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The spin dynamics of the semiclassica1 Heisenberg model on the fcc 1attice, with ferromagnetic
interactions up to the second-nearest-neighbor shell, is studied in the paramagnetic phase at the

temperatures 1,68T, and 2.0T, using the Monte Carlo-molecular-dynamics technique. The impor-

tant quantities calculated are the dynamic structure function S(q,~), the spin autocorrelation func-

tion (S,(0) S;(t) ), and the static correlation functions. Our results for S(q, co} show the existence of
purely difFusive modes in the low-q regime. For q close to the zone boundary, our calculated S(q, co)

shows a three-peak structure, signifying damped propagating modes. This result disagrees with the
earlier experimental observation of Mook and the theoretical result of Lindgard, where a two-peak
structure was obtained near the zone boundary. Our results for $(q, ~) in the entire q space are in

good qualitative and quantitative agreement with the recent neutron scattering experiments by Mni
and Shirane and also with the predictions of Young and Shastry. Our calculated autocorrelation
function shows a dilusive behavior temporally.

I. mmODUCnON

Recent neutron scattering experiments on europium
chalcogenides (EuO and EuS), by Boni and Shirane, have
provided valuable detailed information on the spin dy-
namics in these materials, which are well-characterized
realizations of the three-dimensional (3D) isotropic
Heisenberg model. This model, despite its simplicity of
stateIlleIlt, is of great complexity and the various apIIIroxi-
mate analytical treatments that appear in literature are
very often diScult to assess and evaluate. The only reli-
able way, at present, to calculate the spin dynamics of the
Heisenberg model is the technique of the Monte Carlo
simulation coupled with the molecular dynamics
(MCMD). We have been motivated by the recent experi-
ments to study the spin dynamics of the paramagnetic
EuO and EuS by the MCMD technique. We present, in
this paper, the resulting spin correlations for EuO, which
agree remarkably well with the recent experimental re-
sults in most features. We also present the spin auto-
correlation functions (S;(0) S,.(t) } which are accessible
to the local probes, such as perturbed angular correlation
(PAC), muon spin rotation (p, +SR), and electron spin res-
onance (ESR), in the hope of stimulating further experi-
ments. Besides these, we also calculate the static spin
correlations in real space as well as in q space.

The main point which emerges from this study is that
the structure function S(q, oI) has interesting and non-
trivial structure in the paramagnetic phase and departs
greatly from the Lorentzian or semi-Lorentzian (spin
difFusion) shape forced at small q by the global spin con-
servation laws. Noticeable shoulders at finite values of ~
appear for large enough q and may be interpreted as
(damped) propagating modes —these are indeed the re-
sults of the nonlinearity of the equations of the spin dy-
namics rather than of any significant equihbrium (static)
correlations. The frequencies of the propagating modes
obtained in our calculation are quite similar to those

found in the approximate analytical calculations of
Young and Shastry (YS) (Ref. 4) and also of Lindgard. s

The calculation of YS makes use of the three-pole ansatz
following the earlier work of Shastry, Edwards, and
Young (SEY), whereas the calculation of Lindgard is
similar to a two-pole theory. These theoretical charac-
teristic frequencies are also fairly close to those obtained
in the earlier experimental work on the paramagnetic
EuO in the single-crystal form by Nook. However, one
important difference between these results was that while
in Lindgard's calculation and in Mook's experimental re-
sult, S(q, co) in the propagating regime of q showed only
a two-peak structure with no appearance of a central
peak; YS found a three-peak structure for S(q, co) with a
pronounced central peak. In order to resolve the ap-
parent anomaly in the shape of S(q, co} in the propaga-
ting regime and to test the existing analytic theories in a
more quantitative way, Boni and Shirane carried out de-
tailed measurements on the paramagnetic EuO using neu-
trons. They determined the temperature-independent
background contributions from the nonmagnetic scatter-
ing very accurately by performing experiments in the or-
dered phase„and this enabled them to filter out the pure
magnetic part of the scattering cross section quite reli-
ably even in the paramagnetic phase. They have also fol-
lowed the procedure of Wicksted et al. ' to determine the
magnetic form factor very accurately and extract the en-
ergy integrated pure magnetic structure function S(q}on
an absolute scale. Their experiments were performed on
the powder form of EuO and their measurements yield
pseudostatic correlation functions [energy integrated
S (q, co) over a sufficiently large energy window] on an ab-
solute scale, producing a rms value of the local moment
in good agreement with the expected one (S-—',). The re-
sults of Boni and Shirane showed the existence of a
three-peak structure for S(q, to) with the appearance of a
central peak in the propagating regime in q space, in
agreement with the predictions of the YS theory. It
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seems now that the inaccurate subtraction of the non-
magnetic background scattering might have distorted the
shape of the magnetic structure function in Mook's ob-
servation.

The results of Boni and Shirane inspired us to calculate
S(q, co) in the paramagnetic phase of the Heisenberg
model, with parameters appropriate to EuO, using the
MCMD technique. Our results con5rm the existence of a
three-peak structure for S(q,co) in the propagating re-
gime. In fact, our plan includes the study of spin dynam-
ics in the paramagnetic phases of EuS and EuSe as well.
In all of these rare-earth chalcogenide systems which are
insulators, the magnetic ion En+2 forms a fcc lattice and
the exchange interaction is confined to the first- and
second-neighbor shells only. In all these systems the
Eu+2 ion is in spin —', state and the orbital effects are
quenched completely since the magnetism is due only to
the electrons of exactly half-filled f shelL In EuO both
the first-neighbor interaction and the second-neighbor in-
teraction are ferromagnetic; in EuS and EuSe the first-
neighbor interaction is ferromagnetic but the second-
neighbor interaction is antiferromagnetic. EuO and EuS
order ferromagnetically and EuSe orders antiferromag-
netically. We only report the work done for EuO in this
paper. The work done for EuS will be reported in anoth-
er publication soon. We present the S(q, co) results on
an absolute scale for EuO at two temperatures, viz.
1.68'r, and 2.0T, and compare these with the available
experimental data as weB as with the results of some ap-
proximate theories. Ours are, we believe, the first such
computations for more than nearest-neighbor models.
The technique used here is an adaptation of the recent
simulation of Shastry to the case of the fcc lattice with
further-neighbor interactions.

The plan of the paper is as follows: In Sec. II we

briefly mention the existing theoretical approaches and
summarize some of the recent relevant experiments; in
Sec. III we describe the MCMD technique and the pro-
cedure of our calculation in some details; in Sec. IV we
display all the important results of our simulation and
also compare our results with the results of other theoret-
ical approaches and experiments; and finaBy, in Sec. V we
discuss some implications of our results.

even in the large-q regime (except at the zone boundary),
whereas in the work of Resibois and De Leener the shape
functions do not show purely difFusive behavior even for
very low values of q at temperatures close to the critical
point. These features do not conform to the ones found
in most paramagnets. Reiter' later used an approach
similar to that of Resibois and De Leener, but treated the
coupling between the modes more accurately. His treat-
ment has been quite successful in explaining the experi-
mentally observed spin dynamics of RbMnF3, a 3D
Heisenberg antiferromagnet, in the paramagnetic phase.
The work of Folk and Iro" predicts the deviation of the
shape function from a pure Lorentzian form for slightly
higher values of q within the diffusive regime. This is
supported by the experimental results of Boni and
Shirane for paramagnetic EuO. For convenience we dis-
cuss briefiy the YS (or SEY) theory and Lindgard's
theory and give the corresponding results for EuO.

The SEY theory makes use of the three-pole approxi-
mation of Lovesey and Meserve' in the moment expan-
sion, or the continued fraction expansion scheme of
Mori, '7 and also uses the spherical model' approxima-
tion to calculate the various static quantities occurring in
the expansion. The results of the calculation of YS per-
formed for the paramagnetic EuO show the existence of
damped propagating modes close to the zone boundary
and the existence of diffusive modes for low q. More pre-
cisely, the dynamic structure function S (q, co), when plot-
ted in the constant q scans as a function of co, shows a
three-peak structure consisting of a central peak and two
peaks at positive and negative values of co for q close to
the zone boundary; however, for low q it shows only a
central peak. Qualitatively, the ratio r of the fourth mo-
ment to the second moment squared determines the
shape; it is diffusive (one peak) if r )3 and has a propaga-
ting character if r & 3.

The shape function given by YS has the form

1 ri5
~ co2r (co —5, —52) +(~ —5i)

II. BRIEFREVIE% OF APPROXIMATE THEORIES
AND EXPERIMENTS RELATING TO EsO and

Several analytic approximate techniques have been
tried to probe the spin dynamics in the paramagnetic
phase of the 3D isotropic Heisenberg model. Some of the
well-known analytic approaches are 8EY three-pole
theory, Lindgard's correlation theory, diagrammatic
perturbation theory by Resibois and l3e Leener, ' asymp-
totic renormalization-group technique by Folk and Iro,"
and high-temperature series expansion technique. ' The
mode coupling theories developed by Kawasaki' and
Blume and Hubbard' are similar to the work of Resibois
and De Leener. These theories are rather successful in
the predictions for dynamical critical indices. However,
the shape functions obtained in the treatments of
Kawasaki and of 81ume and Hubbard are monotonic

Lindgard's theory is a self-consistent correlation theory
of one dynamical variable. It is, in fact, equivalent to a
two-pole approximation to the continued fraction expan-
sion scheme of Mori. The results for the paramagnetic
EuO, produced by this theory, show a two-peak structure
in S(q, co) with no central peaks, for q close to the zone
boundary; whereas for low q, the results only show a cen-
tral peak for $ (q, co).

The shape function given by Lindgard's theory has the
form

5P
E(q, co)=—. . . for co(co, ,(~2 5 )2+~2p2
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where 5, = & co & and P is the damping parameter which is
determined from self-consistent equations. The cuto8'
frequency m, is determined from the moment relations.

There have been inelastic neutron scattering experi-
ments on the paramagnetic EuO by several experimental
groups. Mook was one of the pioneers to perform neu-
tron scattering experiments on a single crystal of EuO in
the paramagnetic phase. His experiments probed the
&111& direction only. His observed S(q, co) in the con-
stant q scans, showed distinct broad peaks at Suite values
of ai with no occurrence of central peaks for q close to
the zone boundary. In the rest of the q space the curves
only showed a central peak.

Recently, Boni and Shirane have performed more care-
ful and accurate neutron scattering experiments on the
EuO powder. Because of the high isotropy in its magnet-
ic properties, the powder form of EuO is expected to
show very similar results as the single-crystal form. '

Boni and Shirane's measurements also confirmed the ex-
istence of damped propagating modes close to the zone
boundary and the existence of diffusive modes in the rest
of the q space. But their observed S(q, co), for q close to
the zone boundary, shows a three-peak structure con-
trary to the two-peak structure observed in Mook's ob-
servations. Until now PAC or ESR or @+SR experi-
ments have not been performed on EuO, so there are no
experimental results for the spin autocorrelation function
of EuO.

BI. THE MCMD APPROACH AND CALCULATXONS

The 30 isotropic quantum Heisenberg model with
nearest- and next-nearest neighbor interactions, as is
relevant for our problem, is defined as

JiJS;.SJ, (3.1)
(i,j &

(|', i,j)&

where the symbol &i,j & indicates that the ith and the jth
sites are nearest neighbors, and the symbol « i,j» indi-
cates that the ith and the jth sites are next-nearest neigh-
bors; the sum goes over the entire 3D lattice.

Also, J;,=Ji, when i and j are nearest neighbors and
J,"=Jz, when i and j are next-nearest neighbors. For
EuO, J& ~Jz~0.

The dynamics of the spins are governed by the equa-
tions

energy and the magnetization, one has to use a combina-
tion of the Monte Carlo (MC) and the molecular dynam-
ics (MD} techniques to Snd the estimates for the quanti-
ties of interest.

Now let us give the de5nitions of some of the relevant
quantities in our calculation. The lattice Fourier trans-
forms of the real space spin configuration are de6ned by

S,(r)= g S,{t)e (3.3)

where N is the total number of spins, i.e., the total num-
ber of sites in the Snite system. In our case of a fcc lattice
N =4L, where I. is the length (in units of the lattice pa-
rameter a} of the finite system taken in the form of a cu-
bical box. This Sz(t) is a fundamental quantity in the
problems involving spin dynamics, which is calculated by
the MD technique. The static q space spin-spin correla-
tion function is de6ned as

C,(0)=&8,(0) S,(0) &, (3.4)

where & & denotes here the ensemble average. Another
quantity of importance is the static real space spin-spin
correlation function, given by

C(r, 0)=—g Cq(0)e'~'
q

=&S,{0}S, ,(0)& . (3.5)

where

Cq(t) = & Sq(0) S q(t) & . (3.7)

Another quantity which occurs directly in various analyt-
ic approximate theories is the relaxation shape function.
It is given by

Now let us introduce the dynamic quantities of in-
terest, which we calculate. The spin autocorrelation
function is given by

C(0, t)=&8,(0) S, (t)& .

The most important quantity from the theoretical as well
as from the experimental point of view, is the dynamic
structure function. It is defined as

[S;gf'], F(q, co) = I [Cz(t)/Cz(0)]e' 'dt . (3.8)

where the square bracket denotes the commutator. The
equations of motion are

d$;
(3.2)

dt
=—g J~,-(S;xS)) .

J

The quantities of special interest are the static correla-
tion functions in real space as well as in q space, the auto-
correlation function, and the dynamic structure function.
All these thermodynamic quantities involve canonical en-
semble averages. Since the equations of spin dynamics,
mentioned above, have two conserved quantities, viz. the

Thus we have an immediate relation

$(q, a))=F(q, co)C (0) . (3.9)

%=—S(S+1) g J~s;.s
&i,j)

&&i,j&}

(3.10)

Now we make a semiclassical approximation, viz. we re-
place the operator 8,. by a classical vector of length
v'S(S+1), where S is the magnitude of the spin on each
site. This semiclassical approximation is fairly good for
high-temperature and high-spin value. So the semiclassi-
cal Heisenberg Hamiltonian becomes
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where s; is a classical unit vector ai the ith site. Similar-

ly, all the other previous expressions undergo corre-
sponding changes under the semiclassical approximation
(correspondence}

8;~s;&S(S+1).
where

2'9 ——

&(p+ ypq)"

(p+g~)
(3.12)

(3.13}

This semiclassical approximation has been made to
enable us to make use of the classical Monte
Carlo-molecular-dynamics technique for our calculation.
Using this technique we get an estimate of the classical
dynamic structure function S,&(q, co). To recover the true
quantum mechanical S(q, r0), denoted by S~M(q, ai), we
make use of a prescription by %indsor'

2S,i(q, r0)

kT
(3.11)1+exp — kT

This S&M(q, co} satisfles the detailed balance condition, as
is required in the thermal equilibrium. Moreover, the fre-
quency integral of S&M(q, co) is exactly equal to the fre-
quency integral of S,i(q, co), which gives the static q-
space correlation function C (0}(in Appendix A we pro-
vide a brief discussion of the rationale behind this
prescription). The computed classical structure function
then gives an estimate of the quantum function.

We use the Metropolis method ' ' for the MC. This
MC updating can in general be done in the following
three diFerent ways: (1) Sequential updating, (2) random
updating, (3}sequential random updating. We have used
the sequential updating procedure in our calculation.
Since we are dealing with a finite system, we will have to
impose a suitable spatial boundary condition. We have
taken the periodic boundary condition for our calcula-
tion.

We perform the MC calculation in the following way:
we start from an i.n6nite-temperature con5guration and
perform 3000 MC steps/spin. We store the final spin
configuration thus obtained at a given temperature. Then
we go on performing further MC operations and store the
spin arrays after every 1000 MC steps/spin. We store al-
together 10 arrays of MC ages between 3000 MC
steps/spin and 12000 MC steps/spin. These arrays are
to be used as the initial conditions for the MD. Now to
ensure the attainment of thermal equilibrium after 3000
MC steps/spin, we study certain static properties. We
look for the steady values of the averages and of the rms
fluctuations in the estimates of C (0)'s obtained from a
reasonably large set of configurations generated by the
MC operations. %'e found that by making estimates
from sets of 1000 configurations (two successive
configurations in a set differing by 2 MC steps/spin) each,
we achieve practically a steady average and a steady rms
fluctuation in Cz(0)'s for all the allowed q values exam-
ined along the (111) direction. Also the ratios of the
steady rms fluctuations to the steady averages for various
q values are very close to the values expected in the
thermal equihbrium (see Appendix B). Moreover, these
steady averages for various q values can be parametrized
very well with the Ritchie-Fisher functional form ' of
the high-temperature series expansion results for the 3D
Heisenberg model [with Cq(0) being written simply as
C],

and for a 3D fcc lattice with nearest-neighbor and next-
nearest-neighbor interactions,

4q =Wi, +A,4»

where

(3.14)

J2
2J ]

(3.15)

q„a qua qua q, a
f, =1——cos cos +cos cos

qua qxa+cos cos (3.16)

giq ——1 ——,
' [cos(q„a)+cos(q„a ) +cos(q, a )],

where a is the lattice parameter,

(5 —il)y=
3

Cq 0 ——ajP /2 —1

g is the correlation length,

(=a [(1+24)/12P]'~~

(3.17)

For our model appropriate to EuQ,

(see Appendix C). We also find the stabilization of both
the average energy and the rms fluctuation in the energy,
when the averaging is done over sets of 1000
configurations each, starting from the MC age of 3000
MC steps/spin, as described earlier. Besides, the ratio of
the rms fluctuation to the average value is of the order of
1/v N, as expected in the thermal equilibrium. We also
calculate directly the steady average value of the real
space spin-spin correlations C(r)'s, taking into account
the averaging over all the lattice points and also the
averaging over aB the possible directions, relevant for a
particular neighbor shell, up to the fourth-neighbor shell;
these agree very well with the corresponding values ob-
tained by Fourier transforming C&'s and then averaging
over all the possible directions, as is relevant for that par-
ticular neighbor shell. This shows the existence of the
thermal equilibrium as well as the correctness of the algo-
rithms used in our calculation.

Now turning to the MD calculations, we performed
the dynamical runs with each of the 10 stored arrays as
the initial conditions. Under the semiclassical approxi-
mation, as mentioned earlier, the Heisenberg's equation
of motion becomes

ds) '&S(S+1)g JJ(s, Xs ) for i =1,N .
J

(3.18}



R. CHAUDHURY AND B.S. SHASTRY

GSI
=Pi 'J, &S(S+1)

jG first-neighbor shell

J2
(s;Xs, )+

jEsecond-neighbor shell

(s; Xs;) (3.19)

From this equation we can de5ne a natural time unit in our problem to, ~here

ro
' fi ——'Ji&S(S+1) .

Therefore

Qs;
(s;Xs, )+

jG first-neighbor shell 1 j6 second-neighbor shell

(s;Xsj), for i =1,N . (3.20}

(3.21)

(3.22)

Considering the equations of motion for each of the x,y, z components separately, we have 3N coupled nonlinear
difFerentia1 equations to be solved. %'e integrate these equations of motion, supplemented with suitable initial condi-
tion, by the fourth-order Runge-Kutta method due to Gill. The iteration step size r„, (in units of to) was chosen after
the tests involving the conservation of lengths of the spin vectors and behavior under time reversal. Obviously the time
evolution of each of the spin con5gurations in the MD has to be terminated after a 6nite duration t,„. This produces
an intrinsic linewidth in the computed dynamic structure function S(q, co) of the order of h/t, „. Thus taking into ac-
count the relevant resolution width, as is of experimental interest, we fix t,„again in units of to In ea. ch dynamical
run we store S (r)'s (for the q's of interest) and real space spin configurations S, (t)'s at some regular intervals of time
b t„st arti ngfrom the initial condition at r =0. We use these to calculate various time-dependent correlation functions.
So the operational definitions for calculating these quantities of interest become

1
c N M-p

C(O, t)= g g g [S;(mdtro](, ) [8;((p+m)Et')](, )
c=l i=i m=0

1 c M —p
Cq(t)= g g [Sq(rnLLts}](,) [S q((p+m)its)](, )

c=l m=o

where t,

„=Mdtro

and r =phts, c denotes a MD sample
chosen for a dynamical run, i denotes a lattice site, N, is
the total number of MD samples, and N is the total num-
ber of lattice sites. We calculate Cq(t) for t =0 to r,„/2,
since the calculated Cq(t)'s for r &r,„/2 have much less
accuracy. So C (pb, ts} is stored for p =0, 1, . . . , M/2.
Now the trajectory in a MD simulation depends upon the
values of various conserved parameters as well as upon
the detailed structure of the spin configuration of the ini-
tial state. However, for a sufficiently long time evolution
in the MD (viz. , time of the order of e ) the results for
various dynamical quantities become independent of the
initial state when the initial state is chosen to be any state
in a MD trajectory. But since the MD calculations in
practice involve time evolutions of much shorter dura-
tion, this initial condition independence of the magnitude
of various dynamical quantities, i.e., "ergodicity" (as used
in the literature for the time series analysis) does not
hold. To reduce the unwanted fiuctuations in the esti-
mates of the dynamical quantities because of this fact, we
have modified the definitions (3.21) and (3.22) by replac-
ing r,„rwith t,„,i.—e., (M —p) with M in the denomi-
nator, as is very often done in the finite-time series prob-
lems. This method is known to give lesser mean square
error in the estimates in real time domain compared to
the old definition with t,„—t in the denominator, and
also does not lead to unwanted humps in the Fourier
spectra unlike the former definition. Thus this method
is preferred. %e have used these modified equations to
calculate S(q, co) and C(O, t} and have compared them
with the results obtained with the unmodified de5nitions.

We call, for simplicity, the modified definition the
definition A and the unmodified one the definition 8. We
illustrate the results of our calculations, done using these
two definitions, for S(q,co) and for C(O, t) in Tables IV
and V, respectively, in Sec. IV, %'e indeed find that
definition A gives lesser fiuctuations than definition 8 in
the estimates for both S(q, co} and C(O, t).

It may be worthwhile to point out that though MD is a
purely deterministic dynamics, for a system with a very
large number of interacting spins N, as is the case here,
the trajectory of the system point in the 3N-dimensional
spin con6guration space looks like that due to a stochas-
tic motion. This fact enables us to look upon the MD as
a time series phenomenon.

%e also noted the fact that we are dealing with a very
small number of MD samples, viz. N, = 10. Thus it is im-
portant to examine whether these MD samples can give a
reliable estimate for the ensemble averages of various
dynamical quantities. For these we compared the esti-
mates of the static properties, viz. C (0)'s from the MC
and from the MD for all the allowed q vectors along the
(111)direction. We found that the MD and the MC es-
timates are quite close to each other and dier by an
amount less than the di8'erence in the MC estimates
themselves in two diferent MC simulations. Since the
MC estimate of C~(0) is quite rehable, as mentioned ear-
lier, we feel that 10 MD samples, chosen at 1000 MC
steps/spin difFerence of the MC ages, can give satisfacto-
ry estimates of the ensemble averages of various quanti-
ties of interest.

Now we calculate S (q, co) by using the definition
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max ~

S(q, co)=—I Re[C (r)]R (t)cos(cot)dt
0

(3.23}

[we only use the real part of C (t) in the above expres-
sion] where r is the time of evolution in MD, R (r } is
the Tukey spectral smoothing function;

R (t)=0.5 1+cos 2&f

tmax
for

(
i

( &i,„/2

C (r)
(C,(o)&, ,

q MD
(3.24)

and R (t)=0 for
)

r
i )t,„l2

R (t} is used in the expression for S(q, ro) to reduce the
spectral distortion produced by the finite time truncation
of the time evolution in the MD. We evaluate the above
integral in the expression for S(q, ra) by the Simpson's
quadrature formula with the iteration size being equal to
its. We have also tried another method due to
Takahashiii to evaluate the time integral. In this method
one performs summation over the MD data stored at the
finite-time intervals and also uses the periodic boundary
condition in time. We found that the tail intensities de-
cay much faster with the energy in the first method com-
pared to the second method but the positions of the peaks
are more or less the same in both the methods in the con-
stant q scans of S(q, c0). However, we feel that the
method involving the Simpson's rule is the more logical
one and we present almost all our major and important
results in this paper only using this method. The resolu-
tion width of our calculation is equal to the full width at
half maximum (FWHM) of the Fourier transform of
R (t). This can be shown to be exactly equal to 2h lt,„
(see Appendix D). For calculating Sq(t) and hence Cz(t)
we used the fast Fourier transform technique.

Since our calculation is a statistical one, it involves
samphng from the ensemble configurations, so to speak,
we also need to have an estimate of the error bars in the
estimates of various quantities of interest like C(0, t),
Cz(t), S(q, co), etc. But this is not a very simple task.
We in fact performed two independent MCMD simula-
tions involving 10 samples each, on a 10X 10X 10 lattice
containing 4000 spins at the temperature 2.0T, . %e then
compared the estimates of Cz(t) for two values of q along
(111), viz. q =q;, &0 and q =qza, from these two
simulations (qzii denotes the wave vector at the zone
boundary). We display the results for C~(t) from the Srst
set of 10 samples, from the second set of 10 samples, and
from the grand set comprising all these 20 samples for
q=q;„, in Fig. 1(a). The corresponding results for
difFerence in the estimates of Cq(t} from the two simula-
tions is always much less than the rms Suctuation in
Cq(t) obtained from any one simulation [see Figs. 1(a)
and l(c)]. We found the same feature also in the spectral
function S(q, co). In fact, we found that we can safely
take 50% of the rms fluctuation value in S(q, ra}, ob-
tained from any one simulation, as the corresponding
magnitude of the error in S(q, co). We also tried another
method originally used by Shastry in the iron problem.
In this method one estimates Cq(t) by using the equation

where ( ) denotes here the estimate for the ensemble
average and ( )Mn is calculated using an equation of the
type (3.22) with the modi6ed denominator, as mentioned
earlier. We display the results for (C (i)) calculated us-

ing this decoupled de6nition from the first set, from the
second set, and from the grand set for q =q;„ in Fig.
1(b). The corresponding results for q =qza are displayed
in Fig. 1(d). We found that the estimates given by this
method are quite close to the corresponding estimates by
our direct and new method, described earlier [see Figs.
1(a)-1(d)]. We also found that the rms fluctuations in
S(q, co) obtained from the 10 MD samples in Shastry's
method are fairly close to the corresponding errors in

S(q, co) obtained by our new method for all q~0. It
should be pointed out that Shastry quoted the rms Quc-
tuation value (obtained from the 10 MD samples in his
method} itself as the magnitude of the error. Shastry's
method gives less rms Suctuation compared to our new
method because Cz(t)/C&(0) is a more slowly varying
function of the ensemble configurations than Cz(t). Thus
on the whole, we feel that practically either of the two
methods is equally good, but in this paper we present the
results of the calculations done by the new method only.
The deviations of the estimates for various quantities in
the finite size system, as used in our calculations, from
the corresponding estimates in the thermodynamic limit
are expected to be of the order of 1/~N, which comes to
about 2% in our case. This is much less than the error
arising out of the Rnite number of the MD samples, etc. ,
which is indicated as the error bar in our calculation.

The calculation of the static properties and checking
the reliability of the estimates from the MD samples,
mentioned earlier, were also done using the simulation re-
sults from a 10&10'10 lattice at the temperature 2.0T, .

For the calculation of the spin autocorrelation function
we could store S,(t)'s corresponding to only 400 spina,
because of the storage space restrictions. We chose these
400 lattice sites randomly, with equal probability for
every site in the whole finite lattice to be chosen and with
the condition that no sites were to be chosen more than
once. We also checked the reliabihty of the estimate for
the autocorrelation function from the set of 400 spins, by
partitioning this set into two smaller sets of 200 spins
each by means of the random selections, and then com-
paring the estimates obtained from the grand set and the
two smaller sets, respectively. This exercise was done on
a 10X 10X 10 lattice at the temperature 2.0T, . We found
that the three estimates are very close to each other.

%'e Snally performed the simulations on a bigger lat-
tice, viz. 12X 12& 12 containing 6912 spins at two
diferent temperatures, viz. 2.0T, and 1.68T, . This was
the largest lattice we could perform simulation on, within
the allowed resources of the computer, to reduce the
finite-size el'ects. These two temperatures were so chosen
that we could compare our simulation results with
Mook's experimental results for 2.0T, and Boni and
Shirane's results for 1.68T, . %e probed all the three
principal directions, viz. (111),(110),and (100) in our
simulation and calculated S(q, ap) by our new method.
&e also calculated the spin autocorrelation function at
those two temperatures. %e compared the results for
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S(q, at) obtained from the simulation on this bigger lat-
tice (12X 12X 12) with the experimental results and also
with the results of the YS theory and of Lindgard's
theory. Since, for @ Snite system, we have only discrete
values of q, sometimes the comparisons were made for
the closest possible q value allowed by the box-
quantization scheme.

The value~ of J, and J2, used in o«calculation, are
those extracted from the experimentally obtained spin
wave dispersion curve at low temperature in the ordered
phase. 2 The value of T, used in this calculation is the
experimental T, . This value of T, agrees very well with
that obtained by the high-temperature series expansion

results for the classical Heisenberg model. ' It must,
however, be noted that the value of T, obtained from the
YS calculation is slightly difFerent from that used in our
calculation. For comparing with our results for the static
and the dynamic properties, we have calculated the cor-
responding quantities using the YS theory at the same
values of T/T, ratios, viz. 1.68 and 2.0. Lindgard's
theory also gives slightly different values of T, . %e have
again compared our results with those of Lindgard for
the same value of T/T„viz. 2.0.

All the simulation work reported in this paper was
done on a Cyber 170/730 computer. Each dynamical run
takes about 2 h of CPU time. The resolution width of
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FIG. 1. Ce(t) vs t plots for two values of q along (111), from the MCMD calculation at the temperature 2.0T, using a
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our calculation is about the same as that in Boni and
Shirane's experiments, viz. the half width at half max-
imum (HWHM) equal to 0.43 meV. For comparison
with our results, we have convoluted the YS results with
the same resolution function of the same width as used in
our calculation. Mook does not quote the resolution
width in his experiments. We have not convoluted the
S(q, co) results of Mook and of Lindgard with any resolu-
tion function and displayed only the corresponding bare
results in our previous figures.

Since the reported results of Boni and Shirane, of
Mook, and also of Lindgard for S(q, ~0) are not in the ab-
solute scales, we have normalized them suitably for com-
paring with our results. The scheme used for normaliza-
tion was as follows: at the temperature 2.0T, for
q—=0.5qzn along (111),the normalization constant was
so chosen that our results and Mook's results coincide at
the energy value of 0.82 meV; at the same temperature
for q=qza along (111),the constant was fixed by mak-
ing our results and Mook's results coincide at the energy
value of 0.57 meV. These normalization constants were
used for comparing our results with the results of Mook
and of Lindgard. We have multiplied the results of Mook
and of Lindgard with these normalization constants. At
the temperature 1.68T, for all four q values of interest,
we have determined the normalization constants by
matching our results for (111) and Boni and Shirane's
results for the powder at F0=0. These normahzation con-
stants were used to scale Boni and Shirane's results for
comparing with ours. It may be pointed out that we
could have chosen a dim'erent and probably better nor-
malization scheme by which we could have brought the
curves of Boni and Shirane, of Mook, and of Lindgard
much closer to our curves from the MCMD. All the
curves from the convoluted YS are to be multiphed by a
factor of 3, to bring them on absolute scale.

IV. RESULTS

TABLE II. Ritchie-Fisher (RF) functional 5t for (Cq 3,„(saith
q along (ill)) at T=2.0T, . The value of C~ 0, mentioned
here, is that calculated using the best-St values of the RF pa-
rameters.

u= 1.6968
P=0.6831

Cq=o =2.4630
(=1.37 A

For convenience, we hereafter refer to Cq(0) as Cq and
C(r, O) as C(r). The true estimates for Cq, C(r), and
C(O, t) are obtained by multiplying them with the factor
S(S+1)which is equal to 15.75 in this case. This also
implies multiplication of the value for a by the same fac-
tor.

A. Static properties (at T =2.0T, )

We display in Tables I-III the results for various static
properties from our MC calculations and also give the
static results of YS and of Lindgard's calculations for
comparison. In Table I we present the results for the MC
estimates of Cs (both average and rms Suctuation) for q
along the (111)direction. In Table II we give the ap-
propriate parameters obtained by fitting the estimates of
(C~},„ to the Ritchie-Fisher (RF) functional form. In
Table III we display the results for C(r} from (i) our
direct MC estimates, (ii) the Fourier transformation of
the RF fitted form of (C~),„ in our MC calculations, (iii)
the calculations of YS, and also (iv) the calculations of
Lindgard. As mentioned earlier, the MC results
displayed here are those obtained with the IOX10X 10
lattice.

J, = 1.204 K, J2 ——0.310 K, T, =69.15 K, a =5.12 A

to ——1.6&(10 ' sec, t„, =0.015to .

TABLE I. Monte Carlo estimates of the static spin-spin
correlation function in the q space C~ (for q along (111))at
T =2.0T, .

0.0
0.2
0.4
0.6
0.8
1.0

(Cq),„
2.4669
2.0704
1.5106
1.1430
0.9429
0.9036

(Cq)

2.1258
1.2028
0.8955
0.6725
0.5160
0.7325

(Cq ),f/(Cq ),„
0.8617
0.S810
O.S928
0.5884
0.5472
0.8106

In this section we give all our important results, for
both the static and the dynamic properties, and compare
them with those from the other theoretical and experi-
mental approaches at the appropriate places. The con-
stants we used are

8. Dynamic properties

We 6rst display the fact that de5oition A gives lesser
absolute Suctuations compared to deSnition 8 in the esti-
mates for S(q, ro) as well as for C(O, t) in almost all the
eases, in Tables IV and V, respectively. The results for
S(q, ce} used in Table IV correspond to q:—qz& along
(111) and have been obtained using Takahashi's ap-
proach. These results in Table IV as weB as the results
for C(O, t) displayed in Table V are from our simulations
on a IOX 10&10 lattice at the temperature 2.0T, . Then
in the separate Sgures we display the S(q, co) results for
various values of q and also our results for the spin auto-
correlation function corresponding to the two tempera-
tures 1.68T, and 2.0T,. The S(q, co) results displayed in-
clude our MCMD results, as well as the results from oth-
er theoretical approaches and experiments. We also give
C (r) versus r plots corresponding to the two definitions,
viz. the direct de6nition and the decoupled de6nition for
the two values of q„as mentioned earlier. A11 the results
presented in the 5gures have been obtained by using
1/r deiinition, i.e., deSnition A only.
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TABLE III. Results for the static spin-spin correlation function in the real space C (r) at T =2.QT, .

Neighbor-
she11

number
Distance

(in units of 0)

1/&2
1

&3&2
&2

C}RF=1 &7

0.0606 0.0643
0.0246 0.0062
0.0091 0.0008
0.0055 0.0001

A, (g}vs=2.M A, (g}i.gqDoARD = 1.20 A

C(r)
(Lindgard)

0.0702
0.0298

V. DISCUSSION

Figures 2(a)-2(d) contain the S(q, co) results at the
temperature 1.68T, for q=0.4 A ', q=0. 6 A ', q=0. 8
A ', and @=1.0 A ', respectively. The theoretical
results are for the (111) direction, whereas the experi-
mental results are for the powder form. Figures 3(a),
3(b), and 3(c) contain the $(q, r0) results for q along the
( 111) direction at the temperature 2.OT, corresponding
to the q values of 0.5qza, 0.Sqzn, and qza, respectively.

Looking at Figs. 2(a)-2(d} and also at 3(a), 3(b), and
3(c), we find that our results for S (q, cu) agree qualitative-
ly with the results of the recent experiments performed
by Bom and Shirane as well as with the previous mea-
surements by Mook. However, the quantitative features
of our results are closer to those of the observations of
Boni and Shirane than to those of the observations of
Mook. Turning to the comparison of our results with the
results of other theoretical approaches, from the above-
mentioned figures we find that our results show features
which are very similar to those from the YS calculations.
The agreement between our results and those of
Lindgard's is much less. Also, from those same figures
mentioned above, we see that our calculated S(q, co}
shows distinct qualitative features in the low-q regime
and in the high-q regime. When plotted in the constant q
scans as a function of co, our results for S(q, co} show a
peak only at ~=0 for low values of q, indicating purely

diff'usive behavior [see Figs. 2(a), 2(b), and 3(a)]. For the

q values in the upper half of the magnetic zone, in partic-
ular close to the zone boundary, our calculated S(q, co)
shows three-peak structures consisting of a central peak
and two peaks or shoulders at finite values of co (both pos-
itive and negative}, displaying the existence of damped
propagating modes [see Figs. 2(c), 2(d), 3(b), and 3(c)t. In
the propagating regime we seem to get more intensity for
the central peak than for the peaks at Snite values of co, at
both the temperatures, as observed in Boni and Shirane's
experiments and also in the YS calculations. We also find
from the comparison of our results for S(q, m) for q along
the three principal directions, with the same value of

i q i
(approximately), that the isotropy is fairly good, as

claimed by Boni and Shirane, if we take into account the
error bars and the resolution width (HWHM) in our
MCMD calculation. The convoluted YS results also sup-
port this, when we take into consideration the resolution
width. For brevity we have only displayed the S(q, co) re-
sults from the MCMD and from the convoluted YS, ob-
tained at T=1.68T', for q along the three principal direc-
tions with

i q i
approximately equal to the value for qza

corresponding to (111), to establish our claim for the
isotropy. The results corresponding to the ( 111),
(110),and (100) directions are displayed in Figs. 2(d),
4(a), and 4(b), respectively. The structure seen in our cal-
culated S(q, ro) in the constant-q plots (from the various
ffgures mentioned earlier} also gets qualitative support

TABLE IV. Monte Carlo-molecular-dynamics results for the dynamic structure function S(q, co)

with two de6nitions.

Ace

(in units
of 0.43
meV)

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

S{q,co)/A
(def. A)

(10 me V ')

0.3187
0.3158
0.2931
0.2529
0.2132
0.1808
0.1464
0.1120
0.0895
0.0796

rmsf
(def. A)

(10 me V ')

0.1150
0.0808
0.0486
0.0545
0.0578
0.0402
0.0303
0.0225
0.0131
0.0133

S(q, co) /A

(def. 8)
(10 me V ')

0.3277
0.3250
0.3006
0.2560
0.2134
0.1813
0.1454
0.1084
0.0849
0.0760

rmsf
{def. 8)

(10 me V ')

0.1321
0.0866
0.0535
0.0620
0.0636
0.0411
0.0315
0.0237
0.0119
0.0133
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TABLE V. Monte Carlo —molecular-dynamics results for spin autocorrelation function C(0, t) with

two de6nitions.

{in units
of to)

0.0
0.15
0.30
0.45
0.60
0.75
0,90

C(0, t}
(def. A)

1.0000
0,8612
0.5790
0.3098
0.1468
0.08S6
0.0745

rmsf
(def. A}

6.2~ 10
0.0045
0.0124
0.0148
0,0104
0.0070
0.0082

C{0,t}
(def. B}

1.0000
0.8828
0.6087
0.3342
0.1627
0.0975
0.0872

rmsf
(def. B)

6.2~ 10-'
0,0046
0.0130
0.0160
0.011S

0.0080
0.0096
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from the results we obtained in the Cq(t) versus r plots
displayed in Figs. 1(a)-1(d). The general feature seen in

our S(q, co) results in the propagating region, viz. the
softening of the modes, the reduction in the intensities for
the peaks, at Snite frequencies, and also the broadening of
these peaks, with increase in temperature [see Pigs. 2(c),
2(d), 3(b), and 3(c)] are as well seen in the experiments
performed by Boni and Shirane, by Mook, and also occur
in the results of YS and of Lindgard. It must, however,
be pointed out that the peak positions in the propagating

region in our calculation are very close to those in Boni
and Shirane's experiments, in the YS calculations, and
also in Lindgard's calculations but are slightly different
(in fact shifted towards lesser value) from those obtained
in Nook's experiments, as seen from Figs. 2(c), 2(d), 3(b),
and 3(c). Our results also exhibit more intensity in the
los-q scans compared to the high-q scans, in agreement
with the results of Boni and Shirane, YS, Mook, and
Lindgard [see Figs. 2(a)-2(d), 3(a), 3(b), and 3(c)]. This is
in accordance with the fact that the system is heading to-
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havior as a function of time at both the temperatures.
The result seems to be less sensitive to the temperature
and also to the lattice size, compared to the results for
S(q,co). As mentioned earlier, there are still no experi-
mental results for the spin autocorrelation function of
EuQ.

From Table III containing some of thc static results,
we see clearly that the qualitative features of our results
agree quite well with those of the results of YS and of the
results of Lindgard, but in the quantitative estimates our
results seem to be closer to those of Lindgard than to
those of YS. As mentioned earlier, our estimates for
C (0) at the temperature 2.0T, from the Monte Carlo
calculations and from the molecular dynamics calcula-
tions are pretty close to each other. This shows the relia-
bihty and the consistency of our overall calculation.

The detailed comparison of our results for the static
and the dynamic properties with those from the two oth-
er theoretical approaches and the two diferent experi-
ments, seem to bring out certain interesting features. The
good agreement between our results and Boni and
Shirane's results show that the spin dynamics of EuO in
the paramagnetic phase can be very well explained by the
Heisenberg model with ferromagnetic interactions rang-
ing up to the second-neighbor shell. Since this madel also
gives a very good estimate of T„we can say that the
Heisenberg model provides a very good description of
both the static and the dynamic properties of the
paramagnetic EuO. The predictions of the YS theory re-
garding the dynamic properties of the Heisenberg model,
appropriate to EuO, seem to be quite good. This also
re6ects the validity of the three-pole approximation of
Lovesey and Meserve in this particular case. For low
values of q, the intensities from the YS calculation give
more weightage to low co, whereas in the high-q regime
the intensities give higher weightage to the higher values
of co. However, the two-pole approximation, as used by
Lindgard, seems to be a bad approximation for the spin
dynamics in this case. Surprisingly enough, the predic-
tions of Lindgard's theory for the static properties seem
to be better than those of the YS theory for the same, in
this particular case. This seems to imply that the self-
consistency condition used in Lindgard s theory to calcu-
late the static quantities from the dynamic quantities,
works pretty well in this case. The spherical model ap-
proximation used by YS seems to be not so good in this
case. In any case, both the theories in agreement with
our results, show that propagating modes can exist even
in the absence of any giant short-range ordering in the
paramagnetic phase of the Heisenberg model. In fact, we
found from our calculations that the correlation length g
is much less than the wavelengths corresponding to the
various values of q at which we get the pseudopropagat-
ing modes. This is supported by the other two theories
also. Thus we feel that the existence of the pseudopro-
pagating mode in the paramagnetic phase of the Heisen-
berg model primarily depends upon the equations of
motion. This explains why experimentally one has ob-
served such a strong dependence of the nature of the col-
1ective excitations in the paramagnetic phase of the
Heisenberg systems, on various factors like the type and

the range of the exchange interactions, the type of the lat-
tice, the value of the spin of the magnetic atoms, etc. We
also feel that the reason for the occurrence of the three
peaks in the propagating regime in the paramagnetic
phase is quite diferent from that for the three-peak struc-
ture observed in the ordered phase. In the ordered phase
the peaks at the finite frequencies, i.e., the spin wave
peaks occur because of the existence of oscillatory (slight-
ly damped) solutions for the equation of motion of the
dynamic correlation function for the transverse corn-
panents of the spins. The quasielastic central peak arises
mainly due to the almost steady (slightly temporally
damped) correlation between the longitudinal com-
ponents of the spins. However, in the paramagnetic
phase, the distinction between the longitudinal and the
transverse components vanishes completely. Thus there
is a complete isotropy in the equations of motion. So the
three-peak structure for S(q,e) observed in the paramag-
netic phase is due to the equation of motion of the corre-
lation function corresponding to any component of the
spin. Thus it is clear that in the paramagnetic phase, the
two-spin dynamic correlation function in q space, for any
spin component, for q close to the zone boundary, has a
temporal evolution which gives rise to this structure.
However, for the low values of q, the temporal evolution
of this correlation function is purely difFusive and pro-
duces only a central peak in the Fourier spectrum. These
features remain intact even for temperatures very close to
'r, in the paramagnetic phase, as is seen in Boni and
Shirane's experiment.

From the equation of motion approach using the mi-
croscopic theory, we know that the temporal evolution of
the two-spin dynamic correlation function in q space is
governed by various higher-order dynamic correlation
functions which have nontrivial temperature and q
dependence. This leads to the observed q dependence of
the qualitative features of S(q, co) in the paramagnetic
phase. For the spin dynamics, the static properties seem
to play the most crucial role only in bringing about a
quahtative change in the nature of the collective excita-
tions, as the system undergoes a magnetic phase transi-
tion. However, in the paramagnetic phase, the static
properties only a8'ect certain quantitative features of
S(q, co), viz. the peak position, the width, etc. The most
direct way of seeing the roles of the short-range order
and of the static properties in determining the nature of
the spin dynamics, is to follow the philosophy of the
MCMD technique, as described earlier. The static prop-
erties come in the form of the initial conditions, i.e., the
spin configurations of the MD samples.
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APPENDB:X A: %INDSGR'S DETAILED
BALANCE FACTOR

The central point in %indsor's prescription is that in
time domain, the classical correlation function is equated
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to the real part of the quantum correlation function.
This is essentially an Ansatz and is quite popular in the
molecular dynamics studies. For a centrosymmetric sys-
tem, this ansatz leads to the relation between S&M(q, t0)
and S,i(q, to), as suggested by Windsor. To see it clearly,
we first make use of the equations involving the linear
response functions and the correlation functions, as
occurs in the Quctuation-dissipation theorem:

(S (0) S (t))q ——f e'"'
pXq (q, t0),

oo e
—AcoP

(S q(t) Sq(0))gM ——f e'"'
~p X@M(q,co) .

oo F e —l

M PMdM
(I'& =

f P(M}dM

The calculation is straightforward now. One gets,

(I') =3X,
&M') =15X'.

Therefore

(CO)rmsf ( &
I'

&
—

&
M' &')'"

(C, ) (M')

(6X2)i j2
=Q—', =0.8165 .

3X

(85)

(A2)

&-,
' IS,(O),S,(t) ) &~„

= f e' 'coth(ltoP/2)X&M(q, co) . (A3)
oo 2 fl

This result was used to check the attainment of thermal
equilibrium distribution for spin configurations in our
MC calculation, as mentioned earlier.

APPENDIX C: DERIVATION OF THE PARAMETERS
IN RITCHIK-FISHER FORM

S„(q,co) = coth XqM(qp~)

Now by Windsor's prescription

(S (0}.S,(t))„=-,'( tS (0),S (t)))&

This leads to

(A4)

We use a slightly nonstandard form of the Ritchie-
Fisher formula which is elaborated here. This was used
by Shastry in the iron problem. The function has too
many unknown parameters and is inconvenient for use
directly. Making use of a few simple relations, we reduce
the number of unknown parameters occurring in the
function.

The functional form, mentioned earlier, is

r

=—,coth (1—e ) S~M(q, ~),~P -s p.

2
~@M(q to) =

«+ -ap

APPENDIX B RATIO OF (Cq) t TO (Cq)
IN THERMAL EQUILIBRIUM

(A5)

(A6)

(C 1)

where g is the characteristic function which determines
the spin-eave dispersion relation at very low tempera-
ture.

fq ~ (P(0)—8(q),
where cP(q) is the Fourier transform of JJ—:J(

~
r; —rj ~

)

and d(0)=d(q=0). Now

By the central limit theorem, for a system in the
paramagnetic phase, we have

P(M) =ee-~'"', (81)

where P(M) is the probability for a systetn configuration
to have magnetization M, 7 is the total uniform suscepti-
bility, and C is the normalization constant determined
from the condition that fP(M)dM= 1.

Now

&q=&iq+0 &tq

where all the symbols have been explained earlier in the
main text in Eqs. (3.15)-(3.17). For small q, we can ex-
pand g, q and gzq to get

2Q 2

gq- (1+2$) . (C2)

Thus combining (C2) and (C1}we get for small q,
T

«, ,&=—(~'& . (82) C =Co « —p 1—'qy
q— 2

Let us denote C 0 by Co,

&(C,—&C, &)'&=,(&I'& —(~'&'),

J M P(M)dM
&m') =

f P(M)dM

(83)

(84}

where

.pq/2 —i
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Thus

C 'gy=1—p 1—
Co 2

(C3)

where

= f C(r)dr — I r C(r)dr,
2

6
(C4)

5=—,
' f r C(r)dr,

Sq'''
Co Co

Again for a system with purely ferromagnetic interac-
tions, C„as a function of q shows a maximum at q =0.
Then for low q we can write (by Taylor's expansion about

q =0)

APPENMX 0: F%HM GF TUKEY%'INDOW

As mentioned earlier in the text, the Snite-time trunca-
tion in the time evolution in the MD leads to a spectral
distortion, viz. the appearance of lots of ripples in the
computed structure function S(q, co). In order to reduce
this spectral distortion, we will have to multiply C (t)
with a suitable spectral smoothing function which van-
ishes smoothly (with zero slope) at the two ends of the
finite-time interval. We use the Tukey function which is
quite popular in the field of spectral analysis. Its Fourier
transform, known as the Tukey window, is very much
like a Gaussian function. By the convolution theorem,
the full width at half maximum of the Tukey window is a
measure of the total amount of the spectral distortion
produced and is quoted as a resolution width.

If the duration of the data recording (in our case the
duration of the MD evolution) is from t,„—/2 to
+t,„/2, then the corresponding Tukey function is
defined as

Comparing (C3) and (C4) we get,

12
"+2~) '-

2 =C
0

The usual asymptotic form for C (r), viz.
—r/g

C(r)-
P

gives from (C4),

(C6)

R (t)=0.5[1+cos(2mt/r, „)] for
i
t

i &r,„/2,
R(t)=0 for

i
r

i &t,„/2.
The Fourier transform of R(t) is the spectral window
W(co) which decides the distortion of the observed spec-
trum from the ideal one. The Fourier transformation of
R (i) gives,

+ x/2
W(ai)= I 0.5[1+cos(2nt/t, „))e' 'dt

max/2

p2=~(6—5ri+ri ) .
Co 6

Now from (C6) and (C7) and neglecting ri, we get

2 a (1+2$)
12

Using this expression of g, from (C6) and (C7), we get

y= =1.65 (since il= —,', =0.04) .5 —g

Also by the sum rule

or

W(co) = sin
1

4m

This shows that

tmax
W(0) =

4m

pJ' + 27T

tmax

COtmax

tmax

1

21T

tmax tmax

—g Cq ——S(S+1),1

q

a=[NS(S+1)] g(P+yPq)" /(P+Qq)

Thus we have reduced the four-parameter (a,p, y, g) sys-
tem to simply one parameter, viz. p which remains as the
Sitting parameter in the parametrization process.

4m
F%HM t max

in units of co. So in energy units,

F%HM
tmax

tmax
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