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Superconducting transition temperatures T, of a many-electron system coupling strongly with bo-
sonic excitations are studied in the context of polaron theory. The boson clouds that move with
electrons are taken into account within the variational method. The effect of fluctuation of the pair-
ing order is also taken into account by the coherent-potential approximation. The resultant theory
covers ihe whole region of the three basic parameters characterizing this system: the intersite
transfer energy of the electron, T, the site-diagonal electron-boson coupling energy, S, and the ener-

gy of the boson, co. T, is found to become maximum in the transition region S= T, which lies be-
tween the ~eak {Bardeen-Cooper-Schrieler) region SggT and the strong (bipolaronic) region
Sg~T. The width of this region is narrow in the adiabatic case ~ gg T', but @Me in the inverse-
adiabatic case ~ggT. This region is characterized by the large ratio of the energy gap to k&T, .
These results are applied to the Cu-0-type new ceramics, and the breathing mode of oxygen is
shown to be able to give a high T, of about 100 K. The effects of other quasibosons mth high fre-
quencies, such as plasmons and excitons, are also studied.

I. INTRODUCHON

An electron, coupling strongly with quasibosonic exci-
tations such as phonons, plasmons, or excitons in a crys-
tal, forms a polaron, ' composed of the original electron
and the boson cloud that moves along with the electron.
In the case of phonons, we usually call it a lattice pola-
ron, while in the case of quasibosons of electronic origins
such as excitons and plasmons, we usually call it an elec-
tronic polaron. In both cases, the boson cloud enhances
the effective mass of the polaron. Between two polarons
an attraction acts through the overlap of their boson
clouds, and if it is strong enough to exceed the direct
Coulombic repulsion between two polarons, we can get a
bound state called a singlet bipolaron. Such singlet bipo-
larons, once formed, can give rise to the conductive
charges with no spin already observed in amorphous
solids and conducting polymers. Thus, the one- and
two-body natures of the polaron have already been well
clari6ed, and the purpose of the present paper is to ex-
tend these concepts to many-body systems. As is well
known, a metallic state of a many-electron system is al-
ways unstable with respect to the electron-boson coupling
and becomes a superconducting state.

Generally speaking, the superconducting transition
temperature T, of the electron-boson coupled system is
mainly determined by three basic parameters, the inter-
site transfer energy of electron, T, the electron-boson
(e b) coupling ene-rgy S, and the energy quantum of bo-
sonic excitation m. At present, however, we have no sys-
tematic theory for T, that can cover the whole region of
these basic three parameters; T, S, and co. The traditional
Bardeen-Cooper-Schrieffer (BCS) theory, 6 which is useful
only in the weak-coupling region S ~~ T, tells us that T,

increases as S increases. In the strong-coupling region
S~gT, however, T, is expected to decrease as S in-
creases. ' In the weak region, only electrons around the
Fermi level make singlet pairs caBed Cooper pairs, while,
in the strong limit, almost all electrons in the conduction
band make strongly bound pairs, which are nothing but
the singlet bipolarons mentioned before. Such bipola-
rons, once formed, can hardly be broken thermally at low
temperatures. T, in this case corresponds to the temper-
ature at which only the coherence between bipolarons is
broken by thermal fluctuation, with no change in each bi-
polaron. In this case, T, will decrease as the efFective
mass of the bipolaron increases, and according to the po-
laron theory, ' this efFective mass increases as S increases.
Thus, we have seen the qualitative nature of the competi-
tion between S and T, and this competition is expected to
make T, maximum in the transition region S= T, which
lies between the two extreme regions; the BCS region and
the bipolaronic region.

In addition to this T-S competition, there is another
important competition in the e bcoupled -system. That is
the competition between T and co. As mentioned before,
the boson cloud around the electron causes the enhance-
ment of its mass, and also causes the mutual attraction
between two electrons. In the adiabatic case, T~~co,
however, the oscillatory motion of the boson is too slow
to follow the itinerant motion of the electron, resulting in
a very thin boson cloud that can move with each elec-
tron. The electron, in this case, is almost bare, and the
attraction is also very weak. In the case of the inverse-
adiabatic limit T ~~re, on the other hand, the boson can
follow the electron without retardation, and, hence, it
causes no mass enhancement. The e-b coupling of this
case fully acts as an attraction. Vixen the conducting
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electrons have a wide energy band of about 10 eV, and
are coupling with phonons of about 10 meV, the situation
is almost adiabatic. On the other hand, when electrons
with a narrow energy band are couphng with plasmons or
interband excitonic excitations, the situation is almost in-
verse adiabatic. To describe these various situations of
superconductivity realized in e-b coupled systems, a sys-
tematic theory is required that can cover the whole re-
gion of these three basic parameters; T, S, and co. This
problem is closely related to the high-T, superconductivi-

ty of Cu-0-type new ceramics, s which has been a matter
of worldwide interest recently.

In the present paper, we will clarify the nature of T, as
a function of T, S, and co, making use of the polaron
theory. The fluctuation of the order parameter will be
taken into account by the single-site coherent potential
approximation (CPA). These results will be applied to
the case of Cu-0-type new ceramics. Possible mecha-
nisms of high-r, superconductivity will be considered in
connection with observed bosonic excitations in this ma-
terial, such as the breathing-mode phonon, ' the exciton-
ic excitations, ' and the plasmons.

II. HAMILTONIAN OF MANY-POLARON SYSTEM

+(Sto/2)'i g(gt+ g!)nt +toggtgt . (2.1)

Here T(l —1') is the transfer energy of the electron be-
tween two lattice sites, which are specified by two vectors
1 and 1'. The chemical potential of electron is taken to be
zero. r}! is the creation operator of electron at site 1 with
spin cr ( =a,P, where a denotes an up spin and P denotes
a down spin). S is the site-diagonal e-b coupling energy.
gi is the creation operator of the boson at site 1 with the
energy ~ and nI =—gI qr Th~s boson can correspond to

Let us consider a model system composed of N-lattice
sites and X electrons (N »1) with the following Hamil-
tonian (H},

H = —g T(l —1')rtt alt.

+(s/2)'"y(gt+g, )nt. + y g,'g! . (2.2)

As mentioned in Sec. I, each electron in this electron-
boson coupled system forms a polaron with a boson cloud
around itself. In order to describe this effect, we intro-
duce a displacement operator (M) for the equilibrium po-
sition of oscillatory motion of bosons as,

M =exp (s/2)'i2q g(gt g, )n—! (2.3)
E, a

where q is the variational parameter that denotes the
thickness of the boson cloud around the electron. At the
present stage, it is unknown but will be determined later.
As inferred from Migdal's theorem, it will be very small

q « 1 in the weak-coupling case S« T or in the adiabat-
ic case T »c0, while it will become maximum q = 1 in the
strong-coupling case S»T or in the inverse-adiabatic
case T« t0. By using M, thus deSned, we can transform
the electron and the boson into a polaron a! and a new
boson d! as

a! =M rl! M =exp[ —(s/2) q(g! —g! )]rt!1/2

d! ——M 'JIM =g!+(s/2)' q g ni~,

(2.4)

(2.5)

where a! is the creation operator of a polaron with the
boson cloud around itself, and d! denotes the creation
operator of new boson whose equilibrium position of os-
cillatory motion is already displaced because of the e-b
coupling. In terms of the polaron and new boson, we can
rewrite h as

the breathing-mode phonon, the plasmon, or the exciton-
ic excitations. The interelectron Coulombic repulsion is
completely neglected for simplicity.

It is expedient to cast all quantities into dimensionless
forms: h =H/t0, t(l —1'}—=T(l —1')/to, s:—S/to. Then
%le get

h= —g t(l l'—)9,~%~

h = —g t(l —1 )a! a! exp[ —(s/2) q(d! —d!—d! +d! )]——(2q —q ) g n! n!I ]/2 S 2

I, I', 0 l, o,o'

+ rf d!d!+(s/2) (1 q) rf (d! +d! }nlcr (2.6)

where the 6rst term denotes the transfer of a polaron, the
second one denotes the attraction between two polarons,
the third one denotes the Hamiltonian of new boson, and
the last one denotes the interaction between the new bo-
son and the polaron.

Let us now set up an efFective Hamiltonian of a many-
polaron system. Since the coordinate of the boson is al-
ready displaced by M so as to take the e-b coupling into
account, the equilibrium state of the new boson acts as
our reference state. The efFective Hamiltonian of our
many-polaron system (ho) in this equilibrium state can be

de6ned as

ho:—Trb [exp( —8hb )h]/Trb [exp( Ohb )]—
hb =—g d!d! (2.7}

I

where Trb means the trace in the boson space, and 0
denotes the reciprocal temperature 8—:co /k' T„p
(T«~~ is the temperature). Using ho, thus defined, we
can divide h into four parts as

h =ho+h~+hh]+hh2 . (2.8)
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ho in Eq. (2.8) is given by

ho= —x g t(l 1—')ai ai.

—s(2q —q ) gnt nip s—(2q q—)N/2, (2.9)

AI:QI~ s 8$:QIP (2.15)

where A& and 8I are the creation operators of electront

and hole, respectively. In terms of them, ho can be writ-

ten as

where x is the reduction factor of the transfer energy due
to the overlap integral of the boson clouds between two
sites 1 and 1',

(2.16)

where h» denotes the one-body energy of electrons and
holes

x =exp[ —sq coth(8/2)/2] . (2.10)
h» —= g e~( A ~A), —8g8g ), (2.17)

Its reciprocal denotes the enhancement of mass due to
the polaron effect. The last term of Eq. (2.9) denotes the
self-energy of the polarons. b,h& denotes the linear-
interaction term between polarons and new bosons

t}h, =(s/2)'"(1 —q) g (di +di)nt (2.11)
l,e

which is not included in the polaron effect. The last term
3hz denotes the difFerence between the real transfer and
the averaged one,

bh2=——g t(l —1')( exp[ —(s/2}'~

xq (dl dl dl' +dl'}]

with the following definitions:

k= ~ 8

g ~—1f2e i—k /8
k

t„=ge '"'t(1),

(2.18)

ek= —Xtk, (2.19)

and k is the wave vector. The second term of Eq. (2.16)
denotes the interaction between electrons and holes
defined as

(2.12) ht—:—s(2q —q ) g(Ai8t+8t Ai) /2 .
I

(2.20)

I.et us now neglect hh, and hh2, and calculate the to-
tal thermodynamic potential ( =0),

0=—8 ' ln Tr(e '), (2.13)

given by ho, using the path-integral formalism. '3 's The
effects of dh

&
and h,hz will be discussed, in the later sec-

tions.
To calculate 0, we rewrite the interpolaron attraction

term of Eq. (2.9) into the following quadratic form with
respect to the pairing operator; at attt..

g nt~ntp= 2 g (ataatp+atttata) (2.14}
l I

As is well known, there are various other ways to rewrite
this term into a quadratic form. However, in the
present paper we are interested only in the superconduc-
tivity which originates from ho, and we will not be con-
cerned with instabilities of the charge-density wave
(CDW) type and the spin-density wave type. Hence, this
way of rewriting is most appropriate. In this case, an
asymmetric electron-hole picture is very convenient, with
the up-spin electrons represented as electrons and the
down-spin ones represented as holes:

III. FUNCTIONAL INTEGRAL FORM

—s (2q q)N/2, — (3.1)

and the second term can be cast in the form of a time-

ordered exponential, exp+, as

—8(h» +ht i]
—Oh~ 8=Tr e» exp — du ht(u)+. o

(3.2)

where the time evolution of an operator 0 is defined as

0 (u) —=exp(uh» )0 exp( —uh» } . (3.3)

Using the quadratic form of Eq. (2.20), we can formally
rewrite the argument of this time-ordered exponential
into the double-time integral form as

From Eqs. (2.13}and (2.16), the thermodynamic poten-
tial 0 can now be written as

0= g e„—8 ' ln Tr j exp[ —8(h»+h, )]I
k

du ht(u)=s(2q —q2)g I du I du'5(u —u')[At(u)8t(u)+8t(u)At(u)]
0 0 o

X [At (u')8t(u')+8t (u')At(u')]/2 .

The 5 function on the right-hand side can be expanded by the Fourier series f (u) as

5(u —u')= g f (u)f (u'), 0((u, u') &8

(3.4)

(3.5)
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where m is an integer and f (u) is defined by

2' 8 'i cos(2mmu/8) for m = —1, —2, . . . ,

f (u)—:2' 0 '~ sin(2mmu/8) for m =1,2, . . . ,

8 ' for rn =0.
Substituting Eq. (3.5) into Eq. (3.4), we can get a quadratic form of the time-ordered exponential,

exp — Q I Q =exp s 2g —q Q Q Al u Bl u +Bl u Al u
l m

(3.6)

and using the Gaussian integral formula for an operator 0„

exp(02/2)=(2m} '~ f dy exp(Oy —y /2),

we can linearize the quadratic form of Eq. (3.6) as

8
exp —f du hI(u) = g (2m. )

' f dQi exp —g Qi /2
l, m l, m

&(exp+ [s(2q —q')]'"g f du Q, f (u)[Ai(u)Bi(u)+B&(u)AI(u)]
l, m

(3.7)

(3.8)

From this result, we 6nally get our path-integral form

T[ ']=ff (2 } ' fdQ, —gQ, /2

XTr, exp+ —f du h»„—[s(2q —q )]' g Qi f ( )u(A (Bi „+Bi„Ai „)
l, rn

(3.9)

where index u of operators h& „, Al „,and Bl „has no significance except for the time ordering between these opera-
tors, in contrast to case of Eq. (3.3).

In order to obtain the exact result of the thermodynamic potential given by ho, we must perform the path integral
with respect to Q&~, which includes both dynamical and static fluctuations of the pairing order. However, our main
purpose is to look for an interpolation method for T, that is useful in all regions of T, S, and co. For this reason, we re-
tain only the Fourier component with m =0 in Eq. (3.9). Within this approximation, Eq. (3.9) is simplified as

Tr[e " ' ]= g [Os(2q —q )/2n']' f dQi exp —8s(2q —q ) g Q& /2 Tr(expI 8[h»+hz(Q—)]I),
l l

(3.10)

where

Qi=—Qio[8s(2q —q')] '", (3.11)

hJ(Q)= —s(2q —q )g Qt(AiBi+Bi Ai), (3.12)

and Q symbolically denotes an N-dimensional vector;
Q=(Qi, Q2, . . . , Q~}. Since only the static part of the
Auctuation is retained, this is called static approxima-
tion. ' However, it is exact in the two limiting cases
(T =0, S+0) and (S =0, T&0), and can give an inter-
polation theory in the intermediate cases (T&0 and

l

S&0). Moreover, it has no two-body interaction term,
but has only a static randomness due to Qi.

In the case of weak coupling 5 &&T, the BCS-type
mean-Geld approximation is expected to work well.
Hence, let us now derive a solution that corresponds to
this approximation, in the context of Eq. (3.10). One can
easily infer that Q&, in this equation, denotes the local-
order parameter of the pairing, and if we replace Q& by its
average value Q, we will get a result corresponding to the
BCS theory. For this reason, we replace Q~ by Q+EQ, ,
where KQ& denotes the deviation from the average. By
this replacement we can rewrite Eq. (3.10) as

Tr[e ' ' ]= g [Os(2q —q')/2ir]' ' f d&Qi exp —8s(2q —q') g(&Qi —Q)'/2
l l

)&Tr exp —8 h MF
—s(2q —q ) g EQ&( Ai B&+Bi Ai —2Q )

l
(3.13)
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where AMP ls given as

hMp=h» —s(2q —q )Q g(At8t+8t At},
I

(3.14)

where Z,k and Zzk are new fermion operators with the
energy Fi, . The thermodynamic potential ( =QMp) given

by h MF becomes

and the subscript "MF" denotes mean4Ield approxima-
tion. This Hamiltonian corresponds to the traditional
BCS theory. If we require that Q satisfies the following
condition:

QMp g eg g Fi s {2q q )X/2 20"
k k

X gin(1+e "), (3.19)

Q =Tr[exp( —eh M„)At 8t ]/Tr[exp( —eh Mp )], (3.15)

we can neglect the second term in the second line of Eq.
(3.13), and the integration over KQt can be easily per-
formed. Under this approximation, we can diagonalize

hMp as,

and from Eqs. (3.15) and (3.16) we can get the traditional
gap equation,

, E tanh(OI'i, /2)
Q= gN

k k

y (e2 +@2)1/2

F:s(2q ——q }Q,
using the following transformation:

Zti„cos(gi, ) sin(P„) Ak

Zz„—sin(Pi, ) cos(Pi, ) 8i,

p&=arctan[( I'i, —ei, )/( F&+ei, )]'~z,

hM„= g F„(Z,„Z,„+ZziZzi, )—g Fi ~

(3.16)
, tanh(equi, /2)

1 =s(2q —qi) glil
2Y'k

(3.20)

(3.17)
MF =0 for fixed Q,
Bq

(3.18) and we get

Using these results, we can determine q by the variational
condition,

q = 1+coth(e/2) g N 'ei, [e„Fi, ' tanh(SY'i, /2) —I]/(1+4Q z) (3.21)

In the real calculation, Eqs. {3.20) and (3.21) are solved
numerically by making use of an iteration method. As is
already well known, T, given by this theory increases
inhnitely as S increases, and it is quite unreasonable in
the strong-coupling case. We cannot rely on such a
theory when we want to discuss high-T, problems.

ho ———g 2tz(l —l')s '
t [(0.5+Sf)(0.5 —$f )

+(0.5 —$f)(0.5+Sf )]

+2(St"$i"+Sgf' ) I (4.1)

IV. TWO-STATE APPRGXIMATION AN@ CPA

Our main purpose is to look for an interpolation theory
for T, which is useful from the weak limit to the strong
limit. In order to obtain such a systematic theory, let us
examine strong coupling and the inverse-adiabatic case
co»S »T, since the BCS-type mean-field theory is ex-
pected to break down most typically in this ease, al-
though it works very well in the weak region. As shown
in our preceding papers, all the electrons in the
conduction-band form bipolarons in this strong-coupling
case, and the freedom of our system is reduced only to
the presence or the absence of a bipolaron at each lattice
site. This situation can be denoted by a pseudospin as-
signed for each site, where the up spin corresponds to the
presence and the down spin corresponds to the absence of
the bipolaron. The Hamiltonian in this case is written as

where we have omitted unimportant constant terms of
ho. $f, $t", and St are the Pauli spin operators of the
2)&2 matrix forms. The first line [.. . ] of Eq. (4.1)
denotes the virtual transfer of a bipolaron through the
second-order perturbation of T(l —l'}, while the second
line ( . ) denotes the real transfer. Since the averaged
value of $f is zero in the N-site N-electron system, we tilt
the z axis of spin 90 in the zx plane, and transform $f,
$f, and Sf into new spin operators S &, S f, and S~&,

de6ned as

(4.2)

After this transformation, we get a Hamiltonian of a
pseudospin system with a ferromagnetic exchange in-
teraction as
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S( =—SI —iS) . (4.3)

By applying the traditional mean-field theory for this
pseudospin system, we can easily get T, as

k((T, = g T2(1)$
I

It gives a new T„that decreases as S increases in contrast
to the BCS theory. It should be noted, that in this calcu-
lation based on the mean-Seld theory for the pseudospin
system, we have been concerned only with the
Boltzmann's distribution between two eigenstates

~
1,2 )

of the operator S I. These states are written as

~
l, k)=2 ' (A 28() ~0)

(
~

0) ~vacuum of electron and hole), (4.5)

and the local-order parameter of these states takes the
values RQ as

(1,+
i A(8(

i
1,+)=+Q, (4.6)

because Q is 0.5 in the strong-coupling limit.
Keeping this result in mind, let us return to Eq. (3.10),

and consider its physical significance in connection with
the broken symmetry and the phase transition. The last
factor of Eq. (3.10) gives the local thermodynamic poten-
tial associated with a given configuration Q, and the sum-
mation over all possible configurations with the weight

ho ———X g t (1 )s
l

—+4t (1 —1')s '[5(S( —(S(5( +5(S( )I2],
I, /'

which are independent of each other. In each region,
there is a central configuration around which the local
thermodynamic potential takes an extreme value. As for
the order parameter, it takes a nonzero value in each lo-
cal region, although its summation over all local regions
becomes zero. How to find such a local region appropri-
ately is a basic problem in the theory for phase transition.
However, we can put this problem in a somewhat
different way. The summation over Q within such a local
region can also be described by Eq. (3.10), if we replace
P(Q() by a new weight function P'(Q() which effectively
reflects this conditional summation over Q. In this case
P'(Q() has a polarization in Q( space so as to give a
nonzero order parameter, although the original weight
function P(Q() has not. Thus, the problem to find a local
region is now converted into the problem to find P'. For
such P'(Q(), we assume the following simple form,

P'(Q()=y, &(Q( —Q)+y @Q(+Q» y, +y
(4.8)

where Q( takes only two values, Q and —Q, with statisti-
cal weights y+ and y, which are unknown at present
stage and will be determined later, self-consistently.

Although this two-state approximation for P' is very
simple, it can easily be seen covering the two limiting
cases mentioned before. We can get Eq. (3.14) if we take
y =0 and y+ ——1, while Eq. (4.6) is nothing but the
two-state approximations. Thus, our theory is an inter-
polation between the two kinds of mean-field theories; the
BCS type and the pseudospin type. In this sense, the
local-order parameter Q( need not be a complex number.

Within this approximation, we can rewrite Eq. (3.10) as

g P(Q(), P(g():—[es(2q q)/2m]'~— (4.9)

Xexp[ —Ss(2q q )Q(~2] (47)

gives the total thermodynamic potential of our system.
%hen a broken symmetry occurs, however, the multidi-
mensional configuration space spanned by
Q i, Qz, . . . , QN will be separated into small regions

I

))= g J dg P'(g )

1

(4.10)

and since we have no two-body terms in the Hamiltonian,
the right-hand side can be easily rewritten in terms of the
one-body Green's function G(E +is, Q) as

I(Trte * ' f))=((exp —™f dEln(1+e )Tr[G(Z+iE, Q)] )),
where the Green's function is defined as

(4.11)

G(E+iE,Q):—E+i E h»+ g h—t((Q()
I

In this equation, h» and g( ht((Q() are the one-body versions of h» and ht'{Q), which are defined as

h,({Q()—= —UQ([
~

1 1)(12
~
+

~

12)(l 1
~
], U—=s(2q —q )

h» —= g ei, [ )
kl ){kl

(

—
(
k2)(k2

( ]

(4.12)

(4.13)

(4.14)

I
ki)= y N-'"e-'" (~ li), i =1,2

I

where
~
11)and

~
12) are the Wannier functions of the electron and the hole at site 1, respectively.

(4.15)
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According to the generalized cumulant expansion method, ' Eq. (4.11}can be expanded as

CXP Jl dEln(1+e )Tr[g(E+ie, Q)j )I

=exp —™I dE ln(1+e ) Tr[((g(E+is, Q) ) ) ]

~—' I dE I dE'1 n(l~ e )ln(1+e }

Tr E+is, Tr E'+i a,

r E+18 Tr +lE, + ' '', 4 l

where the first term in [ ] of the right-hand side denotes the firstwrder cumulant and the other terms correspond to
the higher-order cumulants. However, we terminate this expansion up to the first order, and the thermodynamic poten-
tial is given as

e @"=exp —8 hei, —s(2q qi)N/—2 + I dEln(l~e @x)
k

~r[& (g(E+i.,q}& &] (4.17)

Such a termination of the cumulant expansion gives the exact result in two limiting cases (T =0, S&0) and
S =0, T+0), and, hence, it can give an interpolation theory for the intermediate cases (T+0 and 8+0).

Our problem is now reduced to the averaged one-body Green's function ((g(E+is,g})), and we determine it
within the single-site CPA. That is, we approxunate ((Q(E+is,(}))) by an elective Green's function Q(E+is) in
which Ql&(Qi ) is replaced by an energy-dependent coherent potential g&(E),

«g(E+ .,q}»-g(E+ .}= E+ .—q„+y. Z, (E) (4.18)

where V&(E) is the 2X2 matrix with the element V~(E) (ij =1,2) which is defined as

Vi(E)= —U g V; (E) ( li)(lj
(

ij =1,2
(4.19)

V&(E) is determined by the well-known condition, that the averaged site&iagonal scattering matrix, coming from the
replacement Qzi(Qi )~V&(E},must be zero,

(([ali(Qi) —zi(E)]/I 1 —{r(E+ie)[gli({?i)—g)(E)]I ) ) =0 . (4.20}

Since the two-state approximation is similar to the binary alloy problem, it can be rewritten into the following simple
form:

K(E}=lin(0}—I [4&(Q)—K(E}LG(E+«}Mn(—Q }—5(E}l
+[&n( —Q }—Vi(E}1&(E+'e}lkti(Q } Vi(E}]j /2 (4.21}

Q —=(y+ —y }Q (4.22)

Q(E+ie) defined in Eq. (4.18) is already diagonal with respect to k, because VJ is independent of I, and its element can
be written I.s

(ki
~
{z(E~is)

~

k'j) =5id, Gi,;,(E ~is), i,j =1,2

E ~i C —ek ~ UV))

where Gz; (E ~i e) denotes the diagonal element, and is given as

Gkl 1 Gk12 —UV)2

Gi z2

(4.23)

x ( [E~i e ~ U( V„+V~2 )/2] —
I [eg —U ( Vi i

—V22 )/2] + U Viz Vi) I ) (4.24)

Using Eq. (4.23), we can define the lattice Green's function GJ(E+is) as

G/(E+is)= gN 'Gi„J(E+is),
k

(4.25)
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which is independent of I. From Eqs. (4.25), (4.24), and (4.21) we get a set of equations for V;, as

V„=U[ V,', G, , +(V„V„—Q ')G,, + V„(V»G»+ V»G»)]
(i,j)=(1,2) or (2, 1) .

VJ=Q+ U[V„Vq2G; +(V; —Q )GJ, + V, (Vi, G„+V22G22)]
(4.26)

(4.27)

The new order parameter R, which is defined as

R:—g (2N)
I

(4.28)

can also be calculated by using almost the same procedure as we did in getting Eq. (4.17):

R = — J dE(1+e" ) '[G,i(E+ie)+G2, (E+ie)]/2 . (4.29)

V. SELFWONSISrRNCY CONDrixON FOR y+

Let us now derive a self-consistency equation for y+. As we have mentioned, the last factor of Eq. (3.10) gives a local
thermodynamic potential at the given configuration Q, and we can interpret it as a statistical weight, which, using, we
can calculate expectation values of various physical quantities. One example is seen in Eq. (4.2S). As an extension of
this way of thinking, we can define a new weight function P"(Qi ) as

where

» i= g J~QiP'(Q()

(5.1)

P "(Qi ) ~ P'(Qi ) . (5.2)

which describes a statistical distribution of Qi at site I, al-
though it is not normalized. P"(Qi), thus defined, in-
cludes the efFects of P'(Qi )of its .environmental sites I'
(&I), because polarons are moving between these sites
through the transfer energy T(l —I'). Hence, if P"(Qi)
has some polarization in the Qi space, its origin is noth-
ing but the polarization of P'(Qi ). Since all of the sites
must be equivalent, we get a self-consistency condition
for P (Q, ) as

and within the CPA, « g(E +is,Q) » i can be replaced
by g/ which is defined as

«g(E+ie, Q) » /~g/(E+ie, +Q)

E+i E Li»+—hei(+Q )

+ g V(E)
l'

{I'~l)
That is, I" must be equal to I'" except for the normaliza-
tion constant. Using the same procedure as we did in the
previous section, we can rewrite P"(Qi) defined by Eq.
(5.1) in terms of the Green's function as

P"(Qi)=exp —I dE ln(1+e )
™

X ITr[« G(E+ie, Q) »

Thus, we can write the equation for y+ as

y exp dE ln 1+e-8E 'M

x I Tr[G/(E +i e, +Q),
—G(E +is)]I

(5.4)

(5.5)

-«g(E+i.,q) » ]j

(5.3)

and using a well-known mathematical formula' based on
the integration by parts with respect to E, we finally get
an equation for y+ alone
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y+ = 1+exp, 8 I dE(1+e )
' {Tr[ln({1 —[hg( —Q) —V((E)]Q(E+ie}j

x {1—[hip(Q) —Z((E)]g(E+ie)j ')]j (5.6}

To calculate the trace in Eq. (5.6), the following mathematical technique is convenient. We formally rewrite hlI, VI,
and g in terms of $f, $g, and Sf, and make use of the formula

ln(1 —0)=—g 0" n
n=1

for an operator 0. The result is given as

[hll(+Q ) El(E)%(E+~a) j ) ln(1 U[ V11Gil + ~22622+( V12 + Q )G21+( 2l + Q )G12]

+ U'{[I'ti I'u —( ~i2 + Q)( Vzi +Q)]«»Gu —Gi2G2i }j )

By using these results, we can calculate T, from the equation

x+=x — .

(5.7)

(5.8)

Let us now consider the strong coupling limit S ~p T and solve this equation within the second-order perturbation
with respect to T. In this limit, as seen from Eqs. (3.21) and (3.20), Q = —,

' and q =1. Hence, the zero-order Green's
funct&on Q/'(E +i e, RQ ) becomes as

g/(E+&a, kQ)=
~
l, k)(E+ie+S/2} '(l, k

~
+

~
l, T )(E+ia s/2—) '(l, +

~

+ g { ll', +)[y+(E+ie+s/2) '+y (E+ie—s/2) '](l', +
~

I'

{I'~l )

+
~

l', —)[y (E+ie+s/2) '+y+(E+ia —s/2) '](l', —
~ j . (5.9)

In the case of QI ——Q, the energy lowering of the occupied
level

~
l, +) due to the mixing with unoccupied levels

~

l', —) through the second-order perturbation is given
as —gl r (l }s 'x y+. On the other hand, the energy
lowering of the occupied levels

~

I', + ) due to the mixing
with

~
I, —) is entirely same as the previous value. W'e

can also easily see that the mixing between occupied lev-
els causes no net energy difference when they are summed
up. In the case of Q&

——Q, we can also calculate the en-
ergy lowering by the same procedure, and from Eq. (5.5)
we obtain

y~ cr exp 28+x t2(1)s 'y~
E

(5.11)

%'e should also note that the mixing between environ-
mental sites causes no difkrence between the two cases
QI ——Q and QI ———Q. From Eq. (5.11), T, is given as

ksT, = g T (l )/[S exp(S/co)], (5.12)

In Fig. 1, we have schematicaiiy shown the localized en-
ergy levels corresponding to the poles of Ql', taking

QI
——Q as an example. We should note that the chemical

potential of electron is taken to be zero. There are two
levels at each site, and all these levels are mixed up with
each other through the transfer energy, whose matrix ele-
ment is given as

(5.10)

which is a more general form than Eq. (4.4). In the real
calculation of T„QI T(l) can be obtained from the
second moment of the state density of electron.

VI. POLARON-NEW-SGSON INTERACTIGN
AND NUMERICAL RESULTS

Let us now take into account the effect of coupling be-
tween polarons and new bosons given by Eq. (2.11). The
region of temperature in which we are mainly interested
is 8 ' 5 ka T, /co, and ks T, is expected to be far smaller
than co; ka T, &~co. In this sense, our system is mainly in
the new-boson vacuum, and hh

&
causes the small mixing

between this vacuum and one-boson excited states. We
take this effect into account by the second-order pertur-
bation theory of h,h„and can eliminate the new-boson
part as we usually do in the BSC theory. After this pro-
cedure, we can obtain an efFective Hamiltonian ( =—h, ) as

h~h, =ho —s(1—q ) g n& (ho+1 Eo) 'n& /2, —
l,u, a'

(6.1)

where Eo of the energy denominator (ho+1 Eo) ' is-
the lowest eigenvalue of ho. In order to take the second
term of Eq. (6.1} into account within the framework of
the theory developed in preceding sections, we approxi-
mate as,
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FIG. 1. Localized energy levels at each site, T=0, QI ——Q.
y+ and y are the statistical weights of each level. I is the
relevant site and /' is its environmental site. The long arrovrs
denote the mixing between leveh through T(l I'). Th—e chemi-
cal potential of electron is taken to be zero.

(ho+1 —Eo) '~(2F +1) '
z z I z, (6.2)

[Fz+(4Tx A)) ]'/z

where the energy denominator is replaced by (2F + 1), 2F
being the energy gap given by the BCS theory at absolute
zero temperature. The factor F/[F +(4Tx/co) ]' is
introduced so that it represents the effective area in
which F& can be replaced by I' in the k space.
[Fz+(4Tx/r0)z]I/z denotes the half-width of the energy
band with the pairing order, since we have taken the con-
stant density of states centered at zero and with a width
8T for noninteracting electrons. This simple density of
states will be used in all calculations hereafter. The for-
mal nature of h„ thus obtained, is entirely the same as h 0
given by Eq. (2.9) except that U is replaced by U' defined
by,

FIG. 2. The reduction factor x and the thickness of boson
cloud q as a function of S/T. ~/T = 1, 8= ~,

difference of the two order parameters R and Q, obtained
by the present theory and by the BCS-type mean-field
theory. In this case, T, is about a half of that of the BCS
theory. Figure 4 shows the one-particle density of states,
—Im[G„(E+ie)]/tr, as a function of temperature and
energy. As mentioned before, the density of states of
noninteracting electrons is assumed to be constant with
the width 8T and centered at the chemical potential of
the electron, that is zero. We can see the energy gap
opens as temperature 8 ' decreases. Figure S shows an
example for the left. and the right-hand sides of Eq. (5.6),
which are calculated to determine y+ numerically. Fig-
ure 6 shows T, as a function of S/T and ~/T. In the
BCS region S ~~ T, T, increases as S increases, while in
the bipolaronic region it decreases as S increases. The ra-
pidity of this decrease depends also on exp(S/co) as
shown in Eq. (5.12), and this factor denotes the mass
enhancement. In the inverse-adiabatic case with a large

U~ U': s I (2q —qz)+(—I —q )(2F +1)
XF[F +(4Tx/co) ] (6 3)

S/T = S, oi/T = 'I 0
although the values of q, F, and x have to be determined
beforehand. One can easily infer that the difference be-
tween ho and h, mainly appears in the BCS region with

q g~1, and the bipolaronic region is not afFected. Using
h„ thus obtained, we repeat the same procedure as in
preceding sections and 6nally get a new set of equations
for T„R, and 6, which are the satne as Eqs. (5.8), (4.29),
and (4.18) except that U is replaced by U'.

As for Ah& in Eq. (2.12), we have also estimated its
eff'ects, but they are always smaller than that of hh &. Let
us now proceed to the numerical results obtained by solv-
ing the set of equations above. Figure 2 shows q and x
given by the BCS-type mean-field theory at absolute zero
of temperature, and we can see that a continuous but sud-
den change occurs in q and x, as S/T increases from the
BCS region to the bipolaronic region. Figure 3 shows the

CO
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l

0.06

TEIVIPERATURE

FIG. 3. Order parameters 8 and Q as a function of tempera-
ture 0 ' obtained by Eqs. (4.28) and (3.20). S/T =S, co/T = 10.
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FIG. 4. The imaginary part of the lattice Green's function
—Im(G& &

)/~ as a function of E and the reciprocal temperature
8. cu/T= 1.0, S/T =5.

FIG. 6. The transition temperatures k& T, /T as a function of
co/T and S/T. T denotes the intersite transfer energy of the
electron.
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FIG. 5. The left- and right-hand sides Of Eq. {5.6) calculated
to determine y+ numerically. The solid hne denotes the left-
hand side, and the other lines denote the right-hand side at vari-
ous reciprocal temperatures. S/T =5, co/T =10.

co/T, this decrease is rather slow, while in the adiabatic
case with a smttll c0/T, it is very rapid. Thus, T, takes its
maximum in the transition region S=T, which lies be-
tween the BCS region and the bipolaronic region. As
seen from Figs. 2 and 6, this transition region is narrow
in the adiabatic case, while it is relatively wide in the
inverse-adiabatic case. It is also interesting to see the ra-
tio between the effective energy gap 2U'R to k&T„'
2U'8 /kz T, . In the BCS region it is about 3.5, but in the

bipolaronic region it can take much bigger values, for ex-
ample, it is 8 in the case of Fig. 3.

These new results are firstly obtained by our unified

theory that can cover the whole region of T, S, and co.

Finally, it should be noted that T, has its upper limit for
given values of T and co, even though we have completely
ignored the occurrence of the CDW-type instability or
other instabilities of the lattice. Consequently, such a
unified theory is essential to study the high-T, supercon-
ductivity, if it comes from the coupling between electrons
and quasibosons.

VH. Cu-0-TYPE NE%' CERAMICS

Using the numerical results obtained in preceding sec-
tions, let us now consider the nature of the superconduc-
tivity of Cu-0-type new ceramics. The high-temperature
superconductivity of this type material is a matter of
worldwide interest in these several months, and its T, is

now going to exceed 100 K. To clarify the microscopic
mechanism of such a new phenomena, many theoretical
and experimental studies have already been undertak-
en. *' ' ' In spite of these efforts, however, the whole
aspect of its mechanism is still left unclear. For this
reason, in this section, we consider this problem, assum-

ing that such a high T, comes from the strong coupling
between electrons and quasibosonic excitations with very
high frequencies.

As is well known, the electrons relevant to this super-
conductivity are in the antibonding state between the d
orbital of Cu and the p orbital of Q. According to the
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energy-band calculation' the width of the conduction
band is about 2 eV, and it corresponds to the case T=0.2
eV in our theory. The number of the electrons of this
material somewhat deviates from the half-filled case,
while our theory is derived only for the half-61led case.
However; this difference causes no serious change in us-

ing our theory, if we choose the value of T appropriately,
since the density of state of the noninteracting electrons
is assumed to be constant. The first candidate for the bo-
son is the breathing mode phonon of oxygen atoms whose
energy is about 0.1 eV. ' In the optical spectra of this
material, we have another high frequency mode with a
energy of about 0.3 eV." Judging from its energy, one
can tentatively assign that it is an excitonic excitation.
This is the second candidate, which seems to cooperate
with the 6rst candidate. The third candidate is the
plasmon with the energy of about 0.8 eV. '2 Since its en-
ergy is very low compared with that of the alkali metals,
we can expect that it couples with conducting electrons
at the Fermi level.

From Fig. 6, we can see T, 's corresponding to these
three candidates. The breathing mode can give T, of
about 100 K. The second candidate can give T, of about
300 K, and the third candidate can give T, of about 400
K. These high values of T, should be understood as the
upper limit of T, for given ~ and T, since we have
neglected the pair breaking eFects such as the random-
ness, the direct Coulombic repulsion and the CD%-type
instability. As mentioned occasionally the high T, al-
ways appears in the transition region between the BCS re-

gion and the bipolaronic region, and, hence, it is highly
probable that the superconductivity of this material is in
this transition region. As the characteristics of this re-
gion, we should note the following two points: The first
is the ratio 2U'R /ktt 7, . As mentioned before, it can be-
come larger than that of the BCS region, and in some
cases it takes a value of the order of 10. By the tunneling
spectroscopy such a large ratio is observed. The second
is related with the isotope effect. ' %hen the three pa-
rameters T, S, and co are of the same order, t)F/t)co be-
comes relatively smaller than that of the traditional BCS
region, as already shown in our previous paper (see Fig. 4
of Ref. 5b). This also holds for ar, /ace, and, hence, the
isotope effect is expected to be relatively smaller than
that of the BCS region.

Since we have completely neglected the interelectron
Coulombic repulsion, we are now going to take this effect
into account on the basis of the present theory. %e hope
to report the results in subsequent papers. %e wi11 also
attempt to reinforce the static approximation by includ-
ing dynamical effects.
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