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Real-space renormalization-group study of fractal Ising models
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Ising models on Sierpinski carpets are studied within a real-space renormalization technique. A
speci6c method for decimating spin blocks of any size is proposed as an alternative to the bond-
moving prescription, and its accuracy is checked on various examples. From an analysis of the crit-
ical couplings we estimate some of the Snite-size eFects of Monte Carlo simulations of fractals. The
exponent v, computed for a large variety of carpets, is found smaller than in the band-moving ap-
proach but with the same behavior under variations of the fractal parameters. No universality cri-
terion emerges except in the limit of vanishing lacunarity.

I. INTRODUCTION

Real-space renormalization-group (RSRG) techniques
are widely used in determining the critical-point proper-
ties of lattice models, and in particular within the
Migdal-Kadanoff (MK) approximation. This method is
simple in procedure but its numerical accuracy, in terms
of critical temperatures and exponents, is often poor and
various improvements of the initial MK bond-shifting
prescription have been proposed. 2 ~ These fail, however,
when the rescaling factor is large, and the method may
become inaccurate for systems such as fractals, where the
RSRG technique necessarily involves the decimation of
clusters of de6nite size. An illustrative example is pro-
vided by the Ising model on Sierpinski carpets, which
in the simplest case involves a rescaling factor 3. The
MK-RSRG analysis can be confronted with numerical
simulations ' and, even in this simple case, an important
discrepancy appears since (E,=0.32, v=4. 46) in Ref. 5,
compared to (E,=0.47-0.49, v=1.04-1.12) in Refs. 9
and 10, where JC, is the critical coupling and v the in-

verse of the thermal exponent yr. On the other hand,
only a small number of such fractals have been numeri-
cally studied, since simulations become diScult and less
reliable, due to finite-size and critical-slowing-down
effects, when the lattice self-similarity factor increases.
Critical properties are thus mainly available through the
RSRG method, and the previous example indicates that a
better approximation than the MK one is needed.

To undertake such a program, we construct in this
work an effective coupling for the decimation of Ising
spin cells of any size which can be applied to a RSRG
analysis of Sierpinski carpets. %'e are thus led to consid-
er as an initial system an Ising model with three fer-
romagnetic couplings JC, EI, and EE on a lattice paved
with clusters of inactive sites (gapa) involving two length
parameters b and /. As shown in Fig. 1, these parameters
are chosen in such a way that on a lattice of unit spacing,
clusters of inactive spins of area I are regularly nested
inside cells of area b, the diN'erent couplings being need-
ed to distinguish the internal bonds (JC) from those on the
boundaries (EI and EE). We then give the renormahzed
coupling Q resulting from the decimation of the Ising

spins inside the b cells, for any value of the parameters.
When the trivial remaining spins are integrated out, the
final system is again an Ising one, and two cases are con-
sidered. When the initial system is a model with gaps, it
is mapped onto a homogeneous one, and this allows us to
obtain the phase diagrams of the gap models in the
(E,EI ) plane. These diagrams, which may be derived in
another more rigorous context, "are considered here as a
consistency check of our efFective coupling method.
When the initial system is a Sierpinski carpet, the cou-
pling Q is used to define a mapping between two succes-
sive iterations of the fractal, and the critical parameters
E, and v are given by a fixed point analysis in the (E,EI )

plane.
This is done according to the following plan. In Sec.

II, the method of construction of the efFective couplings
Q is developed and confronted to data. We show that
functional relations between difFerent Q allows us to con-
sider only special couplings which involve the decimation
of a minimal number of spins. These effective couplings
are parametrized within a phenomenological cluster-
decimation method which ensures that the critical pa-
rameters k, and v of the homogeneous Ising model have
their exact value. As a result, phase diagrams of gap
models are predicted, and we check that they agree up to
b =9 with data we obtain through numerical simulations.
Section III is devoted to the application of this eff'ective
coupling method to Ising models defined on Sierpinski
carpets. It is used first to study the finite-size effects
which appear when only a finite number of scales are im-
plemented in the fractahzation process. We then sys-
tematically compute the exponent v in a fiow analysis of
the RSRG transforms of a whole family of carpets. Re-
sults are compared to the corresponding MK ones ' *

and to the values found in an e extrapolation at a nonin-
teger dimension. ' Finally we comment about the univer-
sality properties of these systems.

II. CONSTRUCTION OF THE EFFECTIVE
COUPI. INGS

We consider as an initial system the Ising model
de6ned on a plane infinite lattice of unit spacing generat-

OC1988 The American Physical Society



37

(o)

FIG. 1. A typical basic cell with b=10, I =2; the various

couplings are exhibited: El along the gap boundary, I/ between
internal spins, and K& on the border of the ce11.

ed by periodically duplicating the Sierpinski carpet initia-
tor shown in Fig. 1: from a square of side b is excised a
central square of area I, and the spins are put at the
corners of the remaining unit cells. Thus the integers b
and I are both even or both odd with 10 & I & b —2, where
10=0 if b is even and 10=1 if b is odd. The nearest-
neighboring spina interact with ferromagnetic couplings
K, KI, and Kz according to the location of the bonds:
KE is the coupling between the spins I p,;] on the external
boundary of each pattern, the internal spins Itr~j being
linked either through K or Ki if they are both on the
internal boundary of the basic pattern.

The RSRG transforms we perform are made up of the
usual steps. First, the cells are decimated of all their
internal spins I o, I, with the convention that the com-
mon links, @which carry the coupling I( z, are symmetri-
cally assigned to each cell. One then assumes that the re-
normalization (per cell} of the coupling between the
remaining spins tp, ) is of the form [illustrated in Fig.
(2a) for I =b —2]

K~ I2~Q(b, /;K, KI,KE) . (2.1)
Then one integrates out the trivial degrees of freedom as-
sociated with the [p, I spins which have only two neigh-
bors. The resulting system is again an Ising one, with a
lattice spacing b and a coupling Q' between neighbors,
given by

tanhQ' = tanh'[2Q(b, /;K, K, ,KE }], (2.2)

where the factor 2 in Eq. (2.2) comes from the added con-
tributions (2.1) of two adjacent cells. When / = lo,
KE ——Kz E, the transform K——~Q'(K) is a RSRG of the
homogeneous Ising model under a rescaling factor b and

FIG. 2. (a) An illustration of the decimation scheme for a
(b, b —2) ce11 with b =4. (b) The 6rst step of the recursive de-
cimation Eq. (2.12). The (I +2,1) ce11 delimited by the dotted
line is decimated as in (a).

its fixed point k, must satisfy the conditions

tanhQ'(k, ) =tanhk, =v'2 —1, (2.3}

yz
————— ln

1 1 d
v lnb dE (2.4)

In the general case I p 10, Eq. (2.2) defines a mapping be-
tween a gap model and a homogeneous one, in such a
way that the critical lines C(b, I;K,KI ) are the images of
the fixed point (2.3}and are thus given by

Q(b, /;K, KI,K)=qs ———,
' tanh '[(v'2 —1)'~s] . (2.5)

In order to improve the bond-moving prescription
which reads5

tanhs[2Q(b, l;KI,Kz)]=tanh~ '[Kz+(b —1)K]

Xtanh'[S4+2KI

+(b —I —2)K],
(2.6)

we proceed in two steps: First ere construct for any b the
special couplings Q(b, b 2;K,KI,Kz) inv—olving mini-
mal decirnations, and then shou& they give the remaining
ones Q(b, l;K,KI,Kz }for any /with /0 &1 &b —2.

As for the minimal decimations shown on Fig. 2(a) we
choose the representation

tanh [2Q(b, b —2;K,K~,Kx)]

=tanh (KE+2KI )tanh (2Q, ) (2.7)

which involves the prescription (2.6) for moving a single
bond and an efFective coupling Qi for the corner spin de-
cimation, which is conveniently pararnetrized within a
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Ez= exp~QI(papi+/ious)~ {2.9}

before and after decimation, respectively, and determine

Q, by equating their average on aligned conSgurations of
the tpuu, p, iI spins. This gives

' 1/2

tanhQ, =(1+r), —1,1+t'
1+t

{2.10)

where ~=tanh(pKx/2) and t=tanh(pK). The factor p,
p & 1, which in Eq. (2.8) enhances the couplings, is usual-

ly interpreted as the efFect of the whole lattice on the
2 X2 clusters and will be Sxed later on.

We now sketch how the special couplings Q(n, n
—2;K,Kt, KE), 2gn (8 determine the remaining ones

Q(b, l;K,Kt, KE}where 2&b &8, la(l &b —2. Consid-

er, as in Fig. 2(b), the (/+2, /) central cell in the basic
(b, I) block. After decimation of this cell we get a gap of
size (1+2,1+2} of which the boundary carries a new

coupling K, given, according to our prescriptions, by

K) ———+Q(1 +2, 1;K,KI,K) .K
1

(2.11)

Repeating this procedure by increasing the size of the
central decimated cell up to its maximum value b —2, we
get the recursion relation

IC„=—+Q(l +2n, I +2n 2;K,—K„„K)K
(2.12}

with Ka =Kt. The last decimation n =N =(b —I —2)/2
gives the wanted expression

Q(b, l;K,Kt, KE)=Q(b, b 2;K,KN, Kx) . —(2.13)

An interesting consequence of the previous functional
relations is that the Sxed point constraints, which in Eqs.
(2.3) and (2.4}apply for any b for I = la only, propagate to
the whole set I &la. In particular for the special cou-
plings where /=b —2, they read

Q(b, b 2;k„kb,k, )—=qb,

5Q(b, b —2;k„ks,k, )=qI, ,

where /i is the difFerential operator defined as

(2.14)

(2.15)

cluster-decimation method. We thus associate to the
cluster I o abaft, ,p,,I

—see Fig. 2(a)—the functions

KE
(/ ui+/ ~i)+pK{~ui+~u»

pro ——+1 2

(2.8)

These relations, easily derived by induction from Eqs.
(2.3} and (2.4), must constrain the parameter p we have
left unspeciSed, once the representations (2.7) and (2.10)
for Q(b, b 2—;K,KI,Ks) are inserted in Eqs. (2.14) and
(2.15). However we first observe that Eq. (2.14) predicts
independently of any parametrization that the point
(K=k„Kt——ki, ) lies on the critical line C(b, b —2;
K,Kt ), which can be measured. We have checked, using
Monte Carlo simulations, that this is,indeed the case, as
shown, for example, in Fig. 3. As for the parametrization
of p, we observe that in the asymptotic regime b = oo the
constraints (2.14) and (2.15) lead to a step function behav-
ior

p —l.2425, 5p —1.2313b —2.7591 (2.18)

which can be well reproduced by a variable like
tanh (2k,KI/K) and we then choose, in accordance
with the data depicted below, the following forms:

b =2, p=const=1. 1395 (then v=1.04),
b =3, p= 1+1,tanh"(K+Kt )

„

b=4,
Kr „k,p=l+A. tanh(2K}tanh 2k, tanh" K+ KI

(2.19)

(2.20)

(2.21)

b&5,

KI Cp= 1+A, tanh 2k, tanhi' K+ KI

{2.22)

l.0

0.8-
—~—{9,7)
—o-- (9.5)
""o . " {9.'5)

where (A,,p) are adjusted as to fulfill the constraints (2.14)
and (2.15).

In order to compare some critical lines C(b, /;K, Kt)
given by our effective couplings with data, we have per-
formed Monte Carlo simulations of the Ising model with
gaps for the values b =3,4, 5,6, 7,9 and / in the range
la & I (b —2. This study has been performed on a Digi-
tal Equipment Corporation VAX11/750 computer and
requires about 500 h of CPU time. For a given choice of

5E(k„ki,) = +4
I

(2.16)

0.2-

and in which

k,
2 +q'-' ~' 2sinh(2k, /b) '

kb = 2+qb-2

0.2 0.4 0.6 0.8 l.O
taoh K

FIG. 3. The critical lines for b =9 and I =3,5,7 Ising gap
model together ~ith the Monte Carlo data of these systems.
The error bars axe smaller than the size of the dot. The cross
corresponds to the point E=k„E&——kb.
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the b and / values, the system which is numerically simu-
lated is made up of a sufficient number of basic cells as to
correctly reproduce the thermodynamical regime, whose
approach is controlled by increasing the size of the sys-
tem. Choosing b =9 as a typical example, the simula-
tions use 4-9 replicas, and we estimate the errors to be
smaller than the size of the data points shown on Fig. 3.
The agreement of the various lines C(9, /;K, KI ) with the
data is good, and this is the case for all the simulated
cases. As an alternative to the bond-moving approxima-
tion we then apply this efFective coupling method to frac-
tal models in the next section.

III. THE FRACTAI. ISING MODKI.

tanhK', =tanh 2Q(b, /;E, Er,Ez), (3.1)

where Ez, which is either E or Ei according to the loca-
tion of the cell, is fixed at its mean value in the fractal.
Going then to a unit cell we end up with the renormal-
ized coupling E'.

We take as lattices a family of Sierpinski carpets
defined as follows: Let (p, b, /) be three integers such that
p ~ 0 and 1 & I & b —2; The initiator is obtained by divid-
ing a square into p~ subsquares each one being itself di-
vided into b elementary cells and then erasing / of those
cells in the center of each of the /i2 intermediate
subsquares. To construct the fractal, this procedure is
indefinitely applied to the elementary cells. The number
of elementary cells in the initiator is (pb} —(p/), and
therefore the fractal dimension of this system is
D = ln[p (b —/ )]l lnpb. The Ising model is defined on
that lattice in the same way as in Sec. II.

The RSRG transforms of such models involve a rescal-
ing factor pb leaving the lattice invariant while the cou-
plings (E,EI} evolve into (E',KI), which are easily de-
rived as follows from the method of Sec. II. We have to
map blocks of size (pb), which can be empty or initiator
like, onto unit ceHs. In the later case we Srst decimate all
the intermediate bi cells to obtain pi empty cells of size
b2, with a boundary coupling K', gi~~~ by

in5nity. This may be relevant for existing or future
Monte Carlo simulations as it reveals a new kind of
finite-size effects ("finite-fractalization effects" ).

%'e thus consider lattices which are an infinite replica-
tion of a basic pattern being itself an iterate, at stage n, of
some carpet (n =1 corresponds to the initiator, n = 00 to
the fractal). Such a model is mapped onto an homogene-
ous one, which gives its phase diagram in the (K,KI)
plane, and we focus on the critical coupling Q„,i.e., the
point on this line where K =XI. As n increases, the se-
quence I Q„)converges to K„andmore generally the nth
phase diagram converges towards the critical-fiow line of
the RSRG mapping. The interest of the sequence I Q„}is
that it is close to the corresponding one I Q„') which can
be observed in a Monte Carlo analysis of the nth fractal
iteration. In fact Q„'& Q„and Q„'=Q„only when "usu-
al" finite-size effects are removed, for example, by dupli-
cating the basic pattern in the numerical analysis: Up to
16 patterns have been used in a simulation of the (p = 1,
b =5, / =3} system we have performed and which
confirms our predictions for Q2 and Q&. On this exam-
ple, shown in Fig. 4, we observe that the fractal lim-
it is slowly reached (Q, =0.52, Qi ——0.60, Qi=0. 62,
E,=0.64). This effect is found to increase as the fractal
dimension D decreases and suggests that in general 4 to 5
iterations are necessary in a numerical simulation to ob-
tain a reliable evaluation of E,. Therefore, this effect can
spoil the determination of the critical exponents which
crucially depend on the value of K, . Indeed, in a previ-
ous numerical analysis using two fractal iterations only, '0

we have estimated E, to be at most 0.61 and 0.72 for the
(/i=1, b =5, /=3) and (p =1, b =7, /=5) systems, re-
spectively, instead of E, =0.64 and E, =0.79 in the
present analysis. As the exponents appear to increase
with the assumed value for K„wealso underestimated v

in that work (v=1.45 and 1.87 instead of 1.6 and 2). On
the other hand, for a system like (p =1, b =3, /=1}
which has a dimension D =1.89, this effect appears to be
negligible and in fact the numerical results9' are in

tanhK'= tanh 2Q(p, po;K'„E'„EI ), (3.2)

where po is 0 or 1 if p is even or odd, respectively. One
can thus assume that decimating blocks of size (pb)
from their internal spins renormalizes the coupling be-
tween the boundary spins into It'z, given by

0.75
hC

tanh&~2E2 ——tanh j." . (3.3)

Considering now an empty block of size (pb) and de-
cimating its neighboring (pb)~ blocks according to the
rule (3.3) gives the renormalized coupling KI through

tanhEI ——tanhi'b(EI +K z ) (3.4)

%'e perform a standard analysis of the previous map-
ping Eqs. (3.1)-(3.4} to obtain the critical coupling E,
(the point where E =EI on the critical fiowline) and the
thermal exponent (by hnearization around the nontrivial
fixed point). In addition, we study the way K, is reached
when the number n of fractal iterations increases to

0.25
025 0.50,

FIG. 4. The critical lines for the (p =1, b =5, I =3}system
at its Srst five iterates. The thick solid line is the critical-fiow'
line corresponding to the in5nite fractal iterations limit. The
cross on this line is the nontrivial fixed point. The data points
are from a Monte Carlo simulation.
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TABLE I. Some of the Sierpinski carpets that we have inves-

tigated, characterized by the value of their parameters p, b, I.
For each case we give the fractal dimension D, the dynamic di-

mension dz, the lacunarity L, and the value of the exponent v

resulting from the MK method and from our method.

3

5
5
7
7
7
9
9
3
4
5
7
5
5
7
7
5

7

1

2
3
1

5
3
1

7
5
1

2
3
5
3
1

5
3
3
5
3

1.893
1.862
1.723
1.975
1.633
1.896
1.989
1.577
1.832
1.934
1.862
1.806
1.730
1.835
1.985
1.766
1.933
1.861
1.799
1.943

1.909
1.825
1.721
1.983
1.676
1.887
1.994
1.656
1.852
1.958
1.825
1.770
1.721
1.784
1.994
1.734
1.904
1.795
1.744
1.907

0.170
0.220
0.262
0.083
0.307
0.186
0.050
0.330
0.251
0.053
0.062
0.106
0.152
0.056
0.016
0.086
0.042
0.033
0.046
0.023

4.46
2.67
2.60
1.47
2.92
1.91
1.44
3.24
2.27
1.73
2.33
2.51
2.73
2.17
1.42
2.28
1.64
2.03
2.08
1.60

1.12
1.29
1.53
1.08
1.93
1.31
1.09
2.29
1.49
1.08
1.35
1.51
1.70
1.48
1.09
1.64
1.26
1.28
1.37
1.19

agreement with the present RSRG analysis (E, =0.485,
v=1. 12). This is simply an illustration that finite-
fractalization effects are driven by the exponent v which
grows as D decreases. Consequently, when D gets
signi6cantly lower than 2, as only the Srst few iterates are
numerically accessible, it seems very difficult to perform a
reliable extrapolation of the critical parameters.

In the next part of our analysis of fractals, we have sys-
tematically determined the critical exponent v for a wide
family of Sierpinski carpets whose parameters lie in the
range (chosen to remain within the domain of validity of
our method following paragraph 2):

25-
0

0 0
0

ooo 0
0O 0

pal 7 iii55$444 3 3 3
h*%% 8%5I8% I %8 I 5
kaIQ 1081IQ 0 15 7 I

0,05 O. I L O.I5

FIG. 5. The exponent v vs the lacunarity at Axed
D =1.70+0.02. For each lattice, whose {p,b, l) parameters are
mentioned at the bottom of the plot, we show our results {solid
points} and the MK ones {open points). The dashed area corre-
sponds to the e expansion calculation of Ref. 12 for
d = 1.70+0.02.

1&@&8, 3&b &14, Io&l &b —2 . (3 5)

A sample of our results is presented in Table I, listed ac-
cording to the parameters (p, b, I). For each case we have
computed some of the general geometrical parameters
such that the fractal dimension D and the lacunarity L.
Actually, fractal lattices being not translationally invari-
ant, one expects the critical parameters to depend on the
lacunarity, which is de6ned as the Auctuation about its
mean value of the mass of a small random piece of frac-
tal. Among the various de6nitions of this quantity ' '
we adopt that of Ref. 8 [more precisely L3(l, b) in the no-
tation of Ref. 8]. As (p, b, I}vary in the range defined by
the inequalities (3.5), D and L are restricted to

1.5&D&2, 0.01 &L &0.35. (3.6)

I.aboratoire de Physique Theorique is Unite associee
au Centre National de la Recherche Scienti6que, France.

In addition to Table I, where only carpets with small ini-
tiator are collected, we present in Fig. 5 the exponent v
for some other lattices involving larger values of (p, b, l)
(quoted at the bottom of the plot} selected according to
their fractal dimension 5xed at D =1.70+0.02 and vary-
ing lacunarity. From the whole data it appears that v is
more a smooth function of the fractal parameters D and
L than of (p, b, l}. The values of v obtained from the
bond-moving technique are shown in Table I and Fig. 5.
They appear to be appreciably higher than ours but fol-
low the same behavior, namely at 6xed D and L &0. 1, v
decreases with L.

To conclude we comment about the conjecture that
fractals may interpolate hypercubic lattices in noninteger
dimension. Our results confirm that the critical exponent
strongly depends on the lacunarity in addition to the
fractal dimension which thus cannot play the role of the
extrapolated dimension d. A dynamical dimension ds,
defined as the average number of bond per site, has been
proposed, ' ' and we have quoted its value for the
Sierpinski carpets of Table I. Analyzing the whole data
with dz in place of D does not qualitatively change our
conclusions. For instance whether d~ or D is considered
we observe that our v values are almost always higher
than the ones predicted by the e expansion calculations at
noninteger dimension d, ' and only for small lacunarity
do the two results get close to each other. The MK re-
sults present the same general trend but with appreciably
larger values of v even in the low-lacunarity region.
However, following the suggestion of Ref. 6 the 4&
universality class may be recovered in the limit of zero la-
cunarity. The behavior of v as a function of L displayed
in Fig. 5 support this conjecture as an extrapolation of
the data to zero lacunarity is roughly in agreement with
the e expansion result. Nevertheless, the low-lacunarity
region, corresponding to lattices with very large initiator,
is not easily accessible from a computational point of
view, and this obviously weakens the interest raised by
these kind of fractals.
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