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The low-temperature phonon specific heat of vanadium-based alloys V:Hf, V:Ta, and V:% has
been studied theoretically on the basis of a Green s-function technique. A nearest-neighbor impuri-

ty model with radial and angular farce-constant changes has been employed. The force-constant
changes have been evaluated by fitting the measured lattice specific heat of these systems. The elect
of volume change has been taken into account. The theory has been modified for comparatively
higher concentrations of impurities. The resonances have been found in F&„-irreducible representa-
tions only. The local strength constants were found to be quite important in determining the in-

crease or decrease of the transition temperature T, , It has been observed that T, increases slightly
if the force constants for a heavy impurity (Hf) change weakly, and T, shifts to lower temperatures
(V:Ta,%) if the changes are strong. The electron-phonon as well as electron-impurity interactions
are discussed in detail, The calculated results for both properties are in good agreement with the
experimental measurements.

I. INTRODUCTION

The study of the nature of the vsnation of the tempera-
ture T„char act erizi ngthe transition of metals into the
superconducting state, as the number of nonmagnetic im-
purity atoms is varied, forms the content of s number of
papers. ' The question of the inliuence exerted on T,
of a metal by atoms of non-magnetic impurity with mass
M, which differs greatly from the mass Mo of the atoms
of the host metal, when local (M ~~Mo) or resonance
(M p~Mo) phonon states appear in the phonon spectrum,
is one of the interesting but little investigated problems of
superconductivity physics. Since, in general, introduc-
tion of impurity atoms with M&Mp into a metal alters
not only the phonon spectrum but also the density of the
electron states on the Fermi surface and the Coulomb-
repulsion potential, sn experimental study of the
infiuence of heavy or light impurity atoms on T, calls for
the use of methods that make it possible to determine the
variation of both the phonon and the electron spectra.
Such methods have been made possible by the develop-
rnent of tunnel spectroscopy with superconductors as
well as of inelastic scattering of neutrons in conjunction
with measurements of the temperature dependence of the
specific heat, snd the electrical conductivity.

The inAuencc of localized and resonance modes in
the phonon spectrum on T, of metals with impurities
was considered theoretically by a number of au-
thors. ' ' In practice, ho~ever, the analysis of
the connection between the properties of metal in a nor-
mal state and T, is based, both for pure metals snd for
metals with impurities or alloys, on the McMillsn equa-
tion or its modi5cstion. Most of the theoretical ps-

pers, based on the approximate solutions of the integral
equations obtained by Eliashberg' for the energy-gsp
function are rigorously valid for regular crystals. In crys-
tals containing many impurities snd in disordered com-
pounds, the phonon and electron systems can undergo
appreciable changes in comparison with a regular crystal.
Obviously, the theoretical concepts applied to such disor-
dered systems should take into account these changes,
and take into consideration the dynamic character of the
defects. Markowitz and Ksdsnoff as well as others 5

have considered only static defects in the theory of super-
conductivity. They have taken the isotropization,
caused by the elastic scattering of electrons by defects, of
an snisotropic energy-gap in a real regular crystal. Ac-
cording to the usual estimates, isotropization gives rise to
a very significant reduction of T, . Moskslenko and Palis-
trant had set themselves the aim of determining the role
played by impurities in superconductors by assuming the
existence of several energy gaps. However, the model
with several energy gaps is, generally speaking, inapplic-
able to nontransition metals where, in accordance with
the experimental data, the anisotropy of the gap does
not exceed 30-40%, and it is also inapplicable to transi-
tion metals even with a very small content of impurity
atoms. Bar'yakhtsr et a/. have investigated the effect
on T, of the modifications of the electron spectrum near
singularities due to the presence of impurities. Maksi-
rnov has calculated the renorrnslization due to impuri-
ties of the effective interaction parameter, which gives
rise to the pairing of electrons. The differenc was taken
into account in the scattering amplitudes between the
atoms of the basis lattice and the impurity atoms, and
also, to some extent, the special nature of the oscillations
of the group of atoms singled out near the impurity.
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An approach to the determination of the critical tern-

perature, applicable for nonideal crystals, can be
developed by using Green's-function technique. It is
quite clear that such an approach is fruitful in the investi-
gation of the thermodynamic and kinetic properties of
impure crystals. In the present work we have considered
the effect of changed-lattice dynamics due to impurities
on the electron-phonon spectral function a (m)f(co) by
using this formalism. Recently, Taylor ' has calculated
the lattice dynamics of isolated H and D interstitials in
Al, and studied the superconducting T, for dilute H and
D in Al. We will take some pertinent equations from his
work, and use our earlier results to study the effect of im-
purities on the phonon heat capacity, and transition tem-
perature of V doped with Hf, Ta, and %. The model will
include the mass changes at the impurity site as well as
changes in the radial (I ) and angular (I") force con-
stants. The changes in volume due to substitution of im-
purities in V will also be taken into account. We have al-
ready used Green's-function formalism for studying vari-
ous impurity-induced lattice dynamical properties of
solids. ~3'30 In these studies either the volume change
efFect has been ignored completely or no proper ac-
count of this effect was made. 3 35'3 One important
property of point defects is the static displacement field
due to the forces exerted by the defect on its neighbors.
A static displacement field also leads to changes of the
force constants. Here one has to distinguish between two
difFerent kinds of displacement: (i) the displacement d",
which would occur in an infinite crystal; (ii) in addition to
d" a very small image field, d(r)™se,exists, which al-
lows the surface of the finite crystal to be force free. The
total image 6eld practically represents a uniform expan-
sion. The total volume change hV is the sum of the cor-
responding volume change hV", and hV' '~'. Near the
defect, due to appreciable changes in the nearest-
neighbor distance [displacements are larger given by
d "(r)], we have local force-constant changes. However,
in the defect-free region the lattice is only dilated due to
d' 's', b V™se,and, in addition to local force-constant
changes, we have a homogeneous softening of the force
constants due to the image expansion. Erroneously, it
has been assumed in the past3 ' that the change in
force constants due to lattice expansion is proportional to
b, V instead of being proportional to b, V™s'.Whereas
thy theory, taking local force-constant changes into ac-
count, has been worked out in considerable detail, there
are still very few correct treatments of the lattice expan-
sion efFect. 3 In the present paper we will emphasize the
correct treatment of the volume expansion.

The changes in the transition temperature due to im-

purities will be studied by using the relation given by
Bergmann and Rainer

T
b, T, = I den ba (~)f(~) .

Ba ( co )f(co )

The functional derivative dT, /da (co)f(co) has the im-
portant property that T, is changed by an amount hT,
given by the above equation, when az(to)f (co) is changed
by a small amount ba (co}f(to). Bergmann ad Rainer'
have used the Eliashberg theory in its imaginary-axis

form to provide an elegant and de6nite answer to the
question of which phonon frequencies are most influential
in determining the magnitude of the superconducting
transition temperature T, . Recently, Mitrovic and Car-
botte have presented approximate analytic calculations
of the functional derivative within the square-well mod-
el. But we have followed Bergmann and Rainer's
method in our calculations. Changes in a (co)f(co) are
considered by taking the effect of the modification of the
V dynamics, correlation between V and impurity motion,
and the direct contribution due to impurity. The force-
constant changes evaluated in the study of phonon
specific heat are used to see their effects on T, . The eval-

uation of the phonon Green's functions required the
vanadium phonon dispersion curves, and the same infor-
mation will also be used to determine the parameters in
the V pseudopotential.

We have undertaken a systematic study of the connec-
tion between the restructuring of the phonon spectrum,
and the temperature of the transition T, to the supercon-
ducting state. The anomalous behavior of the phonon
specific heat in the range of low temperature of alloys of
V with Hf, Ta, and 8' indicates a restructuring of the
phonon spectrum in the region of low frequencies. The
present systems have been chosen because of many
reasons. It is a widely accepted point of view that soften-
ing of the phonon spectrum should give an increase in T, .
Thus, the possibility of raising T, should be expected by
introduction of heavy impurities. It is also known that
introduction of group-IV elements into vanadium in-
creases T„while introduction of group-VI elements de-
creases it. It is therefore interesting to study the alloys of
V with Hf and W, which are the neighbors of Ta in the
Periodic Table, which differ only in the number of elec-
trons, having practically equal atomic masses. The ex-
perimental results of Shikov et al. on the specific heat
of these systems point out an impurity resonance, and to
an appreciable change in the local strength constants.

The structure of the paper is as follows. Section II A
deals briefiy with the low-concentration Green's-function
theory. In Sec. II 8 we have given very briefly the theory
to see changes in a (co}f(co}due to introduction of im-

purities, and Sec. IIC describes the changes in phonon
specific heat. Section IID gives the volume-expansion
effect on the specific heat. Section III shows the numeri-
cal computations and discussions, and main conclusions
are drawn in Sec. IV.

II. THEORY

A. Low-concentration Green's-function technique

The detailed procedure that describes the motion of
the host and impurity atoms has been long estab-
lished. "' Here we will reproduce just the pertinent re-
sults. The displacement-displacement correlation
(U (1)U&(1')) is written in terms of the displacement-
displacement Green's function 6 &(ll', co):
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Q= Qo+ Qo'PQ, (3a)

where P is the perturbation matrix containing the
changes in mass as well as force constants, and is given
by

( U(l,)Up(I ))'= J ro 'X(mlcotb(Arui2k~'r)dry,
2M o

(2a)

where E(co) is the dynamic response function, and is
given by

N(ro) =(2M'/rr)ImG(co) .

Here A is the Planck constant and k& is the Boltzmann
constant. As we are only interested in the correlation
function at very low temperatures the coth function can
be replaced by unity as P=R/k& T~ 00 .

The Green's function 0 for the real system of the im-

purity ions coupled to the host ions, is related to that for
the so-called unperturbed system of the impurity ions un-

coupled from the host ions Qo via the equation

tion which may appear more than once (label a). Using
the tables of Maradudin, 3 and the corrections given by
Agrawal, the matrice 4' can be readily formed in the
present case. For the impurity at the substitutional site
the point group symmetry is OI, . If we consider only the
nearest neighbor of the impurity, the matrices in the de-
fect space reduce according to

~ 1g + ~ 2 +2Eg +2+ +3~1 +3~2 +3+1g +3F2g

For a monoatomic bcc lattice the various resonance
denominators for the diferent irreducible representations
are given elsewhere. '

In our model we take the Green's function and pertur-
bation matrices, which lie in the subspace of a defect
3b X3b (where b is the total number of atoms directly dis-
turbed by the presence of a single defect, including the
defect itself). The resonant frequencies are found by
looking for zeros in the denominators of the T matrices
of the different irreducible representations on a solution
of the equation

P( 2) 2~ —I/2~ —1/2+~ —1/2gy~ —I/2 (3b)
where D, (Z) is the determinant

Here the new mass and force constant matrices for the
imperfect crystal have been denoted by MD+8M, and

(j)o+hP, respectively.
The Green's function of the host lattice, which has N

ions of mass Mo at site Ro(1},is given by

1 .q.RoI, I, l')
Goop(I, l', ~)= go&(q)~j(q)e(

' ' '
G,o(q ~»

0 J,q

(4a)

D„(Z)=
i
J"+S'o„(Z)P„(co)

i

for the irreducible representation v.
In case of V:W alloy the concentration of the impurity

is comparatively high, and as such the expression for the
lowest concentration of impurities do not remain valid.
The next simplest approximation is that of Elliott and
Taylor„which modifies the resonance denominator as

D„(Z)=
i
2+(1—c)Qo„(Z)Po„(co)

i

GQJ(q, ro)= [Co —NoJ(q)]

coJ(q), and o (q) are the eigenvalue and eigenvector of
the phonon mode j of wave vector q. The unperturbed
Green's function for an impurity ion of mass M at site R,
will be of the same nature as in Eq. (4)

When concentration of the impurity is of the lowest or-
der Eq. (3) can be simplified to

S'= so+ 9'o y 7; ao

where the T matrix for the ith impurity is

'7; =P;(1—QoP;)

It is assumed that the impurities are widely spaced so
that one may safely ignore the possibility of interaction of
neighboring defects. Using the group-theoretical argu-
ments the matrix in Eq. (6) can be inverted. For that we
have to transform to the irreducible representations of
the symmetry group of the impurity spaces. This has
been done by using the transformation matrices ' 4' via

where c is the fractional impurity concentration. The ap-
proximation has taken into account exactly the scattering
of phonons on single impurity, and neglected scattering
of clusters of impurities; i.e., we have neglected the possi-
bility of neighboring defects interfering with the scatter-
ing on a particular defect. Although the results can be
taken in a better approximation, e.g. , in the coherent po-
tential approximation where essentiaHy single-site
self-consistent scatterings are considered after taking into
account proper multiple occupancy corrections, the ex-
pressions are more involved, and are intractable to com-
putation for the case of a more complex defect.

The expressions for the resonance denominators for a
monoatomic bcc lattice in the approximation of Elliott
and Taylor can be obtained from the earlier expressions '
if radial (central) and angular (noncentral) force-constant
changes are replaced by (1 —c)1 and (1—c)I", respec-
tively. We get resonance in F&„-symmetry mode only;
hence we give the expression for the resonance denomina-
tor in this particular mode:

DF (Z) =D, (D5D9 D6D8 ) D2(D4D9—D—8D7)—
Here g labels the row of the vth irreducible representa- where
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D, =1—e.co'g, +8&'(g& —gz) —16B'gz,

Dz ——(V2)[—egg gz+ A'(Sgz —xi ) —(&2)x3B'],

D& ——4[ ec—o gz+ 3'(Sg3 x—&/&2) B—'xz],

D4= —(&8)[A'(g, —g, ) —2B'g, ],
D5 =1+A '(x, —Sgz ) +&2B'x3,
D6 = A '[xi —8(&2)gz ]+2B'xz,

D7 =4[B'(gz g—i )+C'g &]

Ds = ( &2)B'(x, —8gz )+C'x &,

D9 = 1+( &2 )B '[x
z
—8( &2)g z ]+C'x z,

with

Here e=(M —Mo}/M is the change in mass at the im-

purity site; I =5f /Mo denotes the change in the
nearest-neighbor radial force constant in the units of
squared frequency and b,f =f fo,—where f0 and f
represent radial force constant of pure and impure crys-
tals. Similarly I"=hf '/Mo is the change in the nearest-
neighbor angular force constant, where b,f ' =f ' —f0' fo

and f' give the angular force constant of pure and im-

pure crystal. The various Green's functions g„(@=1,10)
are given in earlier work. '

8. Changes in the suyerconducting
transition temyerature

+1 1+24+5+S7+S9+810 ~

&z =N1 Is+8'6+87+f8 —9 ~

2)(g6 —gs»
3 '=

—,'(1 —c)(I"+21"');

B'=
—,
' (1—c)( I —I ');

C'= —,'(1 —c)(2r+ r') .

The changes in T, due to small change in a (co)f(o&) is
already given by Eq. (1}. On alloying, T, is changed by
both the electron-impurity scattering, and by any
modifications to the electron-phonon interaction. The
electron-phonon interaction enters superconductivity cal-
culations via a function a (oi)f (co). This has the form
of a phonon density of states weighted by the electron-
phonon interaction. For an alloy a (co)f(co) is given
b 16,21,40

a (ro)f(ro)= z z z g WI'(q)q, ImG &(ll', ro)q&WI (q)exp[ —iq (RI —RI.],N(0)S(co) d q

8~ ~F+ q+ ~~~ ~ II

where N(0) is the single spin density of states for the alloy, and WI(q) is the pseudopotential form factor appropriate to
the kind of ion at the site R&. The factor

S(co)= '

1, NP 5Nm

has been introduced to compensate for the fact that the form of Eq. (11) is based on a single rather than a multiple or-
thogonalized plane wave (OPW) calculation of the electron-phonon interaction. ' Using the simplified form of the
Green's function given by Eq. (5), we can split Eq. (11)into four terms

az(m)f(oi)=[az(oi)f(oi)]host+[ha (co)f(co)]h„,+[ha (co)f(co)lho. t &+[ha (co)f(co)l (13)

The first term at the right-hand side of this equation is not afFected by the changed lattice dynamics. The second term
describes the changes in a (co)f(ro) due to the modification of the host (vanadium) dynamics. It can be written as

[ba (co)f(co)]v z
——

z g Wv(q)q Im g Go r(l;, l,co)T&s(1;;l,ro)2 cN(0) d3q 1

8 q~ q N II p I,.t,-', I 5

X Gasp (l; I'; v))qp Wv(q)exp[iq (RI —Ri )], (14)

where I and I' refer to vanadium lattice sites; I; and I refer to the nearest neighbor of an impurity. For the vanadium
pseudopotential Wv(r) we have used a local form of the Heine-Abarenkov type: '

r —ZA/r, r &r
Wv(r)= ' —Z/r, r &r

Here Z is the charge on the vanadium ion, and A is the parameter representing the depth of a potential well for a given
model radius r, being screened according to Animalu. %e have used the phonon dispersion curves of vanadium
calculated according to the model of Oli and Animalu.
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Eq. (14) can be further simplified to

[ha {co)f(co)]v —— J 8'v(q) g q o '(q)ImGOJ (q, co)TJ i (q, co)Goi (q, co)q o '(q),
8 qFMON q

where

T, , (q, co)= g S(qj, ;v, a, g)T,b(v, co)S'(qj, ;v, b, g)
v, ab, g

with

S (q,j;va g) = g o J {q)e ' ' +',"'~'(I, ) .
l,. ,a

(18)

The transformation matrices ql and other phonon quantities are described previously in Sec. II A. Although N(0) and
qz should have values appropriate to the alloy electron density we used the pure V values in this and the next two
terms. This should be an error of order c on a term that is already of order c.

The third term in Eq. (13) is due to a correlation between vanadium and the impurity motion. It can be reduced to
the form

[Sa (~)f(~)]v,=2 cN(0} d q le(q)$'z(q) g q'crJ(q)lmGO (qico)Tib(v~co)G'(q, co)q&[2ReS(q, j;v&P)],8 cjpMOMN q j,p, b

d3
(20)

where G' represents the Green's function of the impurity,J
and Wz(q) is the screened pseudopotential of the impuri-
ty. We have used the same form for Wz(q) as for vanadi-
um [Eq. (15)]. The parameters of the host as well as of
the impurity pseudopotential were chosen as described by
Animalu. In our calculations we have taken the numer-
ical values of the pseudopotentials as computed by him.
The final term in Eq (13) i.s the direct contribution from
the impurity to a (co)f(co), and can be represented as

[ha (co)f(co)]z ——
z z ImG'T&& (v, co)

cN(0}
8 qFMN

bN(co )=Q jb.N„co (23)

where bN„(co ) is the contribution made by the sym-
metric motion v, and is given by

Here b,N(co) is the change in density of states due to a
single impurity, and cN is the total number of impurities
in the lattice, since in the low concentration limit of im-
purities the change in specific heat is equal to the change
due to a single impurity multiplied by the total number of
impurities. The change in the density of states due to a
single defect can be written as

C. Changes in lattice specific heat

The lattice specific heat of the ideal lattice in the har-
monic approximation is given by

Cc ( T)=ks I dco N(co)(fico/2ks T)'csc'(i}ico/2ks T),

AN„(co )=— —Im ln[D„(Z)].
d

17 dco

By introducing the phase shift

ImD„(Z)
e(co) =arctan

ReD„Z

(24)

(25)

(21)

where N (co) is the number of normal modes in the inter-
val co, and co+dco in the limit dco~0. N(co) is related to
a similarly defined function N(co ) which is a more com-
mon function in the theory of crystal dynamics, as

N(co)=2coN(co ) .

The change in the lattice specific heat due to impurities
is31,37,38

B,CI ( T)=Ncks I dco b,N(co)

&& (Rco/2ks T )'csci(fico/2ks T ) .

the contribution of the symmetry modes v towards the
change in the density of states can be written as

1„dO„
EN„(co)=

dco

Substitution of (26} in Eq. (22), and integrating once by
parts, the change in speci6c heat due to a single defect
can be given as

bCL(T)=gcNbCL(T),

where the contribution of each irreducible representation
1S
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2kaE'
b, CL ( T)=— f 8~csc (E'co)

3%m 0

X [1 E—'co coth(E'a))]la), (28)

where E'= A/2k~ T.

D. KHeet of volume expansion

is important„while the image expansion gives only a gen-
eral softening of force constants throughout the crystal.
Also, the contribution to any dynamical property due to
volume changes is, in general, small compared to the con-
tribution due to local perturbation.

As a result of image expansion the change in Debye
temperature can be calculated by employing Gruneisen's
constant y which is given as

It is well known that presence of an impurity causes lo-
cal changes in the force constants but the volume-
dependent force-constant changes are less understood.
With the introduction of impurities in the lattice, apart
from thermal vibrations, the atoms are permanently dis-
placed from their equilibrium position, and one gets stat-
ic displacements leading to volume changes in the lattice.
The static displacements, and consequently the volume
changes, also induce changes in the force constants.
Here we distinguish two different types of displacements:
(a) the displacement d ",which would occur in an infinite
crystal, and (b) a very small image field d™g',which al-
lows the surface of the finite crystal to be force free. The
image field is slowly varying over the crystal dimension,
and practically represents a uniform expansion. As the
force constants are determined by the change of the dis-
tance between the nearest neighbors (near the impurity),
we have a local force-constant change due to considerable
change in the nearest-neighbor distance. Such changes in
the nearest-neighbor distances are caused by the total dis-
placements, which are large (given by -d"). However,
away from the impurity, we have homogeneous softening
of force constants due to image expansion. Thus the
change in force constant, and, in turn, any dynamical
property due to volume expansion, is proportional to
b, V™g'and not to b, V (b, V"+ V' 'g').

Erroneously, in the past ' it has been assumed
that the change in force constants due to lattice expan-
sion (or contraction) is proportional to a total volume
change hV instead of being proportional to hV' 'g'.
The total change in the density of states may be expressed

g Vimage

V

(31)

b V=3 hV"(=dkV" +b, V™g')
1+@

(32)

where p is the Poisson ratio. Hence the change in volume
due to image expansion is

;,g, 2 1 —2@~v
3 1+p

(33)

Thus, by knowing the Debye temperature of the perfect
lattice and defect lattice, and the change in HD due to
volume change, the change in lattice specific heat due to

12

8-

In earlier papers, ' in a similar expression, hV has
been used instead of hV' '~'. lf we use the continuum
model the total volume change is given by

g~total( ) g~( ) + gNimage( (29)

The change in density of states due to volume expansion
can be calculated from the volume or pressure derivative
of the ideal phonons

6-

O

g~image( ) g Vimage

v
BN(Qt ) E g Vimage

BP V
(30)

2

where K is the bulk modulus. Thus, to 6nd out the total
change in density of states we need the perfect lattice
phonons as well as their pressure derivatives. This prac-
tically doubles the numerical computations. In the low
temperature limit, therefore, we estimate the contribution
of the image expansion to the lattice speci5c heat by
evaluating the change in Debye temperature of the lat-
tice. %e note that for understanding the dynamics of an
imperfect lattice the dynamical structure of the impurity

I

20
T (K}

30

FIG. 1. Temperature dependence of the relative change of
the lattice speci6c heat of three vanadium alloys: A, V99 1Hfo 9,
» &96.~Ta3.6~ C~ &9~.8~s.2.
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TABLE I. Values of h,T„I and I",u„and the Debye temperatures of expanded lattices and alloys. The Debye temperature for
pure vanadium is 373 K.

Systems

V99. )Hfo. s
V96.&T

Vm. a%5.z

Expt.

0.10
—0.69
—1.16

0.10
—0.68
—1.12

0.935
1.638
2.271

pt
(10' sec ')

—0.362
—0.401
—0.432

29
38
47

Expanded
8g) {K)

371.13
366.68
369.54

Alloys
8g) {K)

368
359
364

volume expansion ECL™g'(volume effect), and due to lo-
cal perturbation ECL (impurity effect), can be easily cal-
culated. Hence, the total changed-lattice specific heat is

gCtotal gCimase+ gC (34)

III. NUMERICAL RESULTS AND MSCUSSION

8-
I-

6"

Colella and Battermann have measured the phonon
spectrum of vanadium by using thermal diffuse scattering
in the three principal symmetry directions. Oh and An-
imaluss have fitted the experimental results in the frame-
work of the resonance model, and a nearly free-electron
approximation of pseudopotential theory. This required
reformulation of the local transition-metal model-
potential approach, so as to incorporate the strong non-
locality of the resonance term. For calculating Green's
functions we have used the eigenfrequencies, and eigen-
vectors computed under this approach. The integrals
over q were calculated by the procedure of Carbotte and
Dynes. 58 %e have used a coarse mesh of 112q points in

the reduced —,', th of the first Brillouin zone. In order to
find out the imaginary parts of the Green's functions we
have evaluated them at a finite distance 5 off the real axis.
This has the advantage of eliminating some of the noise
due to the coarse q mesh. A somewhat larger value of
5=0.05r0 has been chosen, which removes most of the
noise without producing tails of too great an extent.

%e have calculated the lattice part of the specific heat
of V94.8~s.2 V96.4Ta3 6, and V99. iHfo. 09 alloys by using
Eqs. (27), (28), and (34) by treating the radial and angular
force-constant changes F' and I" as parameters. The
measurements of the specific heat of these alloys have
been made by Shikov et a/. The relative change in the
lattice specific heat of all three systems are shown in Fig.
1.

The introduction of the impurity atoms Hf, Ta, and W
in V, which have practically equal masses, deforms the
phonon spectrum di8'erently, as shown in this figure. A
small maximum at about 29 K is observed in V:W alloy
in the curve of ECr (T)lcCL(T) versus temperature. In
the case of V:Ta and V:Hf alloys the maximum shifts to-
ward lower temperatures (at about -20 K). The maxima
for V:Ta, and V:Hf alloys are five to ten times larger, re-
spectively, than the maximum observed for V:% alloy.
These curves show the presence of resonance modes in
the phonon spectrum of the alloy, and appreciable
changes in the efFective local force constants. In the be-
ginning an attempt was made to fit the experimental re-
sults by taking mass defects into consideration; then we
included the radial force-constant changes. It was ob-

4

2-

C3
O

2

Kl

I

20 30
I

4 0

FIG. 2. Temperature dependence of the relative change of
the lattice speci6c heat of V» &Hfo 9 alloy. The points are the
experimental results, and the solid curve shows the theoretical
calculations for I'=0.935X 1026 sec ~ and I"=—0.362x 1(P
sec 2. The dotted curve represents mass-defect calculations.

FIG. 3. Temperature dependence of the relative change of
the lattice speci6c heat of V964Ta36 aBoy. The points are the
experimental results, and the solid curve shows the theoretical
calculations for I =1.638X 10 sec and I"= —0.401)& 1026

sec . The dotted curve represents mass-defect calculations.
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FIG. 4. Temperature dependence of the relative change of
the lattice specific heat of V94 &W5 2 alloy. The points are the ex-
penmental results, and the solid curve shove the theoretical cal-
culations for I =2.2'71X 1026 sec ~ and I"= —0.432)(10'
sec . The dotted curve represents mass-defect calculations.

Q.4—

Q.2

+ {meV)
I6 20

FIG. 5. Solid and dashed curves represent the plot of
5T, /5a {co)f{co)and a~{co)f{co), respectively, with respect to
frequency for V:Hf alloy.

served that the radial force-constant model is unable to
explain the experimental data, and inclusion of angular
force-constant changes is not only necessary but instru-
mental for obtaining a good fit. The experimental results
have been fitted very well with the unique values of I' and
I" in difFerent systems. The enhancement of the lattice
specific heat has been observed in all three systems. In
the case of V:W alloy we have used Elliott and Taylor's
approximation for calculating the changes in specific
heat. The obtained values of the force-constant changes
in the different impurity-host systems are given in Table
I. The percentage impurity contribution due to force-
constant changes is on an average above 60% in V:Ta
and V:Hf alloys, and above 40% in V:W alloy. The
change in Debye temperatures in difFerent systems has
been calculated utilizing Eq. (31), and is given in Table I
along with measured values of Debye temperatures of the
pure lattice and alloys. In all three systems a volume ex-
pansion has been observed due to introduction of impuri-
ty atoms. The di8erence between the Debye temperature
of the alloy and the expanded lattice is accounted for by
the local perturbation. Before considering the impurity
contribution to the lattice specific heat, only the effect of
volume expansion was taken into account by us. Shikov
et al. 2 also analyzed their experimental data by using a

8 I2
n) {rneV}

FIG. 6. Solid and dashed curves represent the plot of
5T, /5a {co)f{ro)and a'{co)f(co), respectively, with respect to
frequency for V:Ta alloy.

different model in which radial and angular forces were
assumed to be equal, but their theoretical results are quite
difFerent from the experimental ones. Our theoretical cal-
culations along with the experimental data are shown in
Figs. 2-4, which show good agreement with the experi-
ment.

Out of eight irreducible representations appearing in
the problem the main contributions to the speci6c heat
come from F,„,F,s, Fzg, Eg, and A,s. This behavior is
quite different from the fcc alloysi3 ' in which the
changed-lattice sperific heat is mainly determined by F,

„

modes only. At very low temperatures ( & 3 K) the con-
tribution from F&g, I'&~, Eg, and A

&
symmetry motions

dominates over that of F&„modes. The contribution of
F&„modes increases with an increase in temperature be-
cause of the excitation of the resonance modes, and, in
fact, dominates over all other symmetry modes at com-
paratively higher temperatures. In all three systems the
low-frequency resonance occurs in F,„-symmetry modes,
only. The resonance frequencies (cu„)are given in Table I.

For calculating 5T, /5a (co)f(co) we have used the
method of Bergmann and Rainer. ic The calculated re-
sults for the three systems are shown in Figs. 5-7. From
the figures it can be concluded that the curve increases
from zero at &0=0, being linear at small frequencies,
reaches a maximum slightly above ro =2wT„and then de-
creases monotomcally, remaining positive all the way up
to the maximum frequency considered. This is a univer-
sal shape, and insensitive to the difference in shape of the
corresponding a (r0)f(co).

The changes in a (co)f(co) due to different impurities
have been calculated by using Eqs. (19) and (20). Equa-
tion (16) remains the same for all three impurities since it
represents the changes due to the modification of the host
lattice dynamics. %'e have not considered the lattice dy-
namics of impure crystals. The calculated and experi-
mental results for hT, are given in Table I. %e see a
good agreement ~ith theory. In ca}cutting the changes
in a (e)f(co) we have used force-constant changes evalu-
ated in the case of specific-heat studies.

Experiments (for clarity we have reproduced the ex-
perimental results in Table II) show a decrease in T„HD,
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TABLE II. Experimental values (Ref. 24) of T„OD,and I ".
Systems

V

V99 ]Hfo q

V94.8~5.2

T, (K)

5.24
5.34
4.55
4.08

OD {K)

373
368
359
364

I" (IJ/molK)

9.80
9.78
9.25
9.36

t2
ia (meV)

FIG. 7. Solid and dashed curves represent the plot of
5T, /5a'(to)f(o&) and n (to)f(to), respectively, with respect to
frequency for V:W alloy.

and 1" (electronic specific-heat coe5cient) due to intro-
duction of Ta and % impurity atoms in V, whereas in the
case of the V:Hf system we observe a small increase in
T„while 8D and I"' remain practically constant. This
shows that in ihe case of V:Hf alloy the electronic spec-
trum is practically unchanged, and therefore the only
contribution to changes in 1, is due to deformation in the
phonon spectrum, which is very strong. This observation
is also con6rmed by the fact that there is an anomalous
increase of the density of the phonon states at low fre-
quencies, and we get the resonance at a lower frequency
than compared to the other two systems. In the case of
V:Ta aHoy the density of the electronic states on the Fer-
mi surface decreases (I"' decreases). The interaction of
the electrons with the resonant mode leads to a decrease
in T, . Thus the observed decrease in T, in the case of the
V:Ta system is mainly due to restructuring of the elec-
tronic spectrum, and deformation of the phonon spec-
trum. In V:W alloy the density of the electronic states at
the Fermi surfaces again decreases noticeably. The reso-
nant modes lie relatively high on the low-frequency side.
Also the force-constant changes are quite high in this sys-
tem. These reasons lead to a decrease in T, when W is
substituted into V. It is also observed, since the masses of
the three impurities are almost equal, that it is the contri-
bution due to force-constant changes of the deformation
of the phonon spectrum which fnatters in the present
problem. %e see that in V:Hf alloy the changes in force
constants are much smaller compared to V:Ta and V:%'

systems. This may be the important reason for enhance-
ment of the transition temperature due to introduction of
Hf impurity atoms in V. Here it is to be pointed out that
we have not taken into account the change in N(0) in
& (to)f(to), Eqs. (16), (19), and (20), based on the elec-
tronic specific heat (I'"). This will give an error of an or-
der of fractional impurity concentration on a term which
is already of the same order.

IV. CONCLUSION

%e have used a lattice dynamical model which takes
into account the changes in the phonon spectrum due to
introduction of impurities. The force-constant changes
have been evaluated by fitting the measured phonon
speci6c heat of alloys studied here. Previously it has been
observed that these parameters (I and I") in this frame of
model also explain other impurity-induced vibrational
properties of the same system. ' ~s The effect of
volume changes has also been taken into account. It has
comparatively small efkct but is quite signi6cant. The
changes in transition temperatures have been calculated
by observing the changes in a (to)f(to) It has b.een seen
that for the impurity atoms of practically equal masses
the e8'ect of force-constant changes is quite noticeable.
The scale and position of b Ct (T)lcCL (T) turn out to be
significantly different owing to the change of force con-
stants. When the force constant for heavy impurity
atoms changes weakly and a low-frequency resonance
mode is observed, the transition temperature is slightly
increased, and if the changes in the force-constants are
strong, T, changes (lowered) appreciably, and resonances
are observed at comparatively higher frequencies.
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