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A systematic and unifying method is developed and demonstrated for obtaining exact solutions of
n-site (n even integer) Ising correlations on various planar lattices. The scheme, which is exceeding-

ly more simple than using solely traditional PfanIan techniques, embodies five mapping theorems in

alliance with algebraic correlation identities. In the theoretical framework, the triangular Ising
model plays an overarching role. In particular, considering a select 7-site cluster of the triangular
Ising model, the knowledge of all its 11 even-number correlations defined upon this cluster (where

only four of the correlations need to be actually calculated by PfaSan procedures) is sho~n to be
suScient for determining exactly all honeycomb, decorated-honeycomb, and kagome Ising model
even-number correlations upon their correspondingly select 10-site, 19-site, and 9-site clusters, re-

spectively. The relative ease and direct applicability of the present approach are highlighted not
only by the resulting large numbers of n-site (n even-integer) correlation solutions (e.g., approxi-
mately 85 and 50 for the honeycomb and kagome Ising models, respectively) and their large n,„
values (n,„=8,10,18 for the kagome, honeycomb, and decorated-honeycomb Ising models, respec-
tively) but also by the realization that the exact solutions for Ising multisite correlations upon the
kagome lattice (one of the four regular lattices in two dimensions) are apparently the first to explic-
itly appear in the literature beyond its nearest-neighbor pair correlation (energy}.

I. INTRODUCTION

The study of correlation behavior among the various
degrees of freedom comprising an interacting many-body
system in thermodynamic equilibrium has leading impor-
tance for the basic understanding of cooperative eff'ects

exhibited by such systems. Since correlation functions
are structured using thermal expectation values of prod-
ucts of localized variables, they clearly o8er a more de-
tailed description than thermodynamic for the order and
symmetry present in the system. The impetus for the
modern synoptic view of critical phenomena was, in fact,
the recognition of the fundamental role the anomalously
long-ranged spatial correlations played near a critical
point resulting in scaling theories and the
renormalization-group approach towards problems in
phase transitions and particle physics. Besides examining
the asymptotically large-distance behavior of correlation
functions, it is also desirable to obtain solutions for more
spatially compact, short-distance-type correlations.
These smaller-scale correlations have varied applications
(at criticality and otherwise) with Ising-type examples be-
ing found in the analyses of local equilibrium properties
in the vicinity of isolated defects, ' in the theory of both
transport coeScients and thermodynamic response func-
tions, in the investigations of inelastic neutron scatter-
ing, percolation phenomena, and many other problems.

The theoretical task of explicitly evaluating correla-
tions and more completely understanding their physical
consequences has been especially aided through ihe years
by careful examinations upon the Ising model which yet
retains its hallmark importance while continuing to pro-
vide definite guidance and insights on the many fascinat-
ing questions and facets of phase transitions and critical
phenomena. Actually, the two-dimensional Ising model
in a zero magnetic 6eld is the only realistic microscopic

model of cooperative phenomena for which correlation
solutions have been found exactly. Planar Ising-model
correlations have traditionally been calculated largely
through direct use of Pfaffian techniques6 with exact and
explicit multisite correlation solutions, therefore, being
restricted in practice to small even numbers of closely
neighboring lattice sites. In more recent times, fruitful
connections with quantum field theory have enabled mul-
tisite correlations to be computed at criticality for planar
Ising models in the continuum limit approximation to the
transfer matrix resulting in a one-dimensional fermion
field theory. Attention should also be directed towards
the work of McCoy, Tracy, and Wu who have obtained
exact solutions for arbitrary n-site Ising correlations on
the square lattice where the integral forms of the solu-
tions are convenient for ascertaining their large-distance
behavior, and to the work of Bariev who has derived ex-
act solutions for planar Ising-model correlations making
use of KadanoFs hierarchy of local Ising operators. 'o

Even more currently, focusing primarily upon the pair
correlations of the square Ising model in a zero magnetic
field ("Onsager lattice" ), various authors have extended
our knowledge and methodology of exact solutions for
Ising-model correlations. In particular, Au-Yang and
Perk" have demonstrated that the values of the pair
correlations at criticality can be conveniently obtained
from the quadratic dilerence equations of Hirota's Toda
lattice form, Ghosh and Shrock have developed and an-
alyzed exact and explicit solutions for various short- and
intermediate-range spin-spin correlations (diagonal, off
axis, and row) in terms of elliptic integrals, while Yama-
da' expressed the pair correlation in a simple deter-
minantal form called a "generalized %ronskian. " Also,
applied to Ising correlations near a critical point, the
theory of conformal invariance has provided new per-
spectives and results where the reader is referred to a re-
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cent review article by Cardy. '

The present paper pursues yet another approach. One
first proves five extended transformation theorems (ex-
tended in the sense that the theorems apply beyond parti-
tion functions to multisite correlations) which successive-
ly map unknown planar Ising-multlsite correlations upon
linear combinations of those Ising correlations already
known on other planar lattices. The theorems are direct
and systematic in their application, and in alliance with
algebraic correlation identities, the method demonstrates
that only a few localized Ising correlations on the tri-
angular lattice actually need to be calculated by Pfai, an
procedures in order to obtain large numbers of exact
solutions for localized Ising correlations upon the honey-
comb and kagome lattices as well as upon other irregular
(bond-decorated) planar lattices. One emphasizes that
the present approach is exceedingly more simple than us-

ing solely Pfaman procedures which are known to be-
come progressively lengthy and arduous as either the
number of sites under consideration or the distances be-
tween these sites increase. Among the results of the
present investigations is the presumably 6rst finding of
exact and explicit solutions for Ising-multisite correla-
tions upon the kagome lattice which is one of the four
regular lattices in two dimensions, and the Snding of ex-
act solutions for n-site (n even integer) localized correla-
tions where the maximal values of n are considerably
larger than existing literature values, e.g., in the present
work, n,„=8, 10, 18 for the kagome, honeycomb, and
decorated-honeycomb Ising models, respectively.

The literature on the Ising model'5 and its applications
is very extensive. The model has been used not only to
represent certain kinds of highly anisotropic magnetic
crystals but also as an extremely useful paradigm for vari-
ous other physical systems, e.g. , as a lattice model for
Auids, alloys, adsorbed monolayers, for biological and
chemical systems, and even in Geld theories of elementary
particles (lattice gauge theories describing the quark
structure of hadrons). As a general rule, in all such appli-
cations, a more complete understanding of thermostatist-
ical behavior requires information on relevant Ising-
correlation solutions which forms a major motivation for
the present studies. One also remarks that, since an Ising
model is defined upon a discrete lattice and Ising vari-
ables are dichotomic (%1), such types of models con-
sidered upon large but finite lattices are particularly suit-
able for Monte Carlo calculations and numerical investi-
gations using special-purpose computers designed for the
simulation of Ising models. Finally, along with unifying
seemingly diverse areas of research, the distinctive
pedagogical merits of the Ising model enable it to be apt-
ly acknowledged a veritable "daystar" in the realm of sta-
tistical physics as students and teachers alike of the sub-
ject can assuredly attest.
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FIG. 1. The honeycomb lattice and its decomposition into

two interlacing sublattiees {"circled" 0 sites and "crossed" X
sites, respectively) where each sublattice is triangular. Ten
honeycomb sites are specifj[caBy enumerated for use throughout
the paper.

defines the honeycomb Ising-model ferromagnet on such
a lattice of xiii, sites as the (dimensionless) Hamiltonian

%p = —K g 0'(oj
&i,j )

where each site-locahzed Ising variable o, =+1, g(;
designates the summation over all distinct nearest-
neighbor pairs of lattice sites, and E ~0 is the (dimen-
sionless) strength parameter of the ferromagnetic interac-
tion. Letting the set of all Ising variables

(oo, o „.. . , oN, ) =—a, the magnetic canonical parti-
h

tion function Z& is given by the usual trace formula over
all degrees of freedom of the system:

Z& ——Tr e
—W~

A class of correlation identities considered in the
present paper is a set of linear algebraic equations with
coemcients dependent only upon the interaction parame-
ters. ' To develop such identities systematically, one now
proceeds to derive their basic generating equation. ' Let
[f] be any function of the honeycomb Ising variables
a „o2, . . . , o~, (excluding oo, the origin-site variable

h

in Fig. 1). Similarly letting %&,Tr' denote a restricted
(dimensionless) Hamiltonian and trace operation, respec-
tively, which exclude o 0, one can construct the canonical
thermal average ( o0[f] ) as

Z~«oolf]&=Tr e oo[f]

ii]=Tr e ooLJ

II. BASIC GENERATING EQUATIONS FOR ISING-
CORRELATION IDENTITIES QN THE

HONEYCOMB AND TRIANGULAR LATTICES

Consider initially the honeycomb lattice structure
(periodic array of regular hexagons) shown in Fig. 1. One

=Tr e "[f]

thereby yielding

K 0'0{O'
I +0'2 +0'

3 )
Tr~ e 0'p

E0'0(0' ) +0'p+0'3)
Tr e
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(~0[f1&=([fl
Zoo(e &+cr2++3)

Tl~ e

~. (...,.) ~0 [f]
0 1 2 3

(2.4}

One can consider the case of a triangular lattice (X
sites, say, in Fig. 1) in a similar fashion. The triangular
Ising model ferromagnet is de6ned upon such a lattice of
N, sites as the (dimensionless) Hamiltonian

having written the standard definition of canonical
thermal average (2.3). To further develop expression
(2.4), one has that

%(= —R g O'I (TI
&k, l)

(2.8)

Koo(o I+a2+o3)Tr e 00
K0'0( 0'

I + cT2 +v 3 )
Tl~ e

0

where

=tanhK (a, +o 2+cd 2)

= A(O, +Cr2+O3)

(2.5)

where again each site-localized Ising variable 0. =+1,
denotes summation over all distinct nearest-

neighbor pairs of lattice sites, and R &0 is the (dimen-
sionless) strength parameter of the ferromagnetic interac-
tion. The magnetic canonical partition function Z, of the
triangular Ising model is now de6ned by

(2.9)

A =-,'(tanh3K+tanhK),

B = —,'(tanh3K —3 tanhK)
(2.6)

& o'off] & = ~ & [f](~1+o2+o 3) &

+B& [f] & o&[f] . (2.7)
I

use having been made of the fact that any Ising variable
0I satis6es OI =&] 0) =1, n =0, 1,2, . . . . Substi-
tuting (2.5) into (2.4), one obtains

where the notation Tr„signifies that the trace operation
is taken over the degrees of freedom of all &~ X -stte Ising
variables. In Fig. 1, calling site 3 the origin site, the sites
1, 2, 6, 7, 8, 9 then become its six nearest-neighboring
sites. Using the same form of derivation as previously,
i.e., descriptively, due to the commuting nature of classi-
cal Ising variables, one is permitted to "split, rearrange,
then reconstitute" quantities inside the trace operation,
and once again utilizing the dichotomic (21) nature of Is-
ing variables, one obtains

& 3[g] & =C & (1+2+6+7+8+9)[g]&

+D & ( 126+ 127+ 128+ 129+167+168+169+178+179+189+267+ 268+269+278+279+289

+678+679+689+789)[g] &

+E & (12678+12679+12689+12789+16789+26789)[g]&, 36[g], (2.10)

where, for notational simplicity, only the numeric site la-
bels of the Ising variables are entered, and where the
coeScients are given by

I

where

g4 4R( 4R+ 3)2 (3.2)

C = —,', (tanh6R +4 tanh4R +5 tanh2R ),
D = —,', ( tanh6R —3 tanh2R ),
F. = —,', (tanh6R —4tanh4R +5 tanh2R) .

(2.11)

Equations (2.7) and (2.10) are the basic generating equa
tions for developing linear algebraic identities among
Ising-multisite correlations upon the honeycomb and tri-
angular lattice structures, respectively.

X& ( =2%, ) is the total number of honeycomb lattice sites,
and

2 cosh2X =e4"+1 (3.3)

relates the (dimensionless) interaction parameters K,R of
the honeycomb and triangular lattices, respectively. For
emphases, writing corresponding (dimensionless) interac-

III. STAR-TRIANGLE-TYPE RELATIONSHIPS AND
HONEYCOMB ISING CORRELATIONS AS LINEAR

COMBINATIONS OF TRIANGULAR ISING
CORRELATIONS

The star-triangle (F-6}transformation' (see Fig. 2) is
due to Onsager and relates the honeycomb and triangular
Ising models by showing that their magnetic canonical
partition functions ZI, z and Z, z, respectively, differ only
by a known multiplicative constant, i.e.,

N~ /2
hK fR

x K

- —-X3
K

/

FIG. 2. The star-triangle ( F-5) transformation equates, aside
from a known multiplicative constant, the honeycomb and tri-
angular Ising-model partition functions ZI, z, Z, z, respectively,
where their (dimensionless) interaction parameters I(, E. are
simply related.
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tion parameters explicitly as subscripts on Hamiltonians,
partition functions, and thermal averages wi11 be a useful
and frequent notation in this and following sections. Us-
ing the site enumerations in Fig. 1, the F-6 transforma-
tion (3.1) is based upon the realization that the partial
trace evaluation

KCTO{0 I +0 2 +0 3 ) R {0 l0 2 +0 l0 3 +0 20 3 )
Tr e

0'&)
=he (3.4)

is similarly valid for each and every "circled" o. variable
appearing within the total trace operation (2.2) defining

Zh, K '

Using these correspondence concepts and making con-
venient reference to Fig. 1, one can straightforwardly
prove the following theorem connecting honeycomb and
triangular Ising-model select correlations.

Theorem 1. Consider the honeycomb lattice decompo-
sition depicted in Fig. 1, and let [r] be any function of Is-
ing variables containing only "crossed" X sites (or only
"circled" 0 sites). Then

(3.5)

where ([r]&» x and ([r]&,a denote canonical thermal
averages pertaining to the honeycomb and triangular
Ising-model (dimensionless) Hamiltonians JY» ir and
&,„,respectively, with their (dimensionless) interaction
parameters K and 8 related by 2 cosh2E =e + l.

Proof. For definiteness, let [r] be any function of Ising
variables containing solely "crossed" X sites, and adopt
the notation Tr„ to signify the partial-trace operation
over the degrees of freedom associated with all the
"crossed" X sites of the honeycomb lattice, and Tro „to
signify the trace operation over the degrees of freedom
associated with the totality of honeycomb sites. Then,

[]»t
[1] ht=

h, E

where use has been made of (3.1) and the relationship
(3.4) for every "circled" 0 site of the honeycomb lattice.
Noting that a parallel line of argument can be similarly
constructed for the case where [r] is any function of Ising
variables comprising solely circled" 0 sites, this com-
pletes the proof of the theorem.

The above registry theorem will have signi6cant conse-
quences throughout the remainder of the investigation
and analysis of Ising-multisite correlations on planar lat-
tices. In general, any honeycomb lattice thermal average
associated with a configuration of sites which are in regis-
try with the sites of the triangular lattice can now be
equated to the corresponding triangular lattice thermal
average, and vice versa, in the sense of the Y-b relation-
ships. It should thus be clear that the thermal-average
symbol for any correlation that satisfies the registry
Theorem 1 does not actually require subscripts ( &» x
or ( &, ii since either context is correct.

As an extension, the next theorem, which utilizes the
previous Theorem 1, will enable any honeycomb Ising
correlation to be systematically developed into a linear
combination of triangular Ising correlations.

Theorem 2. Any honeycomb Ising-model correlation
can be represented as a linear combination of triangular
Ising-model correlations.

Proof. Since Ising variables are classical and, therefore,
commute, one can rearrange as desired the ordering of
any product of Ising variables within a thermal-average
symbol thus conveniently enabling an arbitrary choice of
the origin site in the basic generating equation (2.7) for
honeycomb Ising-correlation identities. Prescriptively,
therefore, all "circled" 0 sites can be systematically elim-
inated from within any honeycomb Ising-model thermal-
average symbol through repeated application of the basic
generating equation (2.7) whereupon every ensuing
honeycomb Ising correlation then directly corresponds
by Theorem 1 to some individual triangular Ising correla-
tion. This completes the proof of the theorem.

As an example which illustrates the above simple su-
perposition procedure, considering the following four-site
correlation, one 6nds that

(0349&„=(0439 &„

= ([A (1+2+3)+8123][A(3+6+7)+8367]39&»x

= A (19+29+39+69+79+1369+1379+2369+2379&»x.

+ AB (1239+1269+1279+1679+2679+3679&»x+8 (123679&» x
= A (19+29+39+69+79+1369+1379+2369+2379&, ii

+ AB ( 1239+1269+ 1279+ 1679+2679+ 3679 &, a +8 ( 123679 &, „, (3.6)

where the coeScients A, B are given by (2.6) and, for con-
venience of notation in (3.6), one has written in an obvi-
ous fashion only the numeric site labels within the
thermal-average symbols (see again Fig. 1). Of course,
recognizing the symmetry of the triangular lattice, ex-
pression (3.6) can be further simpli6ed by equating

geometrically equivalent correlations, e.g. ,

&29&, „=(39&, , (19&,

( 1369&, = & 2369 &, = ( 2379 &, „=( 3679 &,„,
and so forth.
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IV. KAGOMK ISING CORRELATIONS AS LINEAR
COMBINATIONS OF HONEYCOMB ISING

CORREI.ATIONS

The kagome lattice (Japanese woven bamboo pattern)
is a periodic array of equilateral triangles and regular
hexagons (see Fig. 3) thus also called the 3-6 lattice. The
lattice is regular (all sites equivalent, all bonds equivalent)
and may be termed "close packed" since it contains ele-
mentary polygons having an odd number of sides (viz. ,
triangles). One recognizes that the kagome lattice has the
same coordination number 4 as the square lattice, the
latter being "loose packed. " One de6nes the kagome
Ising-model ferromagnet on such a lattice of Xk sites as
the (dimensionless) Hamiltonian

k= Q X pmpn ~

{m,n)

where each site-localized Ising variable JM, =+1,
designates summations over all distinct

nearest-neighbor pairs of lattice sites, and Q ~0 is the
(dimensionless) strength parameter of the ferromagnetic
interaction. Letting the set of all Ising variables

(Po Pi Px —i( =P
k

~P) ~P5
I

h. Po .a. p,6g . - 0
x- ('. ' 5 ~. xa
G , G3 7

2 I
~ P,3

ro' p,7
G5

X P8 X
~s

FIG. 4. A portion of the decorated-honeycomb lattice where
ten 0. variables oo 0 &, . . . , o9 and nine p variables po, p&, . . . , ps
are speci5ed for later use.

respectively, g( &
designates summation over all

distinct nearest-neighbor pairs of lattice sites, and I. p0
is the (dimensionless) strength parameter of the ferromag-
netic interaction. The magnetic canonical partition func-
tion Zd is given again by the standard trace formula

the magnetic canonical partition function Zk is given as
usual by

Zd =Trp ~8 (4.4)

Zk =Tr 8 (4.&)

Towards proving that kagome Ising correlations can be
mapped upon linear combinations of honeycomb Ising
correlations, one first introduces the decorated
honeycomb lattice which is the lattice formed by the pre-
vious honeycomb lattice supplemented with lattice points
at the centers of all bonds (see Fig. 4). The resulting
bond-decorated lattice is irregular since all sites are no
longer equivalent. The decorated-honeycomb Ising-
model ferromagnet is then defined by the (dimensionless}
Hamiltonian

Small portions of the honeycomb, decorated-
honeycomb, and kagome Ising models are depicted in
Fig. 5, and these models are connected by the
decoration-iteration (I) and star-triangle ( Y-b, ) transfor-
mations, ' respectively. More specifically, Zd L can be
connected to Zk & by a star-triangle (Y4) transforma-
tion upon all tr variables, whereupon the remaining
"solid-circled" p variables and their joining dotted lines
are the localized Ising variables and bonds, respectively,
of the kagome Ising model, with the results that

ZdL ~1 Zkg ~ (4.5a)

Lg rrpps-
{p,q)

where oz,p are Ising variables localized on an original
honeycomb site p and "solid-circled" decoration site q,

where, in (4.5a),

g4 e4Q(e4Q+3)2

and

e ~=2 cosh2L —1 .

(4.5b)

(4.5c)
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FIG. 3. The kagome lattice. Nine sites are specifically
enumerated for later use.

Although the star-triangle ( Y-b, } transformation was

'Q

a~K

FIG. 5. The honeycomb, decorated-honeycomb, and kagome
Ising models are connected by transformation theory. The
decoration-iteration (I) and star-triangle ( F-5) transformations
equate, aside from known multiplicative constants, the partition
functions Zqi to Zz z and Z&L to Zk &, respectively, where
their (dimensionless} interaction parameters lt, i., Q are simply
related.
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(4.6a)

where Sz(=3', /2) is the total number of bonds on the
honeycomb lattice, and where

I =2eK (4.6b)

e 2K =cosh21. . (4.6c)

The decoration-iteration (I) transformation is based upon
the realization that the partial-trace evaluation

discussed in an earlier context of Sec. III, the so-called
decoration-iteration (I) transformation is now used to
connect the decorated-honeycomb and honeycomb Ising
models. The decoration-iteration (I) transformation (di-
agrammatically illustrated in Fig. 6) enables a central
decoration p spin coupled to two neighboring o. spins to
be replaced by a single-interaction bond connecting the
latter two o. spins. More precisely, having caHed I. and K
the (dimensionless) interaction parameters of the
decorated-honeycomb and honeycomb Ising models, re-
spectively, one can show that

S„
ZdL I ZAK ~

FIG. 6. The decoration-iteration {I)transformation enables a
bond-decoration p spin coupled via I. to two neighboring o.

spins to be replaced by a single-interaction bond E between the
latter two o spins.

is similarly valid for each and every "solid-circled" p
variable appearing within the total trace operation (4.4)
defining Z& L.

Using the decorated-honeycomb Ising model in a medi-
ating role, one proceeds to prove three theorems which
taken together will enable any correlation of the kagome
Ising model to be mapped upon a linear combination of
honeycomb Ising-model correlations.

Theorem 3.

Lpp{a I+F2& Kcr to &Tr 8
Pp

=IS (4 '7)
where the corresponding (dimensionless) interaction pa-
rameters are related by e ~=2 cosh2L —1.

Proof:

&PIP
' ' 'P. &a,L=za, LTr&, PIP ' ' 'ia'e ' =Zd, LTrrJt(la ' ' 'P.Tr e

-~~,L. d, L

=ZdLTrIJalpm ' ' ' pr~i
—1

—&l,g

—1=Zl, gTr+tp ' ' 'p. e ' =&ijip '' 'p. & gk

where e =2cosh2L —1, having applied star-triangle-type transformations upon all 0. variables and having used ex-
pressions (4.5a) and (4.5c) thus completing the proof of the theorem.

Theorem 4. &ptp. p„&aL ——M &(o +ok)(cr +tr, ) (o, +cr„)&aL, where the left-hand side (lhs) )u product
contains n factors, M =—,'tanh2L, and on the rhs, rr, tJk are the nearest-neighbor Ising variables of pt,' o e, o, are the
nearest-neighboring Ising variables of p and so forth.

Proof. Let [f]be any (n —1) product of decorated-honeycomb p variables excluding p&. Then

cyr

LPI[cr . +crk I

Trp e pI"'[f]
rp e

PI

[f]tanhL (o~+o'k )='& [f]tanhL (o. +crk ) &d L,
where the above notation gfd, L denotes the restricted Hamiltonian which excludes pl. Using the identity relation
tanhL(o~+ol, ) =M(o'J +o'q ), where M = —,'tanh2L, one obtains

This procedure can be continued recitatively until all the (n —1) p variables belonging to [f] are eliminated which
completes the proof of the theorem

Theorem 5. & o;o „o . . o„&aL
——& o,o„cr . . o„&.r, x, where the corresponding (dimensionless) interaction param-

eters are related by cosh21. =e
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Proof:

(oionop ' ou ~d L =Zd t Try ~oionop ' ' ou~

=Z„zT—r o, cr„o-p o„e =(o,cr„op o, )„»,

where cosh2L =e, having applied decoration-
iteration-type transformations upon all p variables and
having used expressions (4.6a) and (4.6c), thus completing
the proof of the theorem.

The unifying scheme of the present section IV and pre-
vious section III should now become clear. Systematical-
ly, Theorem 3 maps a kagome Ising correlation upon a
p, -type decorated-honeycomb Ising correlation whereu-
pon Theorem 4 then maps this latter correlation upon a
linear combination of o-type decorated-honeycomb Ising
correlations. Each of the latter correlations is then
equated to a honeycomb Ising correlation by Theorem 5.
Since the previous Sec. III established by using Theorems
1 and 2 that any honeycomb Ising correlation can itself
be mapped upon a linear combination of triangular Ising
correlations, one sees that the triangular Ising model
plays the role of a "canopy or umbrella" in the sense that
knowing all its correlations on a select cluster of sites is
sufficient to determine all honeycomb, decorated-
honeycomb, and kagome Ising correlations upon their
respective sites which are appropriately located within or
upon the original "canopy" cluster of triangular lattice
sites (see Fig. 7). Specifically in Fig. 7, knowledge of all
triangular lattice correlations upon its 7-site cluster is
suScient to determine all honeycomb lattice correlations
upon its 10-site cluster, all decorated-honeycomb lattice
correlations upon its 19-site cluster, and all kagome lat-
tice correlations upon its 9-site cluster. This fact that all
such Ising correlations can now be simply and systemati-
cally mapped upon triangular Ising-model correlations
underscores the desirability of obtaining exact solutions
for the latter and thus forms the motivation for the next
section.

V. EXACT SOLUTIONS FOR TRIANGULAR ISING-
MODKL CORRFI.ATIONS u»u2, . . . , u

1 6

8
U2

V&
U4 U5

The 11 (nonequivalent) even-number correlations
u~, u2, . . . , u&i (diagrammatically represented in Fig. 8)
are exhaustive in number upon the 7-site cluster of the
triangular lattice previously shown in Fig. 7 and are
sumcient as a spanning set to obtain all the even-number
correlations of the other considered Ising models upon
their appropriate multisite clusters enveloped in Fig. 7.
Of course, each of the 11 correlations u, , u2, . . . , u»
could individually be calculated exactly by traditional
PfaSan techniques, but such methods knowingly become
lengthy and laborious. Rather, the present section will
show' that only four correlations u&, u6, u7, u» (three
pair and a sextet) actually need to be calculated by
PfafBan procedures whereupon the remaining seven
correlations u 2, u 3, u 4, u &, u 8, u 9, u &0 can then be found

by more simple methods using both linear and nonlinear

Us

9 8
FIG. 7. For the calculation of Ising correlations, the triangu-

lar lattice tsolid bonds) may be viewed as enveloping the honey-
comb (dashed bonds}, kagome (dotted bonds), and decorated-
honeycomb (dashed bonds) lattices. Seven sites 1, 2, 3, 6, 7, 8, 9
of the triangular lattice are speci6cally enumerated for select
applications of the present theory.

Uio
FIG. 8. Diagrammatic representation of the triangular lattice

even-number correlations u;, i = 1, . . . , 11. These correlations
exhaust all such (nonequivalent) possibilities defined upon sites
1, 2, 3, 6, 7, 8, 9 enumerated in Fig. 1 or Fig. 7, and constitute a
spanning set in the context of the present paper.
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algebraic correlation identities on the honeycomb and tri-
angular lattices together vvith Theorems 1 and 2 proven
in Sec. III.

To begin, assume that u &, u 6, u 7, u» have been calcu-
lated by PfafFian methods, and for later use, recall that
each of these triangular Ising-model correlations can be
equated to its corresponding correlation of the honey-

comb Ising model by the registry Theorem 1.
Consider next the honeycomb lattice sites enumerated

in Fig. 1 as 0,1,2, . . . , 7. For handy reference here and
throughout the remainder of the paper, Table I speci6es
all possible honeycomb Ising-model even-number correla-
tions de6ned upon this eight-site cluster 0,1,2, . . . , 7. Us-
ing the basic generating equation (2.7), one develops the

), (47)
&, & 36), ( 37), (45 &, ( 67)

x, =(Ol), (O2&, &O3), &34&, &3S&, &46
x =(04), (05), (12),(13),(16),(23
x, =&O6&, & 14),&2S), (S7)
x, =(O7&, (15&, (24&, (S6)
x, = (0145), (024S ), (0367), (0456),
x,= (O124&, &O12S &, &O3S6&, &O3S7 &,

x, = &OS67&, &124S &

x, = (O123 &, (O34S &, & 3467&

x, = (0134),(0235), (0346), (3457)
x, = (0135),(0234), (0347), (3456)
x ) )

——( 012345 ), (034567 )
x„=&17&,(26&
«„=(1236&,&1367)
x„=(27&
x „=(1237),& 2367 &

x i6
——( 1267)

x i7 ——(0136),( 1346)
x„=(O146)
xi9 ——(012367),(123467)
x„=(0126),(0236&„(1347),(1467 &

x„=&0137),(2346)
x„=(O167), &1246)
«23 ——(012467)
x„=(O237&,&2347)
x„=&O267&, &1247)
x„=(O127), (2467)
x„=(0147),(0246)
x,s = (012346 ), (013467)
x„=&O247 &

x3, ——(012347), (023467)
« 32

——( 1356)
x„=&O1S6&, (14S6)
x, =(13S7),(2356)
x3g ——(1256),(1567)
x3~ = (013456)
x„=&O2S6&, ( 14S7)
x„=(01S7),(2456)
«3g ——(012356),(134S67)
«~0 ——(012456), (014567)
x„=(013567),(123456)
x„=& O134S7 &, (O234S6 &

x„=&2357)
x„=(12S7&, (2S67 &

x„=(O257 &, (2457)
x„=(O23S67 &, & 1234S7)
x „=(012357),(234567)
x„=(O124S7 &, &024567)
x„=(O23457 &

x„=(123S67)
x„=&O12S67), &124567)
x„=(O1234S67)

(0457), &1234&, (123S),(3S67)
(0467), (1345),(2345), (4567)

TABLE I. Definitions of honeycomb Ising-model even-number correlations defined upon the cluster
of eight sites 0,1, . . . , 7 in Fig. 1. (Note that the subscripts 29, 44, 50, 52, and 53 have not been used in
the listing. )
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identity

x, = A +(2A +B)xz,
where one has defined the pair correlations

x, =&Oi&, x, =&04&

(5.1)

2 2
X9 =X )

—X2+X )X3

X )7 =2X (X2 —X2X3

2 2
X/8 X ] +X2 X3

where one has defined the honeycomb correlations

x3 ——(06), x9= (1034),

x,7= (0136), x )s
——& 1046) .

(5.3a)

(5.3b)

(5.3c)

(5.4)

Again using the basic generating equation (2.7), one de-
velops the linear identities

having, for simplicity of notation, entered only the
numeric labels of the sites in the thermal-average symbols
themselves taken to mean ( )„a. Inspecting (5.1),
one immediately concludes that, using the known litera-
ture value for xz (energy u, of the triangular Ising model

by the registry Theorem 1), one obtains the value for x,
(energy of the honeycomb model). Consequently, x, and

x2 are now considered to be known.
To continue, one makes use of a class of nonlinear alge-

braic correlation identities which does not explicitly con-
tain the interaction parameters. This class of identities
was derived using largely abstract graph theory by
Groeneveld, Boel, and Kasteleyn (GBK} and forms a
generalization of the Griffiths-Kelly-Sherman (GKS) ine-
qualities. ' The GBK nonlinear algebraic identities ex-
press those even-numbered correlations defined upon a
so-called boundary sequence of sites (i.e., descriptively,
the sites in order of appearance around an elementary po-
lygon) of an arbitrary planar simple Ising model (in zero
magnetic field) in terms of products of pair correlations
alone. In particular, the following four-site honeycomb
correlations can be decomposed as

(iO34&=& iO&&34&+(i4)(O3& —
& iS) &O4&,

(1036)= (10)(36)+(03)(16)—(06)(13),
( iO46) = & iO&&46&+ & iS)(04& —(14)(06),

or, respectively,

(1046)=x,
= A (1+5xz+2x»+x,6)

+2MB(xz+x, z+x,3)+B x,4,
where one has defined the correlations

x„=(27), x„=&1237), x„=(1267& .

(5.8b)

(5.9)

In Eqs. (5.8a) and (5.8b) the two-site thermal average xi4
(=u7 by the registry Theorem 1) is assuined to be known

by Pfaffian techniques as earlier stated. Therefore, solu-
tions can be found for the remaining two unknowns x &5

and x,6 from the pair of equations (5.8a) and (5.8b) since
all other correlations appearing in (5.8a) and (5.8b) are al-
ready known.

To review, assuming that u, {=xz), u6 (—=x,z), u7
( =—x,~) have each been obtained by Pfaffian procedures,
one has obtained solutions for uz (=—xi3) il3 (:xi/) Qs

(=x,6) by more simple procedures. One now proceeds
towards the goal of securing exact solutions for all
members of the spanning set u &, u 2, . . . , u» by methods
again more simple than employing PfaSan methods
alone. Using the basic generating equation (2.10), the fol-
lowing correlation identities are developed:

u, =C( }+2u,+2u6+u7)

Since the sites appearing within the honeycomb thermal-
average symbols for x &2 and x» can be registered upon
the triangular lattice, x &2 and x» can be equated to the
corresponding triangular lattice thermal averages for u6
and u 2, respectively, and vice versa, in the sense of the re-
gistry Theorem 1. However, as originally stated, x,2

(
—=u6} is assumed to be known through use of Pfaffian

techniques thus enabling x» ( =—u z ) to be determined
from (5.7). Consequently, substituting these known solu-
tions for x,z, x» into (5.5a} determines x 3. The fact that
x&, x2, x3 are now known easily determines x9, x&z from
(5.3a) and (5.3c). The latter known solutions for x9, x,s
are next used as follows. Theorem 2 enables one to write

(1034)=x9

=A (1+Sxz+x,z+x,3+xi5)

+ AB (2xz+x,z+x,3+x,4+x i6 )+B x is

(5.8a}

x3 A (2xz+x&z)+Bx13

x i7 = A (2xz +x i3 )+Bxiz

where one has defined the honeycomb correlations

(5.5a)

(5.5b)

+2D(2u, +2u6+u7+2us+2u9+Mio)

+E(2us+2u9+uio+u„),

uz ——C(2u, +u6+2us+u9)

(5.9a)

x, =(26), x, =(1236) . (S.6) +D (1+2u, +4u6+ 3u 7+20 8+4Q 9+3@io+ 9 i, )

Substituting (5.5a) and (5.5b) into (5.3b), the nonlinear
identity (5.3b) becomes

+E (29 ) + tl6+2tl s+Q9 ),
u3 ——(C+E){ui+u6+u7+us+u9+u, )0

(5.9b)

(2xz+xi3 )+Bx,z ——xz[2x, —A (2xz+x, z) —Bx,3]

(5.7}
+D(l+4u, +4u6+u7+4us+4u9+u io+u» ),

(5.9c)
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u4=3(C+E)(u6+u9)

+D(1+6u, +3u7+6us+3uio+" ii) ~

up =C(2u 8+2u9+u iii+u ii )

+2D (2u i +2u6+u7+2us+ 2u9+u io )

+E(1+2u, +2u 6+u 7 ),

(5.9d)

(5.9e)

where the triangular lattice even-number correlations are
defined as

,= &1236&, , = &1369&, ,= &1379&,

u =(123678&, u =(17&, u =(18&, u =(1267&,

(5.10)

u, =&1268&, u„=&1278&, u„=&126789&,

C, D, E are the known interaction-dependent coeScients
(2.11), and diagrammatic representations of the correla-
tions (5.10) have formerly been shown in Fig. 8. Sub-
tracting (5.9c) from (5.9b) gives

u2 u3 =2(C 2D +E—)(u i
—u7+us —u io) . (5.1 1)

Equation (5.11) directly gives the solution for u, o since all
other correlations appearing in the equation have been
previously determined. Since, as stated earlier, the sextet

correlation u» is assumed to be known by PfaSan pro-
cedures, Eq. (5.9a) itself now determines u9 since all oth-
er correlations in this linear identity are already known;
then Eqs. (5.9d) and (5.9e) directly determine the remain-
ing correlations u4 and u5, respectively. Our goal has
6nally been achieved, namely, assuming that four correla-
tions u&, u6, u7, u» are known a priori by Pfalan
methods, the remaining seven correlations u z, u 3, u4, u 5,
u 8, u&, u &0 are now also known having been deduced by
very much simpler procedures than Pfaffian techniques.
Again, as depicted in Fig. 7, one emphasizes that this
knowledge of the triangular lattice correlations
ui uz uii upon its 7 si-te cluster is sufficient to
determine al/ honeycomb, decorated-honeycomb, and ka-
gome even-number correlations upon their 19-site, and
9-site clusters, respectively —truly large numbers of exact
solutions for localized xnultisite correlations of planar Is-
ing models.

UI. SOME SELECT RESULTS

This section illustrates the procedures of the present
theory by finding exact solutions for a few select even-
number localized correlations of the kagome Ising model
in terms of the spanning correlations of the triangular Is-
ing model. Considering, Srst, the nearest-neighbor pair
correlation (energy), one has

(puMi &» g = (iMuui &d L (by Theorem 3)

=M ((o +a, )(o +o, )&„(by Theorem 4)

=M &(o+o)('o +'o, )&„(by Theorem 5)

=M'+M'(2&, , &,.+ &, ,&„,)

=M +M''C2([A (o i+oz+cr3)+Bo,o2oi]o, &» «+ (o io & &» « I [using (2.7)]

=M +M t2A+[2(2A+8)+l](oioq&»«)
=M +M2(2A+[2(2A +8)+1]u, ) (by Theorem 1) .

Next choosing to consider a select quartet correlation, one obtains

&l ui u3&», g=&l ail u3&~, i (by Theorem 3)

( (oo+o3)(oo+ oi )(oo+o2)(o3+o5) &gL, (by Theorem 4)

((oo+o3)(oo+ol)(oo+o2)(o3+o5) &h, «(by Theorem 5)

=M (1+4x i +4x2+x3+xg+xg+xs+xs+xs+xiii) .

(6.1)

(6.2)

Consulting Table I and using the superposition Theorem
2 together with Figs. 1 and 8, one writes

x, = (01 &» « ——A +(2A +B)u, ,

x, =&04&, =&12&„,=u, ,

xi ——(06&» « ——A(2ui+u6)+Bu2,

x =&07&„=A(u,+u +u )+Bu, ,

x, = &0145 &„„=(0367&„,
= A (u, +u2+u3)+Bu8, (6.3e)

(6.3a)

(6.3b)

(6.3c)

(6.3d) xs ——(0123 &„«=3Au, +8, (6.3g)

x6= (0124&„«

= A (4ui+u2+u i2+u6+)u7
+ AB (2u, + u 2+u 3+u 8 )+8 u i + AB, (6.3f)
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x 9 = (0134) h tr

= A (5ut+ut+ut+u6)

+ AB (2u i +ug+tt6+u7+ttg )++ ui+ +

x,o ——(0135)t, x.

= &0234)„,
= A 2(4u, +u2+ut+u6+u7)

(6.3h)

0.8—

0.7

0.5

04-

+ Qg (3u i +ui+u6+us )+8 u2+ A . (6.31)

For calculational convenience, one notes above that prior
to elimination of all "circled" O sites within a thermal-
average symbol by the superposition Theorem 2, it mas
desirable initially to make minimal the number of such
sites by using symmetry arguments, e.g.,
(04 )& tr

——( 12 ) t, tr and ( 0145 ) t, tt
——( 0367 )& tr . In de-

veloping expressions (6.3), the reader is also aided by re-
viewing the illustrative example (3.6) of the superposition
Theorem 2. Substituting (6.3) into (6.2), oae has succeed-
ed in writing the four-site kagome Ising correlation
(Jucpr iii~3 )k g in terms of the known spanning correla-
tions u „.. . , u» of the triangular Ising model.

The exact solution curves for the above kagome pair
((ttc(tt, )k & and quartet ((ttc(u, )Ltt(tt& )„& correlations as
well as the sextet correlation (@cia,(It2It3It~s)k (2 are
displayed in Fig. 9. As expected, each exact solution
curve is a continuous, monotonically-decreasing function
of temperature and possesses a weak singularity of energy
type aine (where e—:

~

T —T,
~
/T, ) at the critical tem-

perature T, .

VII. SUMMARY AND CONCLUSIONS

The present investigations have established a systemat-
ic and unifying method for finding exact solutions of lo-
calized Ising correlations on various planar lattices. In
the theoretical formulation, the triangular Ising model
satisfied an enveloping strategy. In particular, knowledge
of all 11 even-number correlations upon a select 7-site
cluster of the triangular Ising model mas shown sufFicient
to determine all honeycomb, decorated-honeycomb, and
kagome Ising model even-number correlations upon their
correspondingly select 10-site, 19-site, and 9-site clusters,
respectively. The numbers of such multisite correlations
are very considerable, e.g., approximately 85 and 50 for
the honeycomb and kagorne Ising models, respectively,
and for such n-site (n even integer) correlations, n „=8,
IO, 18 for the kagome, honeycomb, and decorated-
honeycomb Ising models, respectively, where the latter
nm, „values are significantly greater than existing litera-
ture values. As demonstrated in the present paper, the
method of mapping theorerns in conjunction with alge-
braic correlation identities is exceedingly simpler than us-
ing traditional PfaSan methods exclusively; in fact only

0.3

0.2

0

0.0 I I I I I I I I t

0.4 0.8 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

7/ T~

FIG. 9. Exact solution curves for kagome Ising-model corre-
lations (a) (/toft, )„&, (b) (Ittqu, pt/t, )t &, and (c)
((ttoft, pt/tt/t~, )„&, vs (reduced) temperature Q, IQ(=T/T, ),
where Q, =~tin(3+2v 3)=0.4665. . . . Vertical inflection

points shown encircled exist at the critical temperature T, .
(Note the differing restricted ranges of the scales. )

four even-number correlations (three pair and a sextet) of
the triangular Ising model were actually calculated by the
comparatively lengthy PfafBan techniques. The relative
ease and direct applicability of the present method are
highlighted not only by the resulting large numbers of n-
site (n even integer) correlations and large n,„v alues,

but also by the realization that the exact solutions for lo-
calized Ising-multisite correlations on the kagome lattice
(one of the four regular lattices in two dimensions) are
presumably the first to exphcitly appear in the literature
beyond the knowledge of its nearest-neighbor pair corre-
lation (or energy).

Finally, one notes that the numerical precision of all
correlation solutions is the same as the numerical pre-
cision of the spanning correlations u &, u 2, . . . , u» of the
triangular Ising model since each of the former solutions
can now be viewed as a linear combination of the latter
spanning solutions with known and well-behaved expan-
sion coeScients thus allaying any concerns regarding
possible numerical instabilities or similarly unusual com-
putational diSculties in computer programs.
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