Then only the latter
terms (whose divergences correspond to poles in e) are
needed, and the renormalization functions take the form

and

5 =d N d&N& —g —d 'N—"',
i (~1)

P'"-A ', 5,=5,—1 —gd, '"N,'",

(2.12a)

(2.12b)

Note that while QI
' is a power series in u (with n-

dependent coefficients), QI" is a power series in both mar
glnal Uarlabl8s, U aIld Q i. That QI 18 111depe11deIlt of It 1

is an obvious consequence of the local character of the
UV divergences; for the same reason, the surface sources
do not enter into the bulk counterterms XI, .

Collecting all counterterms according to the prescrip-
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tion given above, we find that Xb and X, can be written

and

&b =&»,0+&»
4

&»,0=-,'(~4'o)'+ Uo —, I 40 I

'+ X g', o'M, o'
i=1

(2.13a}

&1=&i,o+ &1

&i,o=ui, o41 lkol'+ X g, oM, o .(1) (1)

j=1,2,2', 3

(2.13b)

Here ere have introduced the bare bulk and surface quan-
tities:

Z 1 /2
y

Uii=27r fp, ZqU

expressing the generating functional Q in terms of bare
quantities. To this end we define 9'0, the bare analog of
9, by replacing in (2.8) 9, Xb, X,, as well as all other re-
normalized quantities through their bare counterparts Qo,

Xbo, X, 0, etc. Combining (2.8), (2.13a), (2.13b), and
(2.14) gives

~0(UO ul, o Igo(. )I )=&(U ui'Ig(. )I )

+ X Z b + Z

(2.16)

which lends itself easily to a derivation of
renormalization-group equations (see the following sec-
tion).

III. RENORMAI. IZATION-GROUP EQUATIONS AND
RESULTS FOR RENORMALIXATION FUNtmIQNS

gib) l p(5 —e}/2(Z —1/2b ~uwP )

g2 11 ='ro=p (Z 1 +u Ps )
(b) 2

(b) w (3+a)/2Z
g3,o =wo=p
g(b) =u =p'+'Z u

7
(2.14)

From Eq. (2.16) renormalization-group equations
(RGE's) for correlation functions can be derived in a
standard fashion by exploiting the p, independence of Qo
and taking functional derivatives. These RGE's take a
particularly simple form for the dimensionless functions

(N~, N, N~ )

G ' defined in (2.9), which we will write as G
introducing the shorthand

u i 0 =277f Ib ( u i +PI ),
g i,o =-li i,o

(1)

=tu [(Z1ZQ ) b 1 +w 1P/+ cN 1PK

+C N1PL + uN1P»r+WPN ] &

g2 0 =co P(Z c+&c PQ+ N lPR +uPT) &

g2' 0 =CO =P(Z~ C +N 1PU) &

(1) 2

(1) w — (1+~)/ Z w

and the shorthand M,'0/" =M /"(Pz). The operator-
free contribution 4'b can be expressed as

4'b —p, (Pcu +Pn—su+PEN ); (2.15)

its surface analog 4'1 contains pole terms proportional to
4 2» 2 2 2 I

A1N1 Ni& &C & CC & C & lo 1C& iU1C & Cu& C u& Ni io& N iu& +&

u, and B,u. All above renormalization functions P and
Z —1 have the Laurent form given on the rhs of (2.12a')
or (2.12b').

The upshot of these considerations is that the Hamil-
tonian defined by (1.1), (2.4a), and (2.4b) and generalized
by (2.7) to spatially varying interaction constants is
indeed renorrnalizable by means of the above reparame-
trizations. Note that while the above bulk reparametri-
zations are in conformity vrith those of Refs. 4, 15, and
22 for the special case w =—0, their required generalization
to the case of nonvanishing cubic Seld w does not entirely
agree with the one asserted in Ref. 4. In this latter work
the additional term ~uwP„ in the equation for ho is
missing. Accordingly the resulting fioat equations v+11

also diler through the contribution implied by this term.
The resulting relations between bare and renormahzed

correlation functions may be compactly summarized by

JV=(N», N„N» ) . (3.1)

P (U ui [g] e)=pB„ I 0&

K=V, Q1,g

g =A, T', w, Q, A],c,c,w1

(3.2)

Bs(U, u „;e)=de(e)+11K(U, u 1 ),
g ( U, u 1 ) =pB„ I 0 lnZ

where dg means the p dimension of go and

Zb =—Z~ ', Zb = (ZPZ1 }

The RGB's thus become

(3.3)

(3.4)

~= I},u 1, I g I

PB„G =0, (3.5)

&1th

E/&/ (d 8» }N»+(d——8,)N,—+(d —1 8»—)N» . (3.6}—
Utilizing (2.14) the P functions can be rewritten as

The reason for this simplicity is that the G do not in-
volve functional derivatives with respect to those sources
that appear as factors of the functions P„,. . . , PU in
(2.14). For the sake of simphcity, we will furthermore re-
strict attention to such values of JV for which the
operator-free parts Sb and I, do not contribute (assum-
ing, e.g. , N» &0 or N„&1). Denoting }M derivatives at

1

fixed bare-interaction constants Uo, ui 0, and tgoj by

8„ I 0, we define the P functions
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2E
p -=p'"'"=-

a, in(uz„)

eu, +(e+p„a„}PI
p„, —:p„,(v, iii', e)=— (3.7) /, J=0

[(i,J.)~&0,0),(0, 1))

~„(e,n) v'u,

malization function I'1. To this end we write

(3.17)

pg(u, ui, Ig j;e)= —gag(u, ui,'e) —l5lg(u, ui, Ig j ), 8„=+8, ,(n)u'u', , (3.18)
%@here the Ag repIesent the contrlbutlons 1Hlplled by the
functions P„, . . . , PU Fo. r a given value of g, b, de-

pends on the set of sources Ig j in just the same way as
the contributions proportiona1 to I'z, . . . , I'U do in the
expression for go given in (2.14), Accordingly we have,
for example,

where the latter summation is restricted to the same pairs
(i,j ) as in (3.17). In Appendix A we evaluate the Feyn-
man graph expansion of G' ' ' ' for [g =Oj to orders u,
and uu, . From the results given there and (3.15) we may
conclude that

and

bi, ——uiu8(u ),

&,= cg( uu~)+toil(u, u, )+uT{u,u, ) .

(3.8)
~10 ~ ~10~ ~10

A11 ———

n+4
80

(n +4)(n +8) 1

$80~2

" +(n+ g)(f, -2f',")

(3.19)

(3.20)

«re 8, Q, &, and T are finite functions of u, or of u and
u

&
as indicated. (Like occasionally before, and below, the

dependence on n is suppressed. ) We content ourselves
with giving the resulting expression for T; it reads

and

—1 n+8~02=& &02 &02 = (3.21)

T(u, u, )=(V, a„+p„a„—+p„a„)P,Z (3.10)

The special form the renormalization functions P and
Z —1 take within the present minimal subtraction scheme
so far has been exploited only to conclude that the renor-
mahzation group (RG) functions rig and hg are indepen
dent of e. Used in conjunction with our knowledge that
all RG functions p„, 8g, ri, b, , etc. remain jinire in the
limit e~0, it enables us to simplify the above expressions
considerably. Let us denote the residuum of Laurent
series such as I'I, Z„—1, . . . at @=0 by Pl", Z„"', etc.
Elementary considerations then yield

(n+8)2 1
~0,3=, + &0,3

36m

5' +22
80 3= 21n2 .

9

(3.22}

The surface renormalization functions Z, and Z, can be
determined by computing

539/5c(pr)5h (px, )5h (px2)

and 6""for Ig:—Oj. Our perturbative results to or-
ders u i and u are described in Appendix B. Using these„
one arrives at

and

p = —2ev+2u'a, Z"'

P„=—eu, +8„(u,u, ),
8„=(—i+2ua„+ u, a„}P,"',
ri, = —(2ua, +u, a„)Z,'",

T(u, ~, )=—{i+2ua„+u,a„)(P,Z )'".

(3.11}

(3.12}

(3.13)

(3.14)

n+2 2n+2 n+5
6e ' 6e 6e

(n +2)(n +4) 1 1 f(i)
5t8~ ~ g 1 1

+O(uiu, Q i ) (3.23)

%e proceed by giving explicit perturbative results for
various renormaBzation functions needed in the sequel.
From studies of bu1k tricritical behavior ' it is known
that

(n +2)(n +4) 2Z1 = 1+0 5!e ( —' ——'u, )+O(u, u, }32 9

(3.24)

and

Z, &
——1+O(u ), q, &

O(u ), —— Substitution of Z„(3.4), and Z, into {3.13) then yields
(3.15)

7f +2 28+2
'g = —Q1C +u1 ln2

3

P„=—2ev + 3' +22
120

u +O(u }. (3.16) +v (—'+2f'i" f i )+O(iiiu, ii i)—
0

In order to compute p„we must determine the renor- {3.25}
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and

ri~, = ,'—(n—y+rii)

with

(3.26)

( ' '
) 0( ) (327)

5t
3Q] + U, Q)

In closing this section we brie6y turn to the special
case U—:0. As shown in Ref. 1, one has

Z, (u =0, u, ,e) —= 1 . (3.28)

It will be helpful to recall how this result can be under-
stood within the framework of our present analysis. Con-

(OO, N~ )
sider the Feynman graph expansion for 6 ' for van-
ishing bulk interaction constants u =—g '=—0. Since only
surface vertices are present, this expansion involves the
propagator Gz [defined in (2.1)] only between surface
points; the corresponding Fourier transform is given by

IV. RKNQRMALIZATIQN-GROUP FLO% AND
CRITICAL EXPONENTS FOR d ~ 3

We now turn to a discussion of the RGEs (3.5). Solv-
ing (3.5} by characteristics one finds that a homogeneous
dilatation of the length scale by a factor e & 1 can be ex-
pressed as

(px, pX,pr; Ia j )

=6+(e ~px, e pX, e pr; Ia(A, )I )

xexp —I dA, 'E~(u(A, '), u, (A,')}
0

(4.1)

In accordance with our previous conventions [cf. Eq.
(3.2)], I « I here means the set of all marginal and relevant
variables,

I~I
—= Iv, u, ) U tg=h, r, w, u, h„c,c', w, I .

(OO, N~ )
1

p
—1 (3.29) The running coupling constants F(A)are d, efined by

Consequently the above Feynman graphs may be viewed
as those of a d —1 dimensional bulk system with a free
propagator given by (3.29) in momentum space. To be
precise, let

with

i7(A)= —.p„(U(&),ui(&), Ig(&) );&)

(4.3)

P(r) =$~(r„O) (3.30}

and set c'=w, =—0, for simphcity. (The generahzation to
the case c'+0 and wi+0 should be obvious. ) Then, or-
der by order in perturbation theory, the Feynman graph

(GO, N~ )

expansion of 6 ' is identical to that of the NI, -point
1

correlation function of the bulk model de6ned by the
Hamiltonian

a(0}=—a .

Our aim is to determine the fixed points of these flow
equations that split off from the trivial Gaussian Sxed
point 6 (v—:0, for all x} as e grows beyond zero. At 6
the variables g are all (strongly} relevant. Hence, at least
for small e~O, they must also be relevant at the Sxed
points we are looking for, so we may con5ne ourselves to
the RG invariant subspace

m=[(u, u„Ig=—OI)] . (4.4)

~ia I WI = I d" " —J 4 +co)e"' 4(r)'2, p
The coordinates (U, u, ):—(u', u i ) of fixed points EA are
given by the zeros of the corresponding p functions

+ 4, ui, o I
S(r) I

'—~ i,oe 4«)
0 P„(u';e)=0=—P„(U',ui;e) . (4.5)

(3.31)

The renormalization factor (3.28} may be recognized as
the amplitude renormalization factor of g. Power count-
ing shows that g does not require an amplitude renormal-
ization, so (3.28) holds.

The model (3.31) is a special case of the class of bulk
systems with lou~-range interactions studied by Fisher,
Ma, and Nickel. The fact that the surface critical be-
havior of our model, in the special case U=o, can be
mapped onto the above bulk model implies that the asso-
ciated surface critical exponents can be expressed in
terms of the corresponding bulk exponents. ' Our per-
tinent results, which will be given in the next section, are
fully consistent with those of Ref. 23.

24) e+O{e ) .3' +22

(4.6)

Substituting these into p„, and using (3.12) in conjunc-
1

tion with (3.18}-(3.22) the 0(e) roots of p„can be easily
1

determined. [We ignore any fixed points for which u'
and u ~i are not both 0(e); i.e., Sxed points that do not
merge into 6 as @~0+.] In addition to 6, we thus find
the following Sxed points. Two Sxed points

Upon insertion of (3.16) into the first of these equations
we recover the two familiar roots '
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T: v=v, ui=(ui )r

(u[)r —— 18(n+4)e
(3n +22)(n +8)

3
1

"+4+.+8 + 3.+22 +(2f i" f—, )(n+8)+4(ln2) 5' +22
n+8

+0(e'~i),

T: v=v) &ui=(ui

(u; }z-——— 18(n+4)e
(3n +22)(n +8)

+O(e), (4.7b)

at which the bulk is tricritical, and a fixed point

LR: v=0, u, =(ui )ta,

(u; )L„= +48e i ln2+O(ei),
n +8 (n+8)i

(4.7c)

U)

with a Gaussian bulk interaction Th.e latter fixed point,
LR ( = long range), is identical to the infrared-stable ftxed
point which governs the critical behavior of the d —1 di-
mensional bulk system described by the Harniltonian %ra
in (3.31).

In Fig. 1 a qualitative picture of the RG flow in the
subspace JK is given. As one sees, T attracts all points in
the half-plane v p 0 above a separatrix cr passing through
G and T'. 2 On the other hand, LR and T' only attract
the boundary of this region, namely the half-line v=0,
ui p0, and the line o, respectively. Finally, G is com-
pletely infrared unstable.

In order to understand the origin of the above results,
one should note that, as a result of the mixing of the

bulk operator and the
( P )

" surface operator under
renormalization, the bare interaction constant u

& 0 con-
tains a term linear in v. (At lowest order this is due to
the diagram F, v in Fig. 4.) Owing to this term, P„also
gets a piece linear in v. This in turn has the following
two important consequences.

(i) On the whole half-line u, =0, v &0, the flow has a

G' '(pr;v, u, , r, c)=
) pr

~

"X(ijrr",c~ ~),

(4.8)

where all bulk and surface interaction constants
suppressed have been set to zero. We have introduced
the surface correlation exponent

d+2+~~v, 0, (4.9}

the bulk correlation length ex-ponent

v= 1/8; =(2+rt,')

and the surface crossover exponent

/=8;/8; =v(l+ri,') .

(4.10)

(4.11)

nonvanishing upward component. Thus there is no fixed
point with coordinates (v,', u, —:0), contrary to the as-
sumption underlying Speth's work on the special transi-
tion.

(ii} The coordinate (u, )T of the stable tricritical fixed

point T has an expansion in powers of e'~ rather than e.
This implies that the dimensionality expansion of the asso
ciated surface critical exponents also takes the form of an
e'~2 expansions. zs On the other hand, the fixed point
~alue (u i )La as well as the surface exponents of LR do
have an expansion in integer powers of e.

Having found the fixed points, we are ready to derive
the asymptotic behavior of the correlation functions G
We assume that v and u, are in the domain of attraction
of one of the fixed points T, T', or LR. The desired
asymptotic scaling behavior of G~ then follows from (4.1)
by substituting the appropriate Sxed-point values for the
running coupling constants I@ on the rhs. Since this is a
well-known procedure, leading to the scaling forms anti-
cipated on the basis of phenomenological scaling, it will
be suScient to consider a representative example. Choos-
ing JV=(0,0,2), we find

LR(

Q c

Here all functions marked by an asterisk are to be taken
at the Sxed point in question.

Of the fixed points considered, T has the largest
domain of attraction. The dimensionality expansion of
its surface exponents can be obtained from Eqs. (3.3),
(3.6), (3.25)-(3.27), (4.6), (4.7a), (4.9), and (4.11);it reads

T

~r~ (n +2}(n +4) 2(n+4)e
8(3n +22) (3n +22)(n +8}

FIG. l. Flow diagram for d ~ 3, showing the Sxed points T,
T', LE. (long range), and 6 (Gaussian), the separatrix u, and the
line o, {which is a separatrix for the reversed Sow). and

+O(e') (4.12)
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(z) 1 ri +2
2 4

2(n +4)e
(3n +22)(n +8)

' 1/2

+ (n+2)e
(3n +22)(n +8)

29n (n+4)(1 n—) 21 2 0( imp)

8
+ +

8
(4.13)

Notice that the nonuniversal numbers f, and f i" ap-
pearing in (3.23) and (4.7a) have indeed cancelled out to
give a universal exponent P.

If u —=0 and u, ~ 0, the asymptotic behavior is
governed by the Sxed point LR. Using (3.28) and (4.7c),
together with some of the previously mentioned equa-
tions, we Snd that the corresponding surface exponents
are given by

while, of course,

u{A,)=0 if U=O [case (ii)]; (5.2)

that of u, is

u, (A)=Cia, '~ +Cia, ' if u»u, (cr) [case (i)],
(5.3)

(LR) 0gtl

y(ttt) n +
2 2(n +8)

(n +2)(7n +20)
(n+8)

(4.14}

(4.15)

u, (A, }=8p ~ A,
' if u =0 and u, &0 [case {u}],

(5.4)

and

u, (A) = —CzA, '~ +O(A. ') if (U, u, ) Eo [case (iii)] .

(5.5)

a11d

rtFMN(d —l, n)=ril (d&n)+1

vFMi&i( d —1 & ti ) =[2$ (d &
n ) ]

(4.16)

(4.17)

We leave it to the reader to work out the dimensionality
expansion for the surface exponents of T'.

V. LOGARITHMIC CORRECTIONS IN THREE
DIMENSIONS AND APPLICATION TO

8 POLYMERS

Just as (3.28}, the result (4.14) holds to all orders in per-
turbation theory. Furthermore, both (4.14) and (4.15) are
completely consistent with the results of Fisher, Ma, and
¹ckeP for the d —1 dimensional bulk model (3.31). If
we denote the bulk exponents obtained by these authors
by rlFMN(d —l, n ) and vFMN(d —l, n ), a straightforward
comparison with our results shows that these exponents
do indeed satisfy the required relations, namely

Here u, (o ) means the coordinate of a point on o. The
limiting expressions are correct to order o(l{, ') for
A,~ aa. The coefficients are found to be

120
3n +22

' C2 =(—8i pCi /8p t )
t

Cs =(—' —8, i Ci+8p s8i pCi /8p i)/(28p i),
(5.6)

in which the 8; mean the numbers given in
(3.19}-(3.22). Note that these coefficients are indepen-
dent of the initial values U and u i. This is a reffection of
the fact that all trajectories starting inside the region
bounded by cr and the positive u i axis asymptotically ap-
proach the same limiting curve tr, . As can be seen from
the parametric representations (5.1), (5.3), and (5.4), both

In the limit d ~3—,the fixed points T, T', and LR all
merge into the Gaussian one G. A schematic picture of
the resulting flow diagram for d =3 is shown in Fig. 2.
There still is a line a, which, however, now separates
points Sowing into 6 from those running away to large
negative values of u, . Exphcit expressions for the asymp-
totic behavior of the running couphng constants U and 9,
in the infrared limit A, ~go can be deduced from Eqs.
(3.12), (3.16), (3.18)-(3.22), and (4.3). We will not consid-
er initial values (U, u, ) belonging to points below the
separatrix 0. Thus we may distinguish three types of
hmiting behavior, corresponding to trajectories starting
(i) inside the region bounded by cr and the positive u,
axis, (ii) on the positive u, axis, or (iii) on o. The respec-
tive asymptotic form of v is

U(A)=C, A, if U ~0 [cases (i) and (iii)], FIG. 2. Flo~ diagram for d =3.
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(r and o, display a square-root behavior in the vicinity of
6; one has

(,=const Xexp I A, +A, 2'( }Ci

u((~) = —C,C; v = —u((~, )
—1/2 i /2 (5.7)

+(»&)(g""C +q(0')C,'~q()'}C, }I,
as U~0+.

In order to obtain from (4.1} the critical behavior of
the correlation functions 6, we must also determine the
asymptotic form of the exponential factor on the rhs of
(4.1},as well as the behavior of all nonvanishing relevant
variables. For the sake of simplicity, we will allow at
most r and c to be nonzero. In that case, the running
variables may be written as

exp —I DE~de' =const

XexpI —A,[N, +—,((Qz+&z )]

(S.12)

RA. )= (,(A, ; v, u))v,

c(A, }=8,(A,;v, u) )c,
(5.&)

—T)(ink, )C)Np, riI' )
I (5.13)

where 8, and 8, are trajectory integrals defined by

Cs =exp f 8s[u(A, '), u)(A, ')]dl(.'
0

(5.9)

Let us introduce the expansion coefficients riI"}and ri('i)

by

—y &('ilv'ui (5.10)

C,=const Xe (5.11)

A straightforward analysis then shows that, provided
v & 0 and u» u, (cr ) [case (i)],

in the limit A, ~ 00. Here the constants denoted by const
mean nonuniversal factors depending on v and u, . Note,
however, that the coefficients multiplying A, , A, '/, and ink,

in (S.12) and (5.13) are universal; in particular, the
nonuniversal term 2f()" f) app—earing in i)(' 1 and C,
drops out from the coefficient of ink, .

Substituting these results, together with those for v and
u „into (4.1},one can easily work out the critical behav-
ior of G~. As a particularly simple Srst example consider
G' ' ' ', the pair correlation of surface spina, at the mul-
ticritical point c =v=0. Choosing A, such that ear= 1,
and assuming again that v & 0 and u» u, (o ), we find for
r ~~ the asymptotic behavior

G(00,2)( r. ) co st X [1 ( r)](n+z)(n+4)/[16(in+22))1

pr
(5.14)

On the other hand, if v:—0 and u»0, 6' ' ' decays as
(pr) ' without any logarithmic correction; this follows
from the fact that ri), (v =0,u, )—:0.

Apart from a missing factor of —,
' in the exponent the

result (5.14) agrees with that of Speth in Ref. 8. Thus, in
this special case, Speth's omission of the u, term does not
afFect the above logarithmic correction. However„ the
logarithmic corrections of many other quantities [as well
as subleading corrections to the result (5.14)] are severely
a+ected, as we will see below. [That the result (5.14)
remains unafFected is due to the fact that il)(v, u) ) does
not have a term ~ u, , so that its leading contribution for
l(,~ o) is given by the term ~ v. ]

The efFects of the slow vanishing -A, '/ of ui show
up clearly in quantities involving C„such as derivatives
with respect to c. As pointed out in Ref. I and discussed
in the Introduction, we believe that polymer systems are
particularly well suited for experimental and numerical
investigations of the resulting unusual logarithmic
corrections. For this reason, the examples we are going
to discuss are taken from polymer physics.

~e consider a single polymer chain consisting of L re-
peat units which is immersed into a 8 solution bounded
by a wall. Following common practice, we will model

this polymer by an interacting walk. Instead of specify-
ing directly the Gibbs factor for polymer configurations,
we prefer to do this indirectly, utilizing the well-known
relationship between the statistics of such walks and the
n~0 limit of n-component spin models s, is, iv-i9, z6 In
this way one easily realizes that the n~O limit of the
Hamiltonian given by (1.1), (2.4a), and (2.4b), with
h =(v=h, =c'=u)):—0 [i.e., with all interactions break-
ing the O(n ) invariance set to zero], defines for us a prop-
er model for the above polymer system. ' In the poly-
mer picture, the bulk coupling constants u and U measure
the strength (in units of ks T) of the two- and three-body
interactions of monomers in the bulk solution, respective-
ly, where the special value u =0 corresponds to the criti-
cal strength of the two-body interaction at the 8 point.
(For simplicity, we will therefore set u =0 henceforth. )
Likewise, the spin interactions ~c and ~ ui correspond
to one- and two-body interactions localized at the mall.
Finally, the critical value c =0 corresponds to the adsorp-
tion threshold mentioned in the Introduction. ' '

To be specific, Iet us consider a chain whose one end is
attached to a point on the surface, but whose other end
may be anywhere in the half-space z «0. %'e denote the
corresponding chain partition function (defined as a sum
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over walks starting at z=O and ending in the region
z & 0) by Z, (L ); it is related to the n ~0 limit of the sur-
face spin susceptibility

X = d px z 6"'"pxO

where ( ~ }"""means a connected thermodynamic aver-
age. This definition is in conformity with that of At, : To
get At, from (5.22), we just have to substitute JV(pz, r}by
its z =0 analog, namely

via a Laplace transform, i.e.,

dL e 'Z, (L,c,u, u, )=limX, (~„c,u, u, ) .
0 n~O

(5.16)

JV,(r)=Z, Zt, 'Z, ' p JVO(z=O) .

By analogy with (5.19), the RG yields the relation

(5.25)

JH(pz, L,c,u, u, )=e 8,(A, ;U, u, )JR(e l2z, L,c,u, u, ) .
Since c is the thermodynamic field conjugate to the num-
ber of monomers at the surface, it is clear that, apart
from a normalization factor,

Al, (Lzc, U) u i ) = — lnZi(L, c,U, u, )
c

(5.17)

is the average number of monomers at the surface. Infor-
mation about the critical behavior of At„Z, , or other
polymer quantities may be conveniently gained by ex-
ploiting the RG directly for these polymer quantities.
First, note that the running variable L(/{,} into which L
transforms under RG transformations is given by

L(A, ) =L/8, (A, ;U, u, ) . (5.18)

This follows from the fact that L is the Laplace variable
conjugate to r and (5.8). Solving the RG of Al, by
characteristics then gives

At(iL, cU, ui)=8 (A, ;U u i )JKi(L,c,U, u i ) . (5.19)

We now choose A, such that L(A, ) =1 and use (5.1},(5.3),
and (5A) to conclude that as L ~ ao,

JK,(L,c =0,U, ui )=constL'/2

(5.26)

To proceed, it is convenient to de6ne dimensionless poly-
mer and spin correlation lengths ft, and g, by

L(lngt ) =1 and F(lng, )=1, (5.27)

respectively. From Eqs. (5.8), (5.11), and (5.18) we see
that these lengths behave as

gt -constL'/, g,=constr (5.28)

as L~ao or v~o. %'e now substitute our choice of
e"=(L into Eq. (5.26}. Below the upper critical dimen-
sion, we then could replace both running coupling con-
stants U and u i on the rhs by their fixed-point values to
obtain the scahng form of JK(pz, L)—the logic being
that deviations from these would only give rise to correc-
tions to scaling. However, in the present case more care
is necessary. Since we are primarily interested in the be-
havior near the adsorption threshold, let us first set c =0,
for simplicity. [The subsequent results remain valid pro-
vided that, for given large L, c is so small that
c(lngL, ) &&1.] From (5.26) and (5.28}, we then have for
L~oo,

~ exp[ (
( lnL )i/2](lnL )(12+1"2)/88

22

(5.20)

A/l(pz, L, c =0, U, u& )=L'/2F(l2z/gL, gz ), (5.29)

if U )0 and u, )u, (o ), wlule

Al, ,(L,c =0,U, u, ) =constL '/ (lnL ) (5.21)
F(g, gt )=c onstA(1g, L=1, c=0, u(in' ), u, (lngL )) .

if u =0 and u, pO. The latter result (5.21) which applies
to the case simulated by van Dieren and Kremer was

derived independently in Ref. 28.
Finally, we investigate how the average number of

monomers per layer varies as a function of the distance
from the surface. To this end we define a layer density of
monomers at distance z by

A(p, z,L)=Z ' limit ', JV(pz, r),
@~0

(5.22)

in which the operator Xt ', denotes the inverse of the
I.aplace transform introduced on the left-hand side of
(5.16), and the dimensionless renormahzed spin quantity
OQ the rhs Es gEven by

JV(pz, r)=Z,Zt, 'Zi '
p Jingo (5.23)

with
conn

z)(o —I '
d(zzz')(()$ ( )op 0( o) —,

' fzd '
No( , z)zz

(5.24)

(5.30)

Ã p=pz/(z ~1, we may expand the rhs of (5.30) in
powers of U and u, : This expansion is well behaved be-
cause each power of U or u

&
softens the infrared singulari-

ty in L by a factor of (ingL )
' or (lngt ) '/, respective-

ly. Hence, in this regime, F(g, gt ) may be replaced by
F(g, ao), the mean-field scaling function. The explicit
form of the latter function is given in Appendix C; it is in
accordance with the obvious phenomenological expecta-
tion that At(pz, L ) decays exponentially as g-+ ()0.

On the other hand, if /A&1, this expansion breaks
down because of short distance singular-ities. To under-
stand this, note 6rst that the exponentia1 prefactor of
JK(pz, L ) on large length scales simply varies as e"-L '/2

[cf. (5.11}],whereas the amphtude of At, (L ) has the non-
trivial scale dependence of (, given in (5.12). Since for
1&&pz &&gL, JK(pz, L) should have the same L depen-
dence as JK,(L ), it is clear that (short-distance) singulari-
ties must develop in the hmit I.~~, with z large but
fixed. Furthermore, since limt „A/t(l2z, L )/At, (L )

therefore exists, the z dependence of A(i,(pz, L ) in the re-
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gime 1«pz «g~ should simply be given by the scale
dependence -e 8,/C, ofAI/Al, , with A, =ln(pz).

These considerations can be put on a firm basis by
means of the short-distance expansion (cf. Ref. 3, Sec.
III.9). Applied to JV(pz, r), the short-distance expansion
yields

JV(pz, 1,c,v, u i ) C (pz; v, u i )JVi ( 7,c,v, u i ) (5.31)

for pz «g, . The validity of this relation (which is ex-
pected to hold beyond perturbation theory) is verified
perturbatively to first order in u

&
in Appendix C, where

we also explicitly give the RGEs of both JV(pz, v ) and A', .
From these RGEs and (5.31) it follows that C(pz)
satisfies the RGB

(pB&+p„c)„+p„B„+ri, rl,—)C(pz, v, u i )=0,

whose solution in terms of characteristics

C(pz, v~ui )=C(8 pz~v, ui )

)&e ~C,(A, ;v, u, )/C, (A.;v, u, )

(5.32)

(5.33)

indeed gives us the anticipated scale dependence. Mak-
ing the choice e~=pz, we thus see that on large length
scales, i.e., for pz »1 (where }u

' is an adequate micro-
scopic scale on the order of the lattice constant), C(pz)
behaves as

if v & 0 and u, & u i(o ), but as

C(pz, O, u, )-[In(pz )]'~ (5.35)

if v =0 and u, &0. By insertion of (5.31) into (5.22) the
short-distance expansion of iV(pz, L) obviously carries
over to AI(pz, L ). Consequently, the right-hand sides of
(5.34) and (5.35) also describe the z dependence of
JN, (lt,z, L, c=0) for L ~ao in the regime 1&&pz &&gL.
Hence in both cases, the monomer density decreases as z
decreases at fixed large L.

The behavior of At(pz, L, c =0}in the proximal region
1«pz «gt is also discussed in the recent paper by
Wang, 2 though only for the special case v =0, u» 0. In
contrast to our result (5.35), Wang finds a z dependence
-[In(1/pz)] ' . His derivation seems to be based on
two assumptions, namely (i) that Al, (pz, L, c =0) has the
scaling form L '~ f(pzlgt ), and (ii) that the scaling func-
tion f(g) becomes singular as $~0 in such a way that
the correct L dependence (5.21) of Afi(L ) is recove, red.
However, a glance at (5.29) and (5.30) immediately shows
us that if (i) were correct, then f(g) would be given by
the mean-field scaling function F(g, ao). But the latter
function approaches a finite and nonvanishing constant
as $~0, so the equality contradicts (ii).

The important point to realize is that if g«1, the
function F(g, gt ) in (5.30) cannot be computed by an ex-

C(pz, v, u, }-[In(pz)] " +'" ' expI[ —,', 1n(pz)]'~ J,
(5.34)

pansion in powers of v and u, . In other words, the depen
dence on the second variable, (I, is crucial and must not
be neglected. In a perturbative treatment of F(g, gt ), the
short-distance singularities manifest themselves in the
usual way as powers of lng. In Appendix C we demon-
strate by explicit computation of F(g, g't ) to first order in
u ] and zeroth order in U the presence of a short-distance
singularity -u, in(. Even though u, (ln)L)-(lnL)
(if v &0) or -(lnL) (if v =0) becomes arbitrarily small
in the limit of interest (L~00 with fixed pz&1}, this
contribution behaves as

or as -(lnL ) 'in( and hence is much larger than, or of
the same order as, the mean field-term. At higher order
of perturbation theory, higher powers of lng will appear,
causing a complete breakdown of this perturbation ex-
pansion.

VI. SUMMARY AND CONCLUSIONS

For convenience we present here a brief overview of
our findings, referencing the most important expressions.
We will also comment on possible extensions of our work.

First, we have constructed an appropriate continuum
model for analyzing the surface critical behavior of sys-
tems near a bulk tricritical point. The resulting Hamil-
tonian % is given by Eqs. (1.1), (2.4(a), and (2.4(b). The
main difference between this semi-infinite model and
those previously studied is the presence of the surface
nonlinearity ~ u i ~ P ~

in %. In addition, we also includ-
ed a variety of relevant bulk and surface terms breaking
0(n ) symmetry.

In order to show that the analysis of this model falls
well into the realm of the field-theoretic RG approach,
we then proceeded by explaining its renormalization.
The reparametrizations required to absorb the ultraviolet
singularities at and below the upper critical dimension
d=3 are given in (2.14). Knowing the form of these
reparametrizations, we were able to derive renormaliza-
tion group equations; those of the (Ni, +Ni, )-point func-

tions with N, insertions of P (r,z &0), namely the func-
tions 6 with JV=(Nt„N„Ni, ), are explicitly given in

(3.5). Next we computed various surface renormalization
functions (Pt, Z„and Z, ) to obtain the desired
renormalization-group functions P„, ri„and gi, . The

1 1

results are contained in Eqs. (3.11}—(3.28).
The inclusion of the surface term ~ u, turned out to be

absolutely erucia1: If not included from the outset, such
a term is generated under the renormalization group, ow-
ing to the bulk interaction cc v

~ P ~
. It was precisely due

to this mixing of the
~ P (

surface term and the
bulk term under renormalization that the Sow equation
of the running coupling constant u i picked up a term
linear in v. This in turn implied that (u, )T, the fixed-
point value of the infrared-stable fixed point T describing
the special transition in the presence of a tricritical
bulk —and hence the surface critical exponents —have an
expansion in powers of e' if e& 0, and led to the unusu-
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al logarithmic corrections discussed in Sec. V at the
UCD. The resulting RG How equations are given in Eq.
(4.3); the ffow diagrams for d ~3 and d =3 are shown in
Figs. 1 and 2, respectively.

For e ~ 0, we found in addition to T and the Gaussian
6xed point 6, two other fixed points, T' and LR. Both
have basins of attraction of lower dimension than T, so
their observation requires that more thermodynamic con-
straints are met. The 6xed point I.R describes the special
transition in the special case where the interactions are
entirely Gaussian in the bulk, though nonlinear at the
surface. As shown in Ref. 1, and con6rmed here, the sur-
face critical behavior of this transition belongs to the
universahty class of a d —1 dimensional bulk system with
lou~-range interactions studied by Fisher, Ma, and Nick-
el.z The e expansion of the respective critical exponents
is given by Eqs. {4.14)-(4.17). The e'~ expansion of the
surface exponents of T may be found in (4.12) and (4.13).

For n=0, the fixed point LR describes the long-
distance behavior of walks which are completely random
in the bulk, but self-avoiding at, and interacting with, the
surface. Thus our results for v =0 directly apply to the
simplified model for the adsorption of 8 polymers recent-
ly simulated by van Dieren and Kremer. Yet, inclusion
of the bulk term ~ u, i.e., of a three-body bulk interaction
between monomers, is important, as we have seen, be-
cause the logarithmic corrections in the two cases 0 =0
and u ~0 are quaiitatiuely and quantitatively diferent
This is clearly borne out by our results (5.20) and (5.21)
for the mean number of monomers at the surface. A
computer simulation of the case u ~ 0 would therefore be
very valuable. We also investigated in some detail how

At(yz, L ), the mean number of monomers per layer of a
single polymer chain, varies as a function of the distance
z from the surface, showing that the distinct L depen-
dence of A(pz, L ) close to and away from the surface en-
tails the nontrivial z dependence (5.34) or (5.35) in the
short-distance regime, where z is small compared to the
radius of gyration of the polymer.

In light of the findings mentioned above it is natural to
ask whether inclusion of the ui surface term might also
change the results for the ordinary transition. Clearly,
the inclusion of this term is indispensable if one wishes to
study the crossover from special to ordinary surface criti-
cal behavior. However, we do not expect dramatic
changes as far as the asymptotic behavior at the ordinary
transition is concerned, so that the corresponding results
of Speth essentially should be correct. This question
could be clarified by combining our above analysis with
an expansion in powers of eo, along lines similar to
those taken in Secs. 3.6 and 3.7 of Ref. 3. As another
possible extension of our work, one might study the be-
havior in the case where (u, u i ) belongs to the region be-

tween the stability line and the separatrix tr (cf. Fig. 1

and Ref. 24). This could be done by evaluating the ffuc-

tuation correction to the surface free energy. Finally, it
should be mentioned that we have ignored completely the
possibihty that the wall-monomer interaction (i.e., c}
varies in a random fashion. Arguments similar to those
used in Refs. 12—14 reveal that quenched surface random-
ness of this kind is marginal in three dimensions. The

inhuence of such randomness on the critical behavior
studied above will be discussed in a forthcoming paper.
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for Ig=OI, i e., for h =~=io=u =h, =c=c'=io, =0.
From the remark below (2.9) it should be clear that, for
such values of Ig I, the counterterms introduced by Eqs.
(2.13a), (2.13b), and (2.14) are sufficient to renormalize
this function, regardless of whether ak specifies a trans-
verse or longitudinal component.

We compute the above correlation function perturba-
tively, using the Neumann propagator Gn given in (2.1)
as the free propagator. Expanding all counterterms in
powers of u and u „and defining

b,(p):—(2m) '5 '(p)

we may write

(A 1')

(A2)

The terms contributing to F, with (i,j)=(0,1), (0,2),
(0,3), (1,0), and (1,1) are shown graphically in Figs. 3 and
4. The square with a label (i,j) attached denotes the
term of order u 'u ~i of the surface vertex
(u, +Pt )Z& ~ P )

. Aside from this vertex, only the term
of first order in U of the

) (})
~

bulk vertex contributes to
the order we are calculating. This term is denoted by a
full circle. Graphs containing lines with both ends con-
nected to the same square have been omitted because
they correspond to contributions cc6&(0), a quantity
which vanishes in dimensional regularization.

According to Figs. 3 and 4 we have

+o,2 =~o,2++o,2
A 8 (A3a)

(A3b)

+1,0 —+l, o ++i,o
8 (A3c)

APPENDIX A: EVAI UATION OF PI

In this Appendix we compute the renormalization
function Pt to the order uu, and u, . To this end let us
introduce the parallel Fourier transform

P~,(z}—= I d~ 'r e 'i"P (r,z} (Al}

and consider the connected four-point correlation func-
tion
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F
0, 2

0,1

0, 2

F
1, 0

B

, 3

FIG. 3. Graphs contributing to the coeScients Foj %vith

j= 1,2, 3. For further explanation see text.

~1, 1 g ~1, 1

k

k=3

Introducing the shorthands

(A3d)

FIG. 4. Graphs contributing to F& o and F, &.

L = g pk 'e '"'"
k = t

T=5 5

(A4)

(A5) P, = ,'(e —'+—2e 'Q) ( n+2)(n+4) +&

and (A9d)

F,",= ,'l.P,",+[1~3]+—[1==4]+O(e ),
where the P are given by

Pg n+S~
6e

(AS)

S= —,'( T+[1~3]+[1:=~]), (A6)

where here and below [1+ 3] means an interchange of
the subscripts on the variables (uk, pk, zk ), one obtains
the explicit expressions:

F0 )=—LS (A7a)

F;~ ———Ag) LS,
for (i,j)=(0,2), (0,3),(1,0),(1,1} . (A7b)

The remaining contributions in Figs. 3 and 4 can be corn-
pactly written in the form

POD3 ————,'[e +2e '(Q+ln2)] T+ Sn+6

P„=o,
P11 [E' +6' '(—2Q+ f1 —2f1")]

T

7$ +4 8+2
160 3

Pn n+4~
3Oe

P & (n +4)(n +2}
1920m

(A9e)

(A9h)

(A9i)

Ps n+4~
1,0 80

P;~ =(e '+Q}A;~. . +2 + 7

for (i,j ) =(0,3),(1,1), (A9c)

Q =3ln2+ —,'inn —(Cz/2)+ f',"—ln(
~ p, +p2 ~

/p),

(A10)

and CE ——0, 577. . .is Euler's constant.
Using these results, the coefFicients A,. given in

(3.19)-(3.22) can be derived in a straightforward fashion.
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APPENMX 8: EVAI.UATION OF ze AND g

We proceed as in Appendix A. %e write

Z, '"=1+yD, ,U'uj, (82)

Z, =1+g C;,U'u» (81) set tg=O), and determine the coefficients C, J and D, J
from the requirement that the functions

f d' 'r -e 'r'—
&p, (z, )p, (i, )-,'Z, Z&p'(r, O) &"""=&(pi+p2+p)&~,,~, g H;,JU'uji (83)

(84)

be finite. The contributions to the coefficients H;J, with

(i,j)=(0,0), (0,1), (0,2), and (1,0) are shown in Figs. 5
and 6; those to J; with (i,j )=(0,0), (1,0), (1,1), are
shown in Fig. 7. The graphical notation is analogous to
that in Appendix A. The broken line in Figs. 5 and 6
with the label (i,j) attached denotes the coefficient of
u'uJI of the surface vertex Z, Z&((}2(r,O). Likewise, the
empty circle in Fig. 7 with (i,j}attached means the
coefficient of U'u Ji of the surface vertex Z i '~~((}~ (r, O}. In

both cases, the label (0,0) is suppressed.
From Figs. 5 and 6 one Snds

The remaining contributions have the form

H,', =SCA",k, +0(eo)

with

ps n+2
0, 1

@02 (e +Q ) Coi
n+2

8o2= —(e +Q') Ao2
Pl +2

(88}

(89a)

(89b)

(89c)

Ho i ——Ho, +Ho, ,
A 8

E
Ho2= g Ho2k

k=3
D

Hi, o= g Hi, o
k=3

(85b)

(85c)

P D i (e—2+2' —1Q~) n +
02—~6 +

3
4

+o 2 ———,'[e +2m '(Q'+ln2)]

(89d}

(89e)

(89f)

H0 0=K

H, ", =C;,E for (i,j ) =(0, 1),(0,2), (1,0),
where

(86b)

(n +2)(n +4)
S)8

x[e '+e '(fi —2f'i" +2Q')],
(n +2)(n +4)

5!32

(89g)

(89h)

( ~ )
—i ii'i~)+i'z~2i

(87) Here the A; J are given by Eqs. (3.19)-(3.22) and Q' is the
quantity Q defined in (A10), with

~ p, +p2 ~

replaced by
p. From these results Eq. (3.23) follows in a straightfor-
ward fashion.

HA

(0, 1 )

, 2)
(0,1)

A

H, , H, ,
C

H, , H, ,
E

H, ,
FIG. 5. Graphs contributing to Hoo, Ho I, and Ho 2. FIG. 6. Graphs contributing to Hl 0.
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Jio ——(5!64) (813a)

J + =(720) (813b)

(0,
C

J i i= —(5x6')

~1,1 yJ 1, 1 &

3 ~D

(813c)

(813d)

J ) )=—(20X6 ) (813e)

Using these results, Eq. (3.24) can be derived in a
straightforward fashion.

E

(0, 1 )

FIG. 7. Graphs contributing to Jo 0, J& 0, and J».

APPENDIX C: SHORT-DISTANCE EXPANSION
OF JV'(ii,z, r)

Here we wish to verify to first order in u, that the
short-distance expansion (5.31) holds within perturbation
theory. Except for r, we take all relevant fields Ig ) to be
zero. At order u &, there are three graphs contributing to
JV: One is the analog of the diagram Ho) in Fig. 5,
where the broken line now denotes an insertion of P
away from the surface; the other two difFer from this one
in that the broken line, instead of being attached to the
bubble, is connected to the left or right external leg.
Evaluating these graphs and adding the mean-field con-
tribution, we find

Turning to Fig. 7, we recall from our discussion at the
end of Sec. III that

Ã(pz, r)=r '~ e ~ f'"—u)(n+2)~—'~ I(g)
I 3

()) n +2 —3/2 —2$ —g)J Q( f' (8 +e
(810)Do, =0 all j

i.e., the Jo do not contribute to final subtractions. ith
the exception of Jo o, they are, therefore, not shown. For
the other J;J we have

with

+O(e)+O(u z), U ), (Cl)

~Z 2Joo=M= e
P2

6
Jl i g J) i

k

k=A

with

(81 la)

(81 lb)
I(g)=p' f d~ )r[GN—(r;z, 0)j

E)(2$)+O(e) for (~01

m'

I (e/2)(4m) '+' r ' for (=0 ' (C2)

J;J ——D;JM for (i,j)=(1,0),(1,1),

for (i,j)=(1,0), k=B,
and (i,j)=(1,1), k =B,C,D,E,F, (812c)

where EI means an exponential integral in the notation
of Ref. 29. The result (Cl) also gives us JV) to the same
order; we only must add the contribution from the coun-
terterm ~Z, —1 (cf. graph Ho, in Fig. 5) to cancel the
pole of I(0).

Using these results, together with the familiar limiting
behavior of E)(g) for $~0, one easily verifies that Eq.
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(5.31) holds to this order, with

C(lsz)=1+tt& "+ [in(~z)+f&t~+ ~ln(16')+ ~C
~

Slid

(p„a„+p„a„a—,ra, 3—+ ,'g-t+gy Y—
/ )JVt(1)=0 .

+O(tt )e;tt (,v ) .

The RGE of JV(lsz, r) and JV, (r) read

(l a„+p.a, +p„,a„,—e,ra,

3+—,'rit+—rit, rl,—)JV(le, r) =0 (C4)

(CS)

From these equations and (5.31) the RGE (5.32) of C(pz )

follows in the usual manner.
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