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Phase transitions in a compressible antiferromagnet with biquadratic coupling
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A t~o-sublattice compressible antiferromagnetic model is studied swithin a variational approach
based on Bogoliubov s inequality and through spin-wave analysis. Our effective spin Hamiltonian
contains a biquadratic exchange term, and the exchange couplings depend on external forces. %'e

determine the complete phase diagram in the magnetic field versus absolute temperature plane for
diferent values of the external forces. We also show that the canted-paramagnetic phase boundary
can be of first or second order depending on the values of the single-ion uniaxial anisotropy and of
the biquadratic exchange parameter. The evolution of the bicritical point as a function of the biqua-
dratic term is the same as for the single-ion term.

I. INTRODUCTION

In this paper we study the phase diagram in the plane
of H (applied magnetic field) versus T (absolute tempera-
ture) for a compressible antiferromagnetic model. From
the experimental point of view some recent experiments
have been performed on compressible antiferromagnets'
where magnetoelastic effects were observed. On the oth-
er hand, some calculations performed on compressible
magnetic systems focused attention on Ising models '

and on S=—,
' antiferromagnets ~here biquadratic cou-

pling does not appear. These theoretical works have been
performed within the mean-field approximation.

We consider in this work a compressible antiferromag-
netic model of spins 5 =1 in an applied field directed
along the axis of anisotropy. The spins are arranged in
two interpenetrating simple-cubic sublattices. %e take
the simple magnetoelastic model of Baker and Essam
where the shear forces are disregarded. In this way we
derive an effective spin Hamiltonian that contains, be-
sides the force-dependent exchange couplings, a term that
reveals the biquadratic exchange coupling. Using a vari-
ational approach based on Bogoliubov's inequality we
can determine a magnetic phase diagram for every value
of the external force. We show that, depending on the
value of the biquadratic parameter the spin-
flop-to-paramagnetic transition can be of first or second
order. %e also exhibit a diagram of the biquadratic ex-
change versus the single-ion uniaxial anisotropy which
shows the regions of first- and second-order spin-
flop-paramagnetic transitions.

In the low-temperature region we determine analytic
asymptotic expressions for the spin-flop-paramagnetic
boundary. In this case our effective spin Hamiltonian is
considered within the spin-wave theory.

Our paper is organized as follows: In Sec. II we
present our compressible antiferromagnetic model and
the calculations to obtain a variational free energy. In
Sec. III, we exhibit the results obtained at T =0 and the
complete phase diagram as a function of the external
pressures. In Sec. IV, we obtain the spin-flop—
paramagnetic phase boundary in the low-temperature re-

gion, and finally, in Sec. V, we discuss the main results
obtained in this paper.

II. COMPRESSIBLE ANTIFERROMAGNETIC
MODEL —VARIATIONAL FREE ENERGY

Our compressible antiferromagnetic model may be de-
scribed by the following Hamiltonian:

where the first term represents the kinetic energy of the N
ions of mass m and the second term is the elastic poten-
tial energy between first neighbors. The third term
represents the antiferromagnetic exchange between
nearest neighbors (J &0) which depends on the relative
distance between neighboring ions situated at the pair of
sites i and j. The parameter D represents the single-ion
uniaxial anisotropy and 0 is the static magnetic field ap-
plied along the easy axis. The last term of Eq. (1)
represents the work done by the external force A, , which
is applied along every line of ions of the crystal.

For simplicity we assume a harmonic potential given
by

0(ri))=4'o+
2

( Ir;, I

—ao)'

where Po and a are positive constants and ao is the aver-
age distance between neighbor spins at a given tempera-
ture To. Expanding this potential around the equilibrium
positions of the; ions at a temperature T, we obtain

P=Qo+ —(a —ao) +2(a —ao)p,"+(p;,. )

ao
+ 1—
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where p," (a =x,y, z) represents the Cartesian component
of the relative deviation from equilibrium positions of the
ions and a is the average distance between neighboring
spins at temperature T. Neglecting the last term in (3),
which means disregarding the shea1 forces, we arrive Rt

the Baker-Essam model. In this case both the elastic and
magnetic couplings depend only on the longitudinal com-
ponent of the relative positions of the ions. For the ex-
change interaction we also assunM that

J(r;, )=J +J)(
~ f;, ~

—as), (4)

where JO~O and J& gO. According to the Baker-Essam
model

gj=rj 1;, ,

where 1;J is a unit vector in the direction of the corre-
sponding ions located at the sites i and j in the rigid lat-
tice. Applying the following unitary transformations

JiU=gexp i PI g S S +&
l m{ ~l)

where [x, ,P, ]=i5,&, to the Hamiltonian given by Eq. (1),
we decouple the Hamiltonian into parts which depend
separately on the spin and lattice degrees of freedom.
This is possible because within the Baker-Essam model,
every line of spins is elastically independent of the others
and we apply the above transformation to every single
line. In this way we obtain the following efFective spin
Hamiltonian:

&' = —g [J(A)S; SJ+ A(S; S~) ]
ti, jI

D—g (S') g—p&H g S

where

Jib, Ji
J(&)=JO— and A= &0.0 20,

We observe the presence of the biquadratic coupling that
appears naturally as a consequence of the spin-lattice in-
teraction, and the explicit dependence of the exchange
parameter on the external force.

The phase diagram for this compressible antiferromag-
netic model can be obtained from the magnetic free ener-

gy 6 (T,H, A, ,N). We use the Bogoliubov's inequality

6(a")&6,+(m"—m, ),=6
to obtain an upper bound 6 for the true free energy of the
system. Taking the following trial Hamiltonian:

N/2 N/2

&o———g g E„S;„+g EgS~ (10)
e i=1 j=1

I

where Kz a (a=x,y, z) are the six variational parameters
for both sublattices A and 8, we obtain an upper bound
for 6 when we minimize 6 with respect to the parameters
K~z a. It is straightforward to obtain the following ex-
pressions for 60 and for the mean values of interest:

60 ———
I in[1+2 cosh(PA, „)]+in[1+2cosh(PA@ )]),N

2P

P=(k~T) ' and A, ~ a —— g (Kq a )z (12)

2 sinh(PA, „~) K„a
1+2cosh(Pl, „a) A, „~

E((s„))=
P[1+2cosh(Pk, g a)]

cosh(PA, „a)+ l

A, B
sinh(PA, „&) .

(13)

(14)

&s„,s&, &=
p[1+2 cosh(pk. „~)]

&z,a&~,s sinh(PX& z )
Pcosh(PA, „a)—

~A, B A, B

Kith these expressions we can write an expression for 6
Eq. (9), as a function of the parameters K„a. Minimiz-
ing 6 on these parameters we obtain a set of six equations
that can be solved numerically to determine the complete
phase diag rRID.

III. PHASE MAGRAM

Let us initially consider the phase transitions that
occur at T =0 K. The energies per spin in the antiferro-
magnetic phase (AF}, spin-Ilop phase (SF},and paramag-
netic phase (P) are given, respectively, by

U~F ——3J—3 A —D,
Us„= —3J cos(28) —3A cos (28)

—gpgH cosH —D cos 8,
Up ———3J—3A —gp~H —D,

where we have considered a simple-cubic lattice with
S =1 and J is given by Eq. (8). In Eq. (17), 8 is the angle
that both sublattices form with the external field in the
spin-Hop phase.
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The phase transitions are determined when the free en-

ergies of dilferent phases become equal for a given set of
parameters. The tr ansition between antiferromagnetic
and paramagnetic phases is of first order and the critical
field is given by

gPB+AF-p (19)

The transition between antiferromagnetic and spin-Sop
phases are obtained considering the simultaneous solu-
tions of the following equations:

BUsF
UAF= UsF and

88
=0. (21)

This system has only one solution that has a physical
meaning and this transition is always of first order. On
the other hand the transition between the spin-fiop phase
and the paramagnetic phase, given by the solutions of the
following equations:

This critical field is independent of A and D. In order to
determine the other transitions we have to minimize UsF
with respect to 8:

~UsF =483 cos 8+(2D+12J —242) cos8+gp&H .3

8

(20)

gIMaHsF p = —12J—24~ —2D (23)

The results for the first-order transitions can be only ob-
tained numerically and the values for the critical field are
bigger than those given by Eq. (23).

In Fig. 1 we present a diagram in the space A, D, H.
In region I the SF-P second-order phase transitions
occur. In region II we have the SF-p first-order phase
transitions. In region III we do not have the spin-fiop
phase. This region is characteristic of a metamagnetic
model and the antiferromagnetic to paramagnetic phase
transition is always of first order. This critical field is in-
dependent of A and D [see Eq. (19)]. In Fig. 2 we exhibit
a diagram of the critical fields as a function of the param-
eter A for fixed values of J and D. Of course, this figure
is a projection in the H-A plane of Fig. 1. We sketch it
separately because in Fig. 1 we do not present the AF-SF
phase transition as a matter of clearness. We observe
that for A ~ A, the system does not present the spin-fiop
phase, that is, it behaves like a metarnagnetic model.

Us, ——Up and =0,USF

a8
= (22)

can be of first or second order depending on the values of
the parameters A and D. The critical field in the case of
second-order transition -can be obtained analytically and
is given by

FIG. 1. 0-A-D diagram at T =0. The solid lines in region I represent the SF-P second-order phase transitions. The dashed lines
in region II represent the transitions between SF and P phases which are of Srst order rvhile in region III they represent the 6rst-
order AF-P phase transitions. We have J= —1 and the parameters A and D are dimensionless.
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The result of the minimization of the variational free
energy described in the Sec .II produces three different
phases, namely

&S"„)=(S,")=0,
antiferromagnetic (AF): ',

&S"„)= —&S,")&0,
spin-flop (SF): '

(
(S",) = &S,")=0,

parailiagiletic (P ):

(25)

—12J —4A +2D
3

(27)

This behavior seems to be verified in some compressible
antiferromagnets. In Fig. 3 we also exhibit the evolution
of the bicritical point as a function of external force. The
temperature and magnetic field associated with the bicrit-
ical point increase with the external tensions. We have
also considered the evolution of bicritical point as a func-

where we have defined the y axis such that
(S» ) =(Sg) =0. The effective spin Hamiltonian given
by Eq. (7) is invariant with respect to rotations in the x-y
plane.

In Fig. 3 we present the phase diagram of a compressi-
ble antiferromagnetic model for some chosen values of
external force. As it is expected, the critical fields at
T =0 and the Neel temperature increase linearly with the
forces due to the harmonic approximation considered for
the elastic potential energy in our model. For instance,
the Neel temperature (T~) can be analytically deter-
mined and it is given by

tion of the biquadratic parameter for fixed values of the
single-ion uniaxial anisotropy. We have seen that as A
increases the region in the plane H versus T associated
with the spin-fiop phase diminishes. In this way the bi-
quadratic exchange parameter A is similar to the single-
ion parameter D and the global phase diagram looks like
the uniaxial antiferromagnets.

IV. I O%-TEMPERATURE SPIN-FI.OP-
PARAMAGNETIC TRANSITION

ei,(T,H)=Ai, + gF~ (a~g ),1

ws (28)

In this section we determine the spin-flop-
paramagnetic transition at very low temperatures. Froxn
the experimental point of view this is an interesting prob-
lem because we can study spin waves as a function of the
pressure and of the biquadratic exchange parameter in
the low-temperature region.

%e consider the compressible antiferromagnetic model
in its paramagnetic phase as being described by the
effective spin Hamiltonian given by Eq. (7) of Sec. II. We
define raising and lowering spin operators of the form
Si SP k——i' for every lattice point. Now we introduce
the Holstein-Primakoff representation to write the opera-
tors Si and Sf in terms of spin deviations operators at
each lattice site. The next step is to switch to the Fourier
representation and expand the Hamiltonian up to terms
of order S '. If we neglect the contribution of terms
with more than four magnon operators, it is very easy to
use %ick's theorem to linearize the equation of motion in
the Heisenberg representation for the spin-wave operator
ai„where k are vectors of the first Brillouin zone. In this
way we obtain the following efFective-energy spectrum
e„(T,H) of the magnons:

IO

6 SF

FIG. 2. Critical field as a function of the biquadratic ex-
change parameter A. The solid line is a line of second-order
transition and the dashed lines represent the 5rst-order transi-
tions. %'e see the three phases, antiferromagnetic (AF), spin-
fiop (SF), and paramagnetic (P), of an antiferromagnet. We
have T=O K, J=—1, D=1, and A, =0.378. All parameters
are dimensionless.

FIG. 3. Phase diagram of a compressible antiferromagnetic
model for some values of external force. The dot-dashed line in-
dicates the evolution of bicritical point arith external force. %e
have D =0.1, A =0.01, and J(A, )= —0.2, —0.6, and —1.0. All
parameters are dimensionless.
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Aq ——[—ZSJ(A, )+2ZA (1—S)S ](yg —1)

+(2S —1)D +gp&H,

+i q
= —ZJS[1+yi -q —y~ —y, ]

—2AS Z[S(1—yi, —yq)

+2yi,+q+3yi, q] —4DS, (30)

gpeH, (0)= 2—ZSJ(A, ) 4—ZAS 2—DS .

If we consider this last equation for a simple-cubic lat-
tice with S =1, we recover our Eq. (23), obtained in the
last section.

Therefore, the external pressures and biquadratic ex-
change term do not change the asymptotic T Bloch
law for the canted-paramagnetic phase boundary at very
low temperatures. A detailed analysis of the experimen-
tal results ' at very low temperatures is necessary in or-
der to determine the vahdity of our result.

where yi, ——(1/Z) use '"'s is the structure factor for the
Z nearest neighbors of a given ion. We also have that

&aiba„&=(e "—1) (31)

Ao ———2ZSJ(A, )+4ZS (1—S)A —D (2S —1), (33)

As/2 = — {Z[J(A )+10S A]+D I
1

I ~ ' 3/2
k~xI

2 2, 0

1 1 ZJ (A, ) D 5ZAS
ir 4 6 2 3

(34)

XI 5 5 8
2 2 0

I

In these expressions, I (n) is the y function,

g(a)= g (n)
n=1

(35)

is the boson occupation number.
The spin-flop-paramagnetic critical field H, ( T) is

determined by the limit of stability of the paramagnetic
phase, namely by the equation e&(T,H, }=0,where the

vector ko labels the corners of the first Brillouin zone.
The asymptotic form of the critical field at low tempera-
tures is given by

gpgH ( T)= Ao —A s~z T A s~2 T

V. CONCLUSIONS

We have considered in this work a compressible anti-
ferromagnetic model with an applied Seld directed along
the axis of anisotropy. Our magnetic elastic model is due
to Baker and Essam where the shear forces are disregard-
ed. We obtain an efFective spin Hamiltonian, where the
exchange terms are dependent on external forces and we
now have a biquadratic exchange coupling between spins.
Through Bogoliubov's inequality we have determined a
variational free energy for the system of spins. A global
phase diagram in the plane H (magnetic field) versus T
(temperature} was determined for different values of
external forces. A novel feature was observed in the
spin-Bop-paramagnetic phase boundary: it can be of
first or second order depending on the values of single-ion
uniaxial anisotropy and biquadratic exchange parameter.
We also have shown that there is a critical value for the
biquadratic exchange parameter where the system be-
comes metamagnetic. The critical fields obtained at
T =0 K and the Neel temperature increase linearly with
the pressure as it is expected to experimentally. The be-
havior of the bicritical point as a function of the biqua-
dratic term A is similar to the one observed as a function
of the single-ion uniaxial term D As A or .D increases,
the region of the phase diagram occupied by the spin-Sop
phase diminishes. Finally, we have performed spin-wave
calculations on the effective spin Hamiltonian with ex-
change terms depending on external forces and with bi-
quadratic coupling. We have shown that at very low-
temperatures the canted-paramagnetic phase boundary
follows a T /2 Bloch law.

a = [—J(A, )+2S(1—S)A],ZS
6

(36) ACKNO% LEDGMKNTS

and kz is the Boltzmann constant.
We would like to stress that our spin-wave expression

for the critical field at T =0 reduces to the mean field one
for high-spin values, i.e.,
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