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Suyerconducting microcircuit and fluxoid quantization: A new quantum interferometer
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Detailed solutions of the nonlinear Ginzburg-Landau equations are presented for a superconduct-
ing ring connected to two long leads. %e assume a homogeneous wire of transverse dimension
smaller than the coherence length g' and penetration depth X. This circuit behaves in much the
same way as an ordinary superconducting quantum-interference device when the ring diameter is of
order of magnitude of g(t), even though it contains no Josephsou junctions. The normal-

superconducting phase boundary of this device can be shifted with temperature and thus could be
used to measure accurately small temperature differences. The proximity effect near a node and the
equivalence of the nonlinear solutions of the above circuit with circuits of di6'erent geometries and

transport or shielding currents are discussed.

I. INTRODUCTION

It was shown' recently that a superconducting ring of
homogeneous wire of transverse dimensions smaller than

g and A. and uniform cross section, connected to two long
leads, should, for appropriate ring sizes, behave like a su-
perconducting quantum interference device (SQUID) in
the presence of an external current and applied magnetic
field. g and A, are the temperature-dependent Ginzburg-
Landau (GL) coherence length and penetration depth.
This prediction is based on the nonlinear adaptation of
the de Gennes-Alexander approach to uniform mi-
cronetworks. This work gives not only a detailed account
of the micro-SQUID but also investigates, in general, the
behavior of the order parameter along three branches
connected to a node in the presence of currents. When
applied to the SQUID below, two of the branches are of
equal (not necessarily) and finite length, the other is very
much larger than ((t). A node with three connecting
wires carrying currents is the basic structure for many
nets topologically similar to the SQUID (e.g., the
ladder ). The fluxoid quantization relation joins together
external transport currents with persistent currents in a
multiple connected superconducting network or array
due to the presence of magnetic Aux.

Previous nonlinear calculations involving currents in
micronets or in elements of micronetworks are the fol-
lowing. The diamagnetic properties of the lasso due to
persistent currents were obtained by Straley and Vissch-
er, critical transport current densities in long supercon-
ducting wires with dangling side branches were calculat-
ed in Ref. 7, and critical applied current densities for wire
arrays in zero applied magnetic Aelds are published in
Ref. 8. The present work which combines applied and
persistent currents and magnetic Aux goes far beyond the
results of Refs. 6-8.

Section II outlines the general nonlinear theory of mi-
cronetworks as applied to the SQUID, Sec. III is a short
summary of the numerical procedures as used in obtain-
ing the present results, and Sec. I%)t' summarizes the nu-
merical results for three external measuring (transport)

current densities (J). One of the latter is very close to the
critical current density (J, ) of a very long superconduct-
ing wire, one is about 0.5J, and the other is very much
smaller than J, . There are interesting, but esoteric,
differences in the results between J ~~J, and J =0 which
will be discussed elsewhere. Section V is devoted to the
conclusions.

II. GENERAL THEORETICAL FRAMK%'ORK

In conventional units the GL equations are (see, e.g.,
Ref. 9)

where f (r) is the modulus of the complex order parame-
ter 0'=f exp[i8(r)] and J„„„is the conventional current
density in cgs Gaussian units (statamperes/cm ). The
superfluid velocity is

q=g(V8 —2m. A/Po),

where A is the vector potential, Po is the Iluxoid quan-
tum ch/2e, g is the temperature-dependent bulk coher-
ence length, and A, is the temperature-dependent bulk
penetration depth. 'o The function f~ is proportional to
the superNuid number density and it is unity when the
current density and magnetic Seld are zero.

For our problem it is assumed that the distance be-
tween the nodes are of order of magnitude of g(t) and
that the wire diameter 2a &A(t) and g(t, ). Then the one-
dimensional GL equations may be used with x being the
curvilinear coordinate along the wire normalized by g'(r).
When the superfiuid velocity in the erst GL equation is
eliminated in terms of the normalized supercurrent densi-
ty J by use of the second GL equation, the result in nor-
malized form is

d „~
"i +(1 f J /f )f =0, — —
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where f=f{x)and J is a constant. Integrating Eq. (4)
once and substituting for fz(x) ~fo+ t2(x), where fo is

the absolute value of the order parameter at some ex-
trellilliii off (x), oiie otitallls

or
'2

dx
=J /fo fo—(1 fo)——(1—3fo/2)t2+t /2. (5')

The function t (x) gives rise to the modulation of the ab-
solute value of the order parameter. It is zero at the ex-
tremum where f(x)=fo. We assume that the material
throughout the network is the same and homogeneous so
that f (x) is continuous at each node. In addition, com-
plex current conservation~ requires that at all nodes

i 8%„2irA%'„"+ "g =0

are satis6ed. Here A and 4'„are, respectively, the vector
potential along the wire and the complex order parameter
at node n, and the sum is over all branches connected
directly to node n.

From the real and imaginary parts of Eq. (6), one finds
the following subsidiary conditions at the nodes:

4o i f' 0o

~here J „„is the total local current density.
In the bulk of a massive superconductor the contribu-

tion due to the first term on the right-hand side of Eq.
(11) is negligible. However, at a weak link the value of f
can be made very small and this is the origin of the weak
link's dephasing properties.

We are interested in the general case where both a
transport current density J and a circulating current den-
sity Js, created by the magnetic flux dilerence of Eq.
{10),are present. This circuit is shown in Fig. 1 and Js is
related to the current I(P) in Eq. (10). For given sets of
values of 8 /g, J, and Js we have found exact numerical
solutions off(x) (shown in the figures) which satisfy Eqs.
(4) (8) alo-ng the wire with %(x} continuous along the
whole circuit.

Also of interest is the relation between the circulating
current density Js and the magnetic flux for a fixed
measuring current density. This is obtained by integrat-
ing Eq. (11)along the complete circuit which gives

2X=bei+b82 ——(2'+J)
~
C,

~
+(2' —J) [ C2 ~, (12)

where X=@(n —P/Po) and

C, = I dx/f', Cz ——I dx/f' .

Here the appropriate values for the current densities are
J/2+Js along branch 1 and J/2 —Js along branch 2.

=0,

where q„ is the superfluid velocity entering the node, and
the derivatives off{x)with respect to x are taken radial-
ly outward from the node. Equation (7) is equivalent to
KirchhofPs current law. Equation (8} is an additional
constraint for superconduciing networks.

The fluxoid relation, obtained from a contour integra-
tion of the second GL equation, Eq. (2), is

BRANCH 3

BRANCH BRANCH 2

&4o=0+
2

where n is a positive or negative integer or zero and P is
the internal (total} magnetic flux enclosed by the contour.
Note that x is normalized by g(t) in Eq. (9}.

Consider the ring circuit shown in Fig. 1. The internal
flux as a function of the applied (external) flux P, and the
persistent circulating current I (P) (Gaussian units) is

R/(' = 0.25~= 1.0

02

P =P, + (1/c)L I (P ), (10)
0.S

where I. is the self-inductance of the loop. In order for
the second term on the right-hand side (rhs) to be physi-
cally meaningful, the wire of the loop must have a finit
cross-sectional area of radius a. Then the current
I (P)=ma J „„should be interpreted as the net circulat-
ing current in the ring (Is }.

In the same spirit as Eq. (9) was obtained, the general
expression for the phase difference 58 between two points
in a superconductor is given by

1.0
1.0

FIG. 1. Schematic diagram of circuit which is analyzed in

this work and notation used. Inset shows schematic results of
Ref. 1.



The extreme values of f on each branch are fo& and foz
as shown in Fig. l. Using the results of our computa-
tions, we have evaluated Eq. (12) numerically for different
sets of values of R /g, J, and Js. The angle 5 imposed by
the measuring current across the SQUID as a function of
P for the same value ofJIJ, =I/I, is defined by

(13)

where be& ——(2Ja+ /)
I Ct I

and fez=(2' —J)
I Cz I

.

various points of the grid for c.
&

and ez. Once acceptable
values of s, and ez are found for a solution with the larg-
est possible period, the fo, -foz plane around this point is
further divided into a finer grid and the solution is tested
again to obtain refined values of fo, and foz until

I e„ I

and
I sz I

are smaller than 0.000001. Then the magnetic
fiux parameter g=m(n —. PI/0) and the phase difFerence
between the nodes N and N', 5, are calculated from Eqs.
(12) and (13).

III. NUMERICAL PROCEDURES

The solution of the order parameter

f (x) [f2+rz(x)]l/2 (14)

was obtained from Eq. (5). The value off (x) at some ex-
tremum is fo and r(x) is one of the Jacobian elliptic
functions which are periodic. The period is 4E where E
is the complete elliptic integral. The solutions of Eq. (5)
depend on the current density in the wire, on the length
of the branch, and on the value of fo. As can be seen
from Fig. 1, because of symmetry, at points halfway be-
tween nodes N and N', the order parameter will be an ex-
tremum, fo, on branch 1 and foz on branch 2. Since it is
assumed that the distance AN is very much larger than
the coherence length g(t), the order parameter at point
/I, f„,is also assumed to be an extremum. The current
density J due to the external source current is then relat-
ed to f„by [see, e.g. , Eq. (4) with d fIdx =0]

IV. NUMERICAL RESULTS

I /2i, =cosX . (18)

In each case the curves are normalized by the intrinsic
critical current (density) of the whole device, that of an
in6nitely long wire J, for the above ring circuit, and by
2i, for the conventional symmetric SQUID, where i, is

0.3

The insert of Fig. 1 shows schematically the maximum
measuring current density of J, J, as a function of the
corresponding magnetic fiux t)}, P, for R//=0. 25 as
shown in Ref. 1. This curve is compared with that of a
conventional SQUID calculated with 5=m /2 and n =0, 1

from

fz (1 fz )i/2 (15)

The applicable current densities are (J/2+ Js ) in branch
1, (J/2 —Ja ) in branch 2, and J in branch 3.

As input parameters to our program we use 8/g, Js,
and f„(which determines J). Applying Eq. (5) to
branch 3, a relation results between the slope (df Idx)2
and f2(x)=f„at node N if for fo the value f„ is substi-

tuted and for J =f„(1 f„). Similar—ly for branch 1

[2], we guess some value f0=fo, [foz] and substitute it
into the various Jacobian elliptic functions and replace in
those functions J by the value (J/2+Ja } [(J/2 —Ja)]
and obtain, for a fixed ring radius, the slope at (df Idx),
[(df /dx)z] on branch 1 [2] and the value of f, (x)=f„
[f„]at node N. We then proceed in the following way:"2
We let f„=(f„+f„)I2, substitute f„ in the above re-

3 1 2 "3
lation for branch 3, and then test

(16)

O.g

0
0.80

I

0.82

(b)

0.88 0.90

I I

0.92

+(df Idx), +(df Idx)zk(df Idx)i=sz . (17}

In order for a solution to be acceptable, both c, and c.2
must approach zero. Of course, this depends on the
correct choice of the values of fo, and f~z. We, there-
fore, divide the fo, foz plane into a fine -grid and test the

and Eq. (8), taking into account that the derivatives of
f (x) with respect to x are to be taken radially outward
from the node FIG. 2. (a) Persistent current density J as a function of the

absolute value of the order parameter at node N (or N'}, f„,and
halfway between N and N', fo, and foz, where the order param-
eters are extrema. The normalized measuring current density
J =0.3849 is slightly less than J, and the ring radius is g'I4.
For notation see Fig. l. (b) Schematic of order parameter f (x)
between A and A ' (see Fig. 1) for Jz g O. 1 and for (c)
Jg ——0.324.
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the critical current of each Josephson junction (JJ). As
can be seen, the ring without JJ's for values of
R//=0. 25 has a phase boundary between the fully su-
perconducting and finite resistance states that is very
similar to that of a conventional SQUID. However, as
showa in Ref. I, that similarity depends strongly on
8 /g(t).

Here we shall show our general results for various
values of ring radii for external current densities J at the
critical value J„for J ~~J„and about halfway between.
The following values of measuring currents were used:
J/J, =1.00000, 0.49654, 0.02598 with J,=2/~27. For
each curve shown, the external current density J and the
normalized ring radius R /g are kept constant. Shown is
the normalized circulating current density JB as a func-
tion of the order parameters at the extrema fo„ f02 and
at the node f„,the circulating current density as a func-
tion of the internal fiux ()), normalized by the fiuxoid
quantum $0, and the phase difference 5 between the nodes
N and N' due to the measuring current density J. If the
self-inductance L of the ring is known, the applied fiux P,
can be obtained from (I) =p, +LIB /c.

Figure 2(a) shows the relation between the order pa-
rameters and the circulating current JB for J =0.38490.
As input to our program the value f„=0.816500 was
used. This value is &2/3 —0.000003, very close to the
critical value. Figures 2(b) and 2(c} show schematically
the spatial dependence of f (x } along the various
branches, (b) for JB =0.05 and (c) for JB =0.324. For
JB——0 the solutions along branches 1 and 2 are maxima
and of the same value (symmetric). As JB increases, fol
decreases more rapidly than f02, becomes equal to f„ for
JB =0.145, and then becomes a minimum for JB & 0. 145
and f„&f„.As JB increases further the slope of branch
3 at E becomes zero when f„=f„.A further increase of
JB makes the right-hand side of Eq» (5) negative,
(df Idx)l becomes imaginary, and there is no real solu-
tion for f„&f„ for the above value of the measuring
current density J.

This cutoff occurs only for J values in the neighbor-
hood of J, and is also R dependent. For R/g&1. 5 there
is no cutoff. For 1.5 &R/g&0. 5 the cutoff occurs on the
left-hand side (lhs) of the JB maximum (see Fig. 5 for an
equivalent description of the maximum) and for
R /g (0.25 the cutoff occurs on the "right-hand side" of
the vittual maximum of JB. It can be proven that the
condition for cutoff is reached when f„has decreased to
a value given by

3 = 0.3849

0.2

0.1

0,1 0.2 0.3

&If, -n

0.5 0.8

FIG. 3. Persistent current density JB as a function of fiux p
enclosed by the ring circuit for various ring radii R for the same
measuring current density Jas used in Fig. 2.

0.9

Oe-

05

0.4

the enclosed magnetic Aux for the same measuring
current as used in Fig. 2. It is obvious from Fig. 3 and
the insert of Fig. 1 that for 8 /g& 1.35 the dc quantum
interference effect ceases to work properly since for
dimerent quantum numbers the maximum and minimum
fiuxes P~ at PI/0 ———,', and n =0 and 1 are overlapping
and dI /d(I) becomes zero (see Ref. 1). For the smaller

[2(1 f2 ) jli2 (19) 0.1 ~ 0.25

at which point the slope of branch 3 at the node becomes
zero and a further decrease of f„makes (df Idx)l imagi-
nary [the rhs of Eq. (5) changes sign). For J &J, the
value of (df /dx)2 also becomes zero when f„=f„as is
obvious from Eq. (5). However (df/dx), does not
change sign at this point as f„becomes smaller than f„
as JB ls changed lllltll Eq. (19) ls satisfie

Figures 3 and 4 show the circulating currgnt J and
the phase difference between N and N' as a function of

=0.1
I

0.2 0.4 0.5 0.6 O.j

0/$, —n

FIG. 4. Phase-shift 5 imposed by Jacross the circuit between
N and X', Eq. (13), as a function of fiux P enclosed by the ring
for various ring radii. The value of J is the same as in Figs. 2
and 3.
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3 = 0.01

'e
03

0.2

0.2

0.2 0.4

r„, ~0&, foz

0
0 0.1 0.2 0.3 0.4 0.5 0.7

FIG. 5. (a) Similar plot as Fig. 2 except that the measuring
current J'=0.01 ( «J, =2/v 27). (b) Schematic of f(x) be-
tween A and A

' (see Fig. 1) for Ja &0.103 and f„&0.325 while
{c)apphes to the rest of the figure except when f„ is near unity
where Fig. 2(b) applies.

FIG. 7. Similar to Fig. 4 except J is the same as in Figs. 5 and

radii a "normaV' region in the vicinity of P/Pc n=—0.5
appears which becomes larger as R/g is decreased As.
was shown in Ref. 1 for R /(=0. 25, the phase boundary
between the zero resistance and resistive states for our
circuit is very similar to that of the conventional SQUID.
As R /g decreases below the value of 0.25 the normal re-
gion widens near P/Pc n=0—.5 so that for very small ra-
dii the ring circuit would always be in the normal state
for values of the Sux Plgc near 2—,', +-'„etc.

Figures 5 to 7 show the behavior of our circuit on the
opposite side of the measuring current scale, that is, for

0.8

0.7

0.$

0.5

0.4

0.2

O.l

0.3

FIG. 6. Similar to Fig. 3 except Jis the same as in Fig. 5.

J =0.01 (f„=0.99995). Figure 5(a) shows the relation
between the circulating current Jz and the order parame-
ters fc„fez, and f„.

The spatial dependence of the order parameters along
the various branches are shown schematically in Figs.
5(b) and 5(c). Figure 5(b) is a schematic plot for
Ja & 0. 103 and f„&0.325 while Fig. 5(c) is representative
of the rest of Fig. 5(a) with the exception of f (x) values
very near unity where the behavior off (x) is very similar
to that shown in Fig. 2(b). Although not visible in the
plot, f„&fo, and f02 near unity.

The crossover point between f„and f02 for small
values of f (x) shift to larger values of Ja for larger
values of R /g. For example, for R /(=0. 5 the crossover
occurs at Ja -0.321 (f„=0.650), and for R /)=1.0 at
Ja =0.387 (f„=0.842).

Figure 6 is similar to Fig. 3 except that the measuring
current density J is small. For the values of R /g shown,
there exists no cutoff of the solutions as it does for the
larger measuring current densities and smaller R/g
values. For R//=0. 5, for example, the largest flux P
exceeds 4c/2 (e.g., for n =0) for small values of the
measuring current density J ( &0.01), while for Jnear the
critical current the same value of R/g has a value of

=0.241/a. This is, of course, the property which is
exploited by a dc quantum interferometer as shown in the
insert of Fig. 1 and explained in Ref. 1.

Figure 7 shows the phase diS'erence 5 across the
SQUID between nodes X and N' (Fig. 1) as a function of
fi.ux which is locked-in within the ring circuit. Contrary
to what is shown for large measuring current densities J
in Fig. 4, for small values of J there is not much change
of 5 for small values of ((j. Appreciable changes of 5
occur only when P=((io/2 (e.g., for n =0) and 5~ir/2
when Ja (Fig. 6) approaches zero there. As can be seen
from Fig. 4, for large measuring current densities J, the
value of 5 is appreciable at /=0 while for J«J, the
value of 5 is very small at /=0.
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0.5 0.7

0.5

0.4
03

0.3
0.1

I s l I I I

O.l 0.2 0.3 0.4 0.5 O.S 0.7 O.e 0.9

0.1 FIG. 10. Similar to Fig. 4 except J is the same as in Figs. 8

and 9.

0

0.$

FIG. 8. Similar plot as in Fig. 2 except that the normalized
measuring current density J=0.5J, .

To complete the picture, plots similar to those shown
in Figs. 2-7 are shown for measuring currents approxi-
mately halfway between those shown above. Figures
8-11 are for J =0.19112 (f„=0.98). Figure 8 shows
the relations between Jz and the order parameters fo&,
foz, and f„ for R/)=0 25 I.n t.he vicinity where

Js ~~J, and f (x) is near unity, the spatial dependence of
the order parameters is similar to that shown in Fig. 2(b).
The schematic shown in Fig. 5(b) is typical of Js values
near 0.2 on the left-hand side of the maximum, and Fig.

5(c) is a schematic representation for Jz -0.47 and larger
on both sides of the maximum ofJz.

For this and smaller R /g values there exist symmetric
solutions for f (x) at Jz ——0 on the left-hand side of the
maximum. In our case fp}=fO2-0. 28 at Js =0. It was
demonstrated (see also Fig. 11) that the symmetric solu-
tion ceases to exist for R/g somewhere in between
R //=0. 35 and 0.4.

Figures 9 and 10, which are similar to Figs. 3, 4, 6, and
7, but for J=0.191 12, show the transition from the sym-
metric to the asymmetric solution for the smaller fo, and

fry values by the closed and open curves as R/f is
changed. Figure 11 is similar to Fig. 8 except that

I I ) I I

0.7

0.6

0.3

0,4

0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4 0.5 0.6 0.7 0.8 0.9

4/4, -~

FIG. 9. Similar to Fig. 3 except J is the same as in Fig. 8.

'01 ~ f02 ~ f~

FIG. 11. Similar plot as in Fig. 8 except that the ring radius
8 =g/2.
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8//=0. 5. The asymmetric solution on the left-hand
side of the Jz maximum for J& ——0 is apparent. Thus a
large variety off (x) and related functions are possible as
the measuring current, the Aux and the ring radius are
varied. This property leads to useful applications such as
a dc quantum interference device. '

V. CONCLUSIONS

As shown by the insert of Fig. 1 and our present
analysis the device described here can be used for dc mea-
surements in much the same way as an ordinary SQUID
with Josephson junctions provided the radius of the ring
is of order of magnitude of f(t). In addition, because of
the temperature variation of (, our circuit has the versa-
tility that its normal- (N} superconducting (S) phase
boundary can be modi6ed with temperature. This prop-
erty modulates the NS phase boundary with temperature
and could lend itself to accurate measurements of small
temperature differences. For details of the phase bound-
ary see Fig. 2 of Ref. 1.

We conclude further: %hen the measuring current in
the SQUID is subdivided at node N into branches 1 (81)
and 2 (82) and there is no circulating current I», 81, and
82 have the tendency to enhance superconductivity (in-
crease of number density of Cooper pairs) near the node
in branch 3 (83). This happens also when the circulating
current is small compared to the measuring current. In
that case the current carried by B1 and 82 is about one-
half the current in 83 and this depresses superconductivi-
ty less strongly between N and N' than in 83 (see Fig. 1).
Because of the reduced currents in the circular branches
and nodal condition, Eq. (8}, the order parameter f(x)
has a maximum in 81 and 82 while in 83 it has a
minimum. The relative amount of aid received by 83
near N depends also on the lengths of 81 and 82. If the
latter are much shorter than g(t) the aid given to 83 is
smaller than when the lengths of 81 and 82 are compara-
ble to or larger than 2 to 3 g(t). When the branches are
much larger than g(t), the enhancement does not increase
by a significant amount since this proximity effect extends
spatially over a distance of about g(t) from the node.

%hen a persistent current Iz is flowing in addition to
the transport current I, comparable in magnitude to I,
the amount of superconductivity in 81 is reduced consid-
erably relative to that in B2 because in the former the to-
tal current is I~+I/2 while in the latter it is Is I/2. —

So a minimum off (x) is created in 81 while 82 contains
a maximum.

%'hen, however, I is small compared to I~, both
branches will contain a minimum of f (x) while in 83
there is a maximum off (x}. Thus the reverse happens as
above, namely B3 enhances superconductivity in B1 and
B2 near the node since near point A, that is far from X,
f (x) in 83 reaches a maximum value (the almost fully su-
perconducting state).

Thus the relative aid a branch receives (provides) in
enhancing the amount of superconductivity from (to) the
neighboring branches depends in a complicated way on
the currents in the various branches and their lengths.
One can state that a branch with the largest maximum
value off (x) will aid the other branches in increasing the
amount of superconductivity near a node.

The above numerical results for the SQUID can also be
adopted to a number of difterent situations. For example,
the SQUID without a transport current (J =0) is sym-
metric in f (x } along 81 and 82 (fp&

——fpi ). One can im-
agine then that joining the two branches together at their
minima leads to a lasso with a long arm. Then the nu-
merical solutions of the SQUID of radius I| are
equivalent to those of a lasso with radius equal to R /2.
The above program can be modified easily to obtain re-
sults for a lasso with any arm length.

Similarly, a wire with dangling side branches and a
transport current through it can be simulated by a
SQUID with J =0. Then the circulating current takes on
the function of the transport current in the wire and the
minimum of f(x), located halfway between the nodes,
distance a apart, has the value f (a /2) =fp, =fp2.

Equally, the nonlinear solution of the ladder with
shielding currents only (no vortex currents, wave vector
q =0) can be simulated by the above SQUID solutions
with J =0 and Jz&0 or by the nonlinear solution of a
wire with Snite dangling branches. Arrays with trans-
port currents in zero applied magnetic field can also be
obtained from the above SQUID solutions by similar con-
siderations.
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units of go=2.07X10 ' Gcm', and the circulating and
measuring current densities in units of (P&/2e')[c/
4sg{r)A, {r)] [see Eq. (2)]. For example, for indium, for which
g(0)=0.18X 10 cm and A(0) = 1.6X 10 6 cm the latter nor-
malization constant at 0 K is equal to 1.7 X 10's

statampere/cm2 or 5.7X10' A/cm'. Since the largest J's (J
or Jq) in the Sgures are of order of unity, the conventional
current densities are of order of l.0 A/cm~ at 0 K. This is of
the same order of magnitude as the shielding current densities
in the Meissner state.


