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A method for estimating expectation values formed with Jastrow wave functions for quantum
solids is developed on the basis of the correlated-particles expansion (CPE), which foBows from

an exact relationship for canonical thermodynamic averages. As a test of the CPE, we obtain es-
timates for the ground-state energy of fcc solid He and Lennard-Jones interatomic potential and
a 1/rs eiFective potential. When the CPE is used through second order, the difFerences between
the kinetic and potential energies obtained and the Monte Carlo values range from 0.2% to 21%.
For comparison, the differences between the cluster expansion estimates and the Monte Carlo
values range from 18% to 42%.

I5z N.ODUCTION

In the study of quantum solids wave functions of the
Jastrow type are often used as trial functions for making
estimates of the ground-state energy. ' Monte Carlo tech-
niques are commonly used to evaluate the formal expres-
sions that result. The problem of evaluating such
quantum-mechanical expectation values is mathematical-
ly equivalent to the problem of evaluating classical canon-
ical thermodynamic averages.

Recently we have been developing the correlated-
particles expansion2 (CPE) as a basis for determining
the thermodynamic properties of solids when anharmonic
effects are significant. Since solid helium is known to be
highly anharmonic and since accurate Monte Carlo values
are available, we have tested the accuracy of the CPE by
using it to calculate the expectation values for the energy
of fcc 4He. Results from three different levels of approxi-
mation are compared with the Monte Carlo results for the
same model. The comparison indicates that the CPE
could be useful as a guide to when and where to carry out
Monte Carlo calculations, which although more accurate
are much more computationally intensive.

The CPE (and the correlated Einstein model that re-
sults when it is apphed through second order) is based on
the following exact relationship between the harmonic
average of a product and the product of the averages:2
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Correlations are accounted for by the exponential of the

differential operator A(V), which acts on the x depen-
dence of the two-particle functions f~, (x;,x/) before the
canonical averages are performed. xt is the displacement
of particle i (i 1,2, . . . , N) from its lattice site. The
derivation of Eq. (1) and the detailed description of the
operator A(V) are given in Ref. 2. Equation (1) is ob-
tained from the result given there by setting all "one-
particle functions"' equal to unity.

The CPE is obtained by expanding the right-hand side
of Eq. (1) in a series of powers of the artificially intro-
duced parameter k. The power of A, determines the "order
of smallness" of the terms in the expansion. A very useful
feature of the expansion is that the dimensionality of the
integrals that must be evaluated to determine any term in
the expansion is independent of the order of the term. All
integrals are three dimensional, and in the applications
considered to date all but one of these three integrations
can be done analytically.

Some years ago Mullin, Nosonow, and co-workers
developed a cluster expansion as a basis for estimating ex-
pectation values formed with Jastrow wave functions. As
discussed in Sec. III, using the cluster expansion in the ap-
proximation Eei+Ee2t gives results that are accurate
through zeroth order in the CPE. Results that are accu-
rate through first order in the CPE are obtained by includ-
ing the linear correction terms to the cluster expansion de-
scribed in an earlier article. New results are presented
here that are accurate through second order in the CPE.
Approximatioas that are accurate through successively
higher orders in the CPE are successively closer to the
Monte Carlo results.
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where r;~ is the distance between particles i and j. It fol-
lows from the above that

&H&-(3N~r '/4m)+ g &w(r;, )&, (4)
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where m is the mass of a particle and
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In the specific model considered U is a sum of pair poten-
tials v(r) of the Lennard-Jones type with e 10.22 K and
o 2.556 A, and the "efFective potential" is

rI&r) (a/r)' .

The nearest-neighbor distance is r„, 3.695 A. An esti-
mate for the ground-state energy is obtained by adjusting
the variational parameters A and K until the expectation
value (H& is minimized.

In order to use the CPE to estimate (H) we reexpress
the second term on the right-hand side of Eq. (4) as

Z & (»&- d 1.(II """'""')
I
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where the subscript on the angle brackets indicates a
"harmonic" average of the form

Jd xe F(x], . . . ,x~)F 0~
yd 3w

We assume that
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The terms linear and quadratic in the x; that result from
substituting this expression for hp;J into the right-hand
side of Eq. (7) must exactly cancel the linear and quadra-
tic terms that result from using in the "harmonic potential
energy" &0. As can be verified by direct substitution, this
leads to a requirement that the parameters y;.J, k;J, I;, and

The problem being considered is that of estimating the
expectation value

&H) &e ( T+U [ e)/&e [ e&, (2)

where the Hamiltonian H is a sum of a kinetic part T and
a potential part U. 9' is an unnormalized Jastrow wave
function of the form 2AI+ g k" K.

J
(j&l'}

(i2)

I is the unit tensor.
The CPE is obtained by using Eq. (1) to reexpress the

average on the right-hand side of Eq. (7) as an operator
acting on a product of averages and by expanding the log-
arithm that enters through Eq. (7) in powers of A, before
differentiating with respect to a. Our best approximation
is obtained by choosing the parameters y;J and k;J intro-
duced in dp;J so that all of the terms in the CPE propor-
tional to A, and to A,

z are zero. This is done by choosing y;J
and k;J so that

x,-e "J, ~ "'0-x, o-
where (x;&0 is zero when I; is zero, and
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where p and v label different vector components. When
only terms through second order are kept, one obtains

3m~h, '

(i&j)
(i5)

where only zeroth-order terms remain.
The above equations reduce the problem of evaluating

(H) to the problem of evaluating a phase-function average
with the methods presented in Ref. 2, where Eq. (15) is
referred to as the "correlated Einstein model approxima-
tion. " @0 is the "Einstein potential-energy function. "
Equations (11) and (12) are the "self-consistency condi-
tions. " Equations (13) and (14) are the "zeroing condi-
tionS. "

The results of our calculations for the expectation
values (H), (T), and &U& as functions of the variational
parameters A and K are given in Figs. 1 and 2 along with
the Monte Carlo estimates of Hansen and Levesque.
Three different levels of approximation are given. Equa-
tion (15) and the analogous equations for &T) and (U)
were used in ail three levels of approximation, and condi-
tions (11)and (12) were satisfied in every case.

Our best CPE values are accurate through second or-
der. They were obtained with the parameters y;J and k;~
determined so that both conditions (13) and (14) are
satis6ed.

The next best CPE values are accurate through 6rst or-
der. They were obtained with the parameters y;J deter-

K, must satisfy

y. . ~i . ~0
J

(j&i)

where one can set I; 0 because of the high symmetry of
the lattice considered, and
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