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%e discuss the possibility of magnetically disordered ground states in antiferromagnets and argue
that a variety of systems, including the CuOz layers in the high-T, superconductors, should have ei-

ther a spontaneously broken symmetry or else gapless excitations. Models which may have unbro-

ken symmetry and a gap, possibly including the honeycomb-lattice s = —,
' antiferromagnet, are also

discussed.

I.. INTRODUCTION

Lieb, Schultz, and Mattis (LSM) proved' a remarkable
theorem in 1961, which states that the s = —,

' antiferro-
magnetic periodic chain of length L has a low-energy ex-
citation of 0(1/L). Very recently it was observed that
this theorem can be trivially extended to arbitrary half-
odd integer s-pin but not to integer spin, thus suggesting a
difference between these two cases which was first point-
ed out by Haldane. In fact, this theorem implies' that
for half-integer spin, in the infinite length limit, either the
ground state is degenerate or else there are gapless excita-
tions. In the former case this ground-state degeneracy is
likely to be the result of a spontaneously broken symme-
try. A unique ground state with a gap is impossible for
half-integer spin, By contrast it can occur for integer
spin as was proved rigorously by constructing a solvable
model. '

Lieb„Schultz, and Mattis' also pointed out that their
theorem could be extended to higher dimension. We
wish to give a somewhat more detailed discussion of this
extension and draw some (nonrigorous) conclusions from
it. Besides extending it to higher dimension, we will also
discuss its extension to include phonons (Heisenberg-
Peierls model). Another extension is to SU(n) generaliza-
tions of the usual SU(2) spin systems. In fact, the
theorem appears to be remarkably insensitive to details of
the Hamiltonian, due to its essentially topological nature.
In the case of ordinary SU(2) antiferromagnets, it works
whenever the total spin per unit cell is half-odd-integer.
Thus, for example, it works for half-odd-integer spin on
an arbitrary Bravais lattice (in which the unit cell con-
tains a single spin). These cases include the two-
dimensional triangular and square lattices, discussed by
Anderson and co-workers in the context of "resonating
valence bonds. " The theorem fails for a half-odd-integer
spin chain with alternating interaction strength, or for a
half-odd-integer spin honeycomb-lattice antiferromagnet,
since there are two spins per unit cell in these eases.
Indeed a solvable spin--,' honeycomb-lattice model was
studied which was proved to have exponentially decay-
ing correlation functions and a unique ground state, and
appears very likely to have a gap.

In the case of realistic Heisenberg Harniltonians, a very
powerful theorem of Dyson, Lieb, and Simon, together

with its extension to two dimensions, prove that the
ground state is Neel ordered for bipartite lattices and
sufficiently large spin. For the square, cubic, or honey-
comb lattice this theorem applies for spin s ) 1 (the tri-
angular lattice is not bipartite).

Haldane developed an approximate mapping of the
large-s antiferromagnet onto the o model, valid in any di-
mension. %e use this to show the tendency towards
Neel order for larger spin, based on renormalization
group ideas. This suggests that there should be a phase
transition from a Neel ordered to disordered state as a
function of the spin-wave coupling constant g which de
creases with increasing s and also depends on the strength
of next-nearest-neighbor couplings. In general, frustrat-
ing spin-couplings tend to increase the spin-wave cou-
pling constant and thus to increase the strength of disor-
dering fluctuations. Naively, the tr-model mapping seems
to suggest that the disordered phase should have a unique
ground state and a gap, analogous to the high-
temperature phase of a classical ferromagnet in one
higher dimension. However, the Lieb-Schultz-Mattis
theorem' implies that this cannot be the case in general.
In one dimension this difficulty is removed by the in-
clusion of a topological term in the o model. ~ While a to-
pological term also exists in the two-dimensional case, it
is unclear whether it plays a role. Indeed, the o-model
mapping, while generally valid in the weak coupling
Neel-ordered phase right up to the critical point, may
break down in the strong-coupling phase in some cases.
Thus while a transition out of the Neel phase should
occur for suIriently strong spin-wave coupling, it is un-
clear what the strong coupling phase is. The I.ieb-
Schultz-Mattis theorem gives valuable information about
the possibilities.

The rigorous results on Neel order ' imply that, in the
case of Heisenberg antiferromagnets on bipartite lattices,
only for s =—,

' is there a chance of a "Auctuation-
dominated" ground state. For the square lattice, if the
ground state is not Neel ordered (finite-size calculations'
suggest that it is) then the Lieb-Schultz-Mattis theorem
suggests that either translational symmetry is broken,
leading to a doubling of the unit cell, as in the spin-
Peierls phase, or else there are gapless excitations. Only
the s =—,

' honeycomb lattice seems to be a candidate for
an experimentally realizable higher-dimensional exten-
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sion of the Haldane phase, characterized by a unique
ground state and a gap.

The outline of this paper is as follows. In the next sec-
tion we will review the Lieb-Schultz-Mattis theorem and
discuss its extension to higher dimension and to include
phonons. In Sec. III we will take up the issue of Neel or-
der versus disorder, by considering the large-s mapping
onto the nonlinear 0 model. In Sec. IV we will give some
further discussion of the implication of these results to
triangular-lattice antiferromagnets and to the high-T, su-

perconductors.

II. THE LIES-SCHUI.TZ-MATTIS THEO}REM

Consider the s =-,' Heisenberg antiferromagnet on a
periodic chain of length L, even.

H= gS; S;+) .

%e wish to prove that there is a low-energy excitation of
0(1/L). We may assume that the ground state

~ go) is
unique, since otherwise the result would be trivially true.
In fact, a rigorous proof of uniqueness exists in this case
and most others of interest. " The proof of a low-energy
excitation' proceeds by constructing a state

~ f, ) which
has low energy, i.e., &g, ~

(H —Eo)
~ g, ) =0(1/L), and

which is orthogonal to the ground state.
~ f, ) is con-

structed by making a unitary transformation on
~ go),

namely a slowly varying rotatian about the z axis:

I
A&=UI fo&

U—= exp i(2n/L) gnS„'

This state has low energy because, for large L, the rela-
tive rotation of two neighboring sites is 0 (1/L). Requir-
ing the relative rotation between the Lth and 1st sites to
be small Sxed the overall coeScient in the exponent in U.
Noting that

exp(i8S')S+ exp( i 8S')= exp(i—8)S+

we see that

&I/1, )
(H —Eo) ( |/i, ) = —,

' [exp(E'21T/L) —1]

x g &s,+s,-„&+H.c.

Since the ground state is unique it must be isotropic, im-

plying

&s,+s,-„&=&s,-s,+, & .

where Eo is the ground-state energy.
Of course, merely constructing a low-energy state

proves nothing; it might become equal to the ground
state as I.~ Dc. To complete the proof, we must show
that this does not happen. This can be done by showing
that

~ g, ) is orthogonal to
~
Po). This is true because

~ P, ) has momentum n relative to the ground state, and
thus must be orthogonal due to our uniqueness assump-
tion which implies that

~ fo) is a momentum eigenstate.
To calculate the momentum of

~ g, ), we must calculate
the effect on U of a translation by one site:

U~TUT '= exp i(2n/L) g 'nS„'+, +LS;
n=1

= U exp —i (2n /L) g S„' exp(i2mS
&

) .
lf =1

The ground state has spin 0 since it is unique, and thus
the Snt exponential gives ane

U
~
Po)~Uexp(i2ms;)

~ fo) .

Finally since S
&

has eigenvalues +—,',

~U
I fo&= —U2'

I 4o& .

Thus there is a lowwnergy state of momentum m, relative
to the ground state. This proof extends immediately to
arbitrary half-odd-integer s but fails in the integer-s case.
The reason is that exp(i2nS; ) is +1 for integer or half-
odd integer s, respectively, and sa the mamentum is zero
or n, respectively. In the former case it cannot be proved
that

~ P& ) is orthogonal to
~
Po). This appears nat to be

a mere technicality but to cut to the heart of the
difference between integer and half-odd integer spin, us-

ing as it does the fact that half-odd integer wave func-
tions change sign under 2m rotations.

In the half-odd integer case, the proof can easily be ex-
tended to much more general Hamiltonians. Anisotropic
and non-nearest-neighbor interactions can be added. The
fact that

~ f, ) has low energy is true for essentially any
reasonable Hamiltonian, and the fact that the momentum
is m did not use any property of the Hamiltonian at all,
except that translation by one site is a symmetry. (This
latter property would fail with alternating interactions. )

Of course, the assumption of a unique ground state can
fail for some Hamiltonians (for example ferromagnetic
ones}, in which case, while there is a low-energy state
(another ground state), it does not necessarily have
momentum m.

Of course, even if the finite-chain ground state is
unique, the infinite length ground state may not be. For
the Hamiltonian

&f) ( (H —Eo) ( f, ) =[cos(2m/L) 1]g &S+S,+,—) .
H= g( SS; , +'+S; S;+2), (2)

Since S;+S,.+ &
is a bounded operator,

& l(, ~
(H —E, )

~ y, ) =O(1/L) .

In fact, we have

& f, ~
(H —E )

~ P, ) =[ cos(2n. /L }—1]2E /3,

the finite-chain ground state is twofold degenerate, the
two ground states di8'ering by translation by one site.
These two ground states correspond to pairs of nearest-
neighbor valence bonds. ' '4 It is believed' that this two-
fold degeneracy persists for a finite range of second
nearest-neighbor couphng, over some of which the finite
chain presumably has a unique ground state. In this situ-
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ation, the ground state of a large 6nite chain is essentially
the symmetric combination of the two infinite-chain
ground states. The low-energy excited state is the an-
tisymmetric combination. The overlap of the two
dNerent pure states and hence the splitting of the 6nite
chain eigenstates is 0 [ exp( —const XL)). This low-

energy state has momentum m relative to the ground
state. One expects a finite gap to all other states, as
L ~ ce. This has been proven rigorously" for the solvable
model of Eq. (2).

In the case of the Heisenberg Hamiltonian, the Bethe
ansatz solution shows that the ground state is unique but
the dispersion relation for one-particle excitations is

E~ ~sink( .

This vanishes at k =m, as required by the LSM theorem.
The LSM theorem seems to imply that half-odd integer

antiferromagnets are generically in a gapless nondegen-
erate phase or else have broken translational symmetry.

Let us now consider higher-dimensional generaliza-
tions of the LSM theorem. Consider first a half-odd in-
teger s Heisenberg model on a square lattice of length I.
and width M with periodic boundary conditions. Let us
again attempt to construct a low-energy state, orthogonal
to the ground state. We may again consider making
slowly varying rotations of definite momentum. Suppose
we use a unitary operator of momentum (n, O):

U =—exp i (2'/L }g XS;

(the coordinates are integers). We may bound the energy
of U

~ $0) as before. There is no increase in energy for
the vertical bonds and each of the LM horizontal bonds
has an increase in energy of 0 (1/L ). Thus the energy is
0(M/L). This is a low-energy state for a strip with
L »M. In particular it gives a zero-energy state for an
infinite strip.

However, we must ask if U
~ &0& is orthogonal to the

ground state. We may calculate the momentum of U as
before. We Snd

TUT '=Uexp i(2m/L)QS—'„exp i2n QS~,

As before, we may assume that the ground state has total
spin zero. The second exponential contains the total z
component of spin on the first column. This will be an
integer or half-odd integer according to whether M is
even or odd, respectively. Thus the theorem works if and
only if the number of rows, M, is odd.

This result is certainly much less complete than in the
one-dimensional case. The energy is only small if the
strip is much longer than it is wide, and furthermore, the
number of rows roust be odd. %'e hasten to observe that
the result does hold with periodic boundary conditions,
and that requiring an odd number of rows does not cause
any obvious pathologies, since the total number of sites is
even.

There is another respect in which the result is less corn-
plete in two dimensions. To actually prove rigorously the
existence of ground-state degeneracy or zero gap, we con-
structed a slow-energy state spread over a region of

length i in a chain of length L »1, with energy 0(1/i).
This was done by the same procedure, introducing a slow
twist over a portion of the chain. In two dimensions, al-
though we could twist over only a portion of each row,
we find it necessary to twist a/i rows, i.e., the excitation
fjllls the whole width of the lattice. The problem is that,
in principle, such a spread out excitation might become
completely unobservable for the infinite system without
necessarily implying ground-state degeneracy. An exam-
ple of such an excitation would be a spin wave of momen-
tum k~=0.- This would be no more observable in an
in6nite lattice than a photon with wavelength equaling
the size of the universe.

However, we regard this as a technical limitation not a
fundamental one for the following reason. In a physically
sensible model, if there are k» =0 spin waves, there are
also spin waves with k close to zero. By forming a linear
combination of these states, we can always obtain a local-
ized low-energy state. Gn the other hand, if the low-
energy k„=O state is nor accompanied by other nearby
low-energy states, then it should indicate ground-state de-
generacy. Likewise, if the state only existed for an odd
number of rows, we would again expect broken symme-
try. One might be happier if the state could be found for
an L, &I. lattice. However, we expect that the energy gap
should decrease not increase, if we increase the width
from M ( &~L) to L. While this argument has not been
made rigorous, wc can think of no physical counter ex-
amples. Of course, this may simply reAect a lack of ima-
gination.

We feel that this theorem, incomplete though it is, does
imply essentially the same result as in one dimension.
Namely, either there are gapless excitations of momen-
tum (O, n) in the infinite area limit, or else broken
translational symmetry. In any event, any approximate
solution of the model must pass the test of having a low-
energy state for a long strip with an odd number of rows.

Let us now consider other lattices. The theorem can
be extended immediately to a cubic lattice in three di-
mensions. The energy is 0( A /L) where A is the area
and L the length. This state has low energy for a very
long box. The proof also works for a triangular lattice in
two dimensions since an odd number of rows is again
consistent with periodic boundary conditions. The proof
goes through exactly as before. We may again choose the
rotation at location x to be (2m /L)x, where the x axis lies
along a lattice row. There is now a contribution to the
energy of 0(1/L ) from all three types of bonds, again
giving a total energy of 0 (M/L). It was crucial that we
could choose an odd number of rows consistently with
periodic boundary conditions. Note that the fact that the
triangular lattice is not bipartite plays no role here. In
fact, it is more natural to take an odd number of rows in
this case. For a square lattice, an odd number of rows
would force a seam into the Neel state. (Of course this is
not a problem for our arguments since the Neel phase has
broken translational symmetry. ) For the triangular lat-
tice, an odd number of rows is consistent with a tripartite
ordered state, provided that that number is divisible by
three. Now consider the ho'neycomb lattice with half-odd
integer spin. %'e may again consider making a rotation
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whose magnitude varies with distance along a lattice rom.
But in this case, it is not possible to have an odd number
of rows consistent with periodic boundary conditions.
This follows because there are two inequivalent types of
rows and neighboring rows are not connected by primi-
tive translations. Indeed an s =—', model was constructed
which can be proven to have exponential decaying corre-
lation functions and a unique ground state and appears
to have a gap.

Let us now consider the extension of the theorem
beyond Hamiltonians containing only spin variables. %e
may easily generalize it to a Heisenberg-Peierls model in
which the magnetic interaction strength between two
neighboring spins, J,~, depends in some way on the dis-
tance between them, the displacement of each spin from
its equilibrium position being treated as a quantum vari-
able. The proof proceeds exactly as before. The unitary
transformation has no elect on the phonon degrees of
freedom. The excitation energy for a chain is given by

(rP,
~

(H —Eo}
~ P, ) =[co (s2n/L) 1]—

and so should be 0 (1/L) The th. eorem was also extend-
ed to chains with SU(n) generalizations of SU(2) spin
variables on the sites. The extension of these cases to
higher dimension goes exactly the same way as for SU(2}.
A large-n limit of the square lattice SU(n) Heisenberg
model was solved recently, ' and that solution was con-
sistent with our conclusion, namely translational symme-
try was broken in the ground state.

We have nor been able to extend the proof to itinerant
electron models although we expect that the result holds
in those cases as well. Field theory analysis of one-
dimensional models suggests that in the phase in which
both the spin and charge excitations have a gap, there is a
broken translational symmetry. The large-n solution' of
the Hubbard-Heisenberg model on a square lattice is also
consistent with the general conclusion.

III. o -MODKI. MAPPING

The one-dimensional Heisenberg model does not
display Neel order even at T =0, due to infrared-singular
quantum Buctuations. (This is the quantum version of
the Mermin-%'agner theorem, ' known in field theory as
Coleman's theorem. '

) On the other hand, in two dimen-
sions Neel order is possible in the ground state, although
not inevitable. A nice way of understanding these issues
is to make a mapping of the spin system onto the non-
linear 0 model. *' '

In the one-dimensional case, this can be done' ' by
combining pairs of neighboring spins to define the field
and rotation generators of the o mode1:

qH2n + —,
'

) =(S~„8„2)/+2& ( +s1s—),
l(2n + —,

' )=—(Si„+S2„+,) /2 .

y and 1 are then assumed to be slowly varying on the
scale of the lattice spacing; we are keeping only momen-
tum modes near zero and m, the two low-energy regions

for an antiferromagnet. In the large-s continuum limit, y
and I obey the commutation relations and constraints of
the o model:

[l'(x),g (y) ]= ie'~y'(x)5(x —y),
[1'(x),l (y)]=is' 1'(x)5(x —y),
[q'(x), y (y)]=is' I'(x)5(x —y)/s(s+ l)~0,
y 1=0,
qr2=1 —I /s(s+1)~1 .

Ignoring higher derivitive terms, the Hamiltonian density
becomes

%/v = (g /2) [i+(8/4m )(d{p/dx) ] + (I/2g)(d{p ldx)

with velocity, coupling constant, and topological angle

v =2&s(s+I), g=2/&s(s+I}, 8=2m&s(s+I) .

The corresponding Lagrangian density is

X=( I /2g)(B„y)'+(8/4~)y (&„yXd~)s"" .

8 multiplies the topological term which is always i times
an integer, the winding number, for a smooth
configuration in Euclidean space. Thus 8 is a periodic
variable, and the difFerent behavior for s integer or half-
integer can be explained. For 8=0, s integer, we simply
have the Lagrangian describing the continuum limit of a
tivo dimensio-nol classical ferromagnet, with temperature
g =2/Vs(s+1). For large s the coupling constant is
weak and we may do perturbation theory. This is done
by assuming that y has an expectation value, correspond-
ing to Neel order. The perturbative spectrum consists of
two Goldstone bosons. The leading infrared divergences
of u-model perturbation theory would correspond to
standard spin-wave perturbation theory based on the
Holstein-Primakoff approximation. However, we find
that the coupling grows with increasing length scale (or
decreasing energy scale):

dg/d lnL =g /2m .

This suggests that the symmetry is not really spontane-
ously broken, and that there is a finite correlation length
of order

g= exp[n&s(s+1)],
and a corresponding gap b, =v/g=s exp[ n&s(s+I)]-.
This behavior corresponds to the fact that the critical
temperature of the two-dimensional classical ferromagnet
is zero, and there is an exponentially large correlation
length at low temperatures.

The behavior of the 8=~ o model is less familiar, but
there appears to be unbroken symmetry with a (non-
Goldstone) massless sector.

All of this holds for arbitrarily large s. %e may also
add a second nearest-neighbor coupling. This modifies
the a model coupling constant to

g =2/[&s(s+ I)+1—4J2] .

A frustrating coupling (J2 ~0) tends to increase the o
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model coupling, disfavoring the Neel-ordered state.
%e may attempt to repeat the above procedure in

higher dimension. The validity of the cr model mapping
in higher dimension was pointed out in Ref. 3. Consider
first the simplest case of a square lattice in two dimen-
sions. The natural extension of the above approach is to
de5ne continuum ljmit variables on every fourth pla-
quette. We may deSne a a-model field, the order parame-
ter

e(»+-,' 2~+-,' }—= {82x,2y 82x+ 1,2y 82x, 2y+1

+82x +12 y+ 1)/4&S (S + 1 )

%e may also define the continuum rotation generator, re-
lated to the conjugate momentum for y, as

1(2x+—,', 2y+-,')

={82x, 2y +82x + 1,2y +82x, 2y + 1 + 82x + 1,2y + 1 ) /4

y and 1 again obey the correct commutation relations and
constraints for large s. However, a difFerence emerges
from the one-dimensional case. To converse the number
of degrees of freedom, we must define two other fields:

Ax{»+-,' 2&+-,') —={82x,2y
—8r +1,2y+82, 2y+i

y{ +-,' 23 +-,'}=(82x,2y+82. +1,2y
—82., 2y+i

—82„+,2y+, )/4[s(s+1)]'

Treating all these fields as slowly varylilg, g, I, A„, and
A„correspond to the Fourier modes of the spin opera-
tors, 8, with momentum near (m, m), (0,0), (m, 0), and
(O, n), respectively. I generates rotations of the A, as
well as of y. In the continuum limit y commutes with
the A, :

[p'(x), yl„(y)) is'='Ay'(x)5(x y)/—vs{ad '+1)~0,

[(p'(x), eely(y)] ie'='3 '(x)5„(x y)/—&s(s+ 1 )~0 .

On the other hand, the A; have a nonzero commutator:

[3 '(x), yi„(y)]=is' 'p'(x)5(x —y),

[yl„'(x), A„(y)]=[A„'(x),A„(y)]

=is'~l'(x)5(x —y)/&s (s + 1)~0 .

All four fields are exactly mutually orthogonal. They
also obey the constraint

qP = 1 —I /s (s + 1)—A„ /&s (s + 1)

—Ay/&s(s+1)~1 .

The two additional fields that we have been forced to in-
troduce do not seem to have any obvious interpretation
in the o model. Making a gradient expansion, we now
Snd the Hamiltonian density:

%/U =(g/2)I'+(1/2g)(Vy)'+-, ' A„'+ ,' Ay—,

where g =2/&s(s+1), U =4&s(s+1}. Once again, g
will increase with a frustrating second-nearest-neighbor
coupling. Temporarily ignoring the extra fields, let us
consider the o model alone. %e now have a continuum
version of the three-dimensional classical ferromagnet at
temperature g. Thus there should be a phase transition at
some finite value of g (or order one). This can be seen, for
example, from the (2+ e ) expansion of the o model. '

The fixed point at couplings of order s presumably per-
sists up to three dimensions. In the weak coupling phase,
there is Neel order and two Goldstone bosons.

Let us now consider the affect of the additional fields in
the weak coupling phase. Choosing (y') =5', the corn-
mutation relations become, to leading order in 1/s.

[A„'(x), A (y)]= —[yi„(x),Ay'(y)]= i5(x—y), —

with the other commutators lower order. Thus ( yi„', Ay )

and (A„,—A') define two field-conjugate momentum
pairs, awhile A„and A„are classical fields. In this ap-
proximation, the extra fields are decoupled and massive.
Thus the low-energy sector in the Neel phase consists
only of the Goldstone bosons as expected. Once again,
the Goldstone modes, with momentum near (n, n) and
(0,0), are those obtained from standard spin-wave theory.
The extra Selds A;, with momentum near (n, 0) and
(O, ir), do not affect the leading infrared behavior of per-
turbation theory, or, presumably the existence of a criti-
cal point. However, it is much less obvious what role
these extra fields may play in the strong-coupling phase.

Based on the LSM theorem and our experience with
the one-dimensional case, it seems likely that the nature
of the strong-coupling phase depends radicaBy on wheth-
er the spin is integer or half-odd integer. In the former
case a unique ground state with a gap may occur, corre-
sponding to the disordered phase of a classical three-
dimensional ferromagnet. However, in the half-odd in-
teger case, this is inconsistent with the LSM theorem. In-
stead there is presumably either a breaking of the symme-
try of translation by one site, or else a unique ground
state with vanishing gap. The former case corresponds to
some two-dimensional generalization of the dimerized
phase. The lattice translational symmetry is broken but
not the spin-rotational symmetry. In the latter case we
can imagine (at least) two possibilities. One is that there
is a gapless pseudo-Fermi surface and electively massless
free fermions as in the resonating valence bond model
discussed by Anderson and collaborators. Another pos-
sibility is that the gap vanishes only at discrete points in
momentum space, probably {0,0), (O, n }, (m, 0},and (m,n).
In this case, there is likely to be a (2+1)-dimensional
Seld theory description of the gapless sector. It is possi-
ble that the Hopf topological term of the (2+ 1)-
dimensional o model' appears. On the other hand, if
there is a gapless Fermi surface in the strong-coupling
phase, then a (2+1)-dimensional field theory is nor the
correct description, since for such a Seld theory the gap
would only vanish at discrete points in momentum sIrace.

In the large-n limit of the Heisenberg model, we
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FIG. 1. The proposed renornmlization group Now diagram
for d & 2 antiferromagnets subject to the LSM theorem.

found a dimerized ground state, although a nondegen-
erate ground state with the gap vanishing at discrete
points in momentum space, represented another locally
stable state of slightly higher energy. (For the
Heisenberg-Hubbard model, the latter state became the
ground state for a range of parameters and a ground state
with a gapless Fermi surface also occurred away from
half-filling. )

In renormalization group language, there is an infrared
unstable fixed point corresponding to the Neel ordering
transition, as a function of g (which can be controlled by
varying s or a second-nearest-neighbor couphng). For in-

teger s the flow on the strong-coupling side is to some
short-range (nonuniversal) fixed point. For half-odd-
integer s the flow is to some other attractive fixed point
(see Fig. 1}, or else to some short-range (nonuniversal)
dimerized phase.

The above discussion wss given for s square lattice, but
very similar results would immerge for any bipartite lat-
tice in any dimension greater than one. In the continuum
limit, the 0-model fields y and I would arise together
with a lattice-dependent number of additional fields,
which would be massive in the Neel phase. A transition
out of the Neel phase should be generic for sufficiently
small s or large second-nearest-neighbor coupling. This
is the analogue of the fact that a classical ferromagnet
has a finite-temperature transition for any dimension
greater than two. In cases where the I.SM theorem ap-
plies, the strong-coupling phase should be either dimer-
ized or gapless; in other cases it may be a short-range
nondegenerate phase with a gap.

There does not appear to be any simple way of estimat-
ing the critical value of s at which the Neel transition
occurs for various lattice types. The critical coupling in
the u model is nonuniverssl and regularization depen-
dent. The most useful result, in this regard, is the
rigorous theorem of Dyson, Lich, and Simon, which
shows that there is Neel order for the Heisenberg Hamil-
tonian and any s & 1, for most lattice types.

IV. DISCUSSIGN

or at the discrete points (0,0}, (O, ir}, (n, O), and (m', m')

only.
What are the prospects for testing these predictions'7

Numerical work on Saite two-dimensional lattices is cer-
tainly one possibility. In the one-dimensional case it was
necessary to go to spin-1 chains of length 30 to show
fairly convincingly the existence of a gap, although the
experts now generally agree that a sufficiently sophisticat-
ed analysis of a chain of 16 sites might really have been
enough.

The solvable s = —,
' honeycomb-lattice model of Refs. 4

and 6 provides an example of the strong-coupling phase
with a unique ground state and (presumably) a gap.

Most interesting is the possibility of experimentally ob-
serving the strong-coupling phase in a quasi-two-
dimensional (or three-dimensional) antiferromagnet. Na-
ture restricts us, more or less, to pure nearest-neighbor
Heisenberg Hamiltonians. The powerful results of
Dyson, Lieb, and Simon show that the critical value of s
is less than one. It may be less than —,

' also, meaning that
even the s =—,

' case is Neel ordered. This could depend
on lattice type, of course. The s = —,

' square lattice is sub-

ject to the LSM theorem and so should have a broken
translational symmetry or zero gap in the strong-
coupling phase. %e might expect quantum fluctuations
to be even stronger for the s =—,

' honeycomb lattice, since
the number of nearest neighbors is only three. For this
case the strong-coupling phase may have a unique ground
state with a gap.

Let us summarize the situation for the triangular lat-
tice antiferromagnets. A tripartite magnetically ordered
state is a possibility. The Dyson, Lich, Simon theorem
has not been extended to tripartite lattices, so no rigorous
results are known on this ordered state. The o-model
mapping cauld presumably be carried out, and one would
expect order for suSciently large spin, and disordered
phases for small enough spin and large enough frustrat-
ing second-nearest-neighbor couplings. Since the LSM
theorem applies far half-odd-integer s, the strong-
coupling phase should have either broken translational
symmetry or vanishing gap in this case. An interesting
variational ground-state wave function for the s =—,

' tri-
angular case was recently discussed by Kalmeyer and
Laughlin, z' based on Laughlin's fractional quantum Hall
etfect wave function. They used a boson representation
for the spin variables with an inffnite hard-core repulsion.
An empty or occupied site corresponds to S,= ——,

' or —,',
respectively. In the boson representation, U becomes

Let us summarize our main conclusions. In any di-
mension greater than one and any lattice type, there
should be a critical coupling separating the Neel phase
from a strong-coupling phase, where the o-model cou-
pling constant decreases as 1/s but increases with a frus-
trating second-nearest-neighbor spin coupling. In cases
~here the LSM theorem does not apply, namely where
the spin per unit cell is integer, a unique ground state
with a gsp may occur. %'here the LSM theorem does ap-
ply, we expect the strong-coupling phase to have either
broken translational symmetry or else gapless excitations.
In the latter case, these may either be on s Fermi surface,

U= exp i(2m/L) gx~
J

The energy is O(M/L) as can be seen by applying U to
the boson hopping term, representing the S+S cou-
plings. Under a translation by one site, each x- is in-
creased by 1 (or decreased by L —1 if x =L). The total
number of bosons is LM/2 so U~ —U for M odd. Thus
this excited state has momentum (m., O) relative to the
ground state.

The CuO2 planes in La2Cu04 (and. also in YBa2Cu&O„
for some values of x) are probably well described by the
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Heisenberg model. An orthorhombic distortion of the
lattice has been observed. However, apparently the
square Cu plaquettes of the tetragonal phase are simply
tilted into a rhombus with no breaking of the translation-
al symmetry in the elective two-dimensional Heisenberg
model. Neel order has also been observed. ' However,
it is not clear if the two-dimensional planes would order
at T =0 or if the observed ordering is entirely due to in-
terplane coupling. Some experimental observations
relevant to this question are presented in Ref. 26. In the
latter case the material may be well described by a disor-
dered s =—,

' square lattice ground state. The I.SM
theorem should then imply either broken translational
symmetry or vanishing gap. Apparently, no indications
of broken translational symmetry in the e+ectiue Heisen
berg model have been observed. If the gap vanishes
linearly at discrete points in momentum space, as in a rel-
ativistic (2+1)-dimensional quantum field theory, then

the specific heat would be quadratic at law T. On the
other hand, if the gap vanishes linearly on a Fermi sur-
face then the speci6c heat would be linear at low T.

Note added in proof. Since submitting this paper, we
have received a number of related preprints. Experimen-
tal and theoretical evidence that the two-dimensional
square lattice s= —,

' Heisenberg model Neel orders at
T =0 has been given. The e8'ects of the Hopf invariant in
the cr-model representation of the large-s limit of half-
integers s antiferromagnets have been discussed.
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