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Fermion simulations in systems with negative weights
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We investigate the use of two methods —Langevin and molecular dynamics —for simulating fer-
mion systems with real, nonpositive definite probability functions. The methods are tested on a sim-

ple one-dimensional model. Both methods have difjtculties associated with the nodes of the proba-
bility function. %'bile the Langevin equation can cross the nodes even for time steps as small as
10 ', the crossing may be so violent that an equilibrium distribution is not readily achieved. The
molecular-dynamics system is trapped within regions bounded by the nodes, not sampling all of
phase space. A hybrid Monte Carlo-molecular4ynamics method is proposed which avoids these
diSculties in the Langevin and molecular-dynamics techniques.

I. INIRODUCTION

Recent interest in the Langevin and molecular-
dynamics techniques for simulating systems of strongly
interacting fermions on a lattice has stemmed from the
potential for much faster simulations than achieved with
Monte Carlo techniques. The successes' with the Monte
Carlo techniques have been limited to small- or medium-
sized lattices, because of computation times which in-
creased rapidly with the number of sites N. The new
methods allow calculation times which are nearly propor-
tional to N.

A serious problem with these simulations is that in
most fermion systems the probability function is not al-
ways positive. 2 In this paper we consider this problem by
testing the methods on a very simple model. We find that
the negative probability poses real problems for either
Langevin or molecular-dynamics simulations, although
for difFerent reasons in each case. We suggest a "hybrid"
algorithm incorporating elements of the Monte Carlo,
molecular dynamics, and Langevin techniques which
work on our simple model, but, for realistic problems,
may be no faster than pure Monte Carlo.

In Sec. II we describe the form of typical fermion
effective actions and present a simple model with many of
the same features to use in test simulations. In Sec. III
we describe the Langevin method and apply it to our test
model, and in Sec. IV we do the same for molecular-
dynamics techniques (including the so-called hybrid
molecular-dynamics-Langevin method ). In both cases
we discuss the diNIculties that are implied for fermion
simulations by the problems encountered in our test cal-
culations. A hybrid technique for dealing with these
problems is discussed in Sec. V, and we summarize and
conclude in Sec. VI.

II. THE MQDKL

The partition function for a system of interacting fer-
mions in the commonly used determinantal formulation
can be written in the general form '

Z= f d[x;]e detM+(x}detM (x) . (1)

The auxiliary variables I x I are introduced in a
Hubbard-Stratonovich transformation, and the deter-
minants come from a trace over the fermions. To the
best of our knowledge, there are no theorems that
detM(x) is positive for all values of Ix ]. In fact, in the
Hubbard model, for example, numerical evidence has
shown that the determinant does change sign. In some
cases, such as the half-filled Hubbard model, detM+(x)
and detM (x) can be shown to always have the same
sign, and the integrand of (1) is always non-negative.
But for the Hubbard model away from half-filling, and
for most systems in general, the integrand can change
sign. (Even if the two determinants always have the
same sign, the probability function can become zero, re-
sulting in severe diSculties for simulations; see the end of
this section. }

Operator expectation values have the form

6=— x; e 'Gx
Z 00

where we have used the shorthand notation

e ' =P(x) =e —detM+ (x)detM (x) . (3)

ea'Monte Carlo methods rely on treating Z 'e ' as a
probability. In cases where the right-hand side of (3) is

not positive definite, we set e ' =
~

P(x) ~, and define
the modi5ed partition function

Z= f" d[x, ] ~P(x)
~

. (4)

%'e now calculate operator expectation values by rewrit-
ing (2) as

(sgnP(x)G(x) )z6=
( sgnP (x ) )z

where ( )z denotes a Monte Carlo average using
~

P(x)
~

rather than P(x). This way of calculating G, while exact,
is only feasible when (s):—(sgnP(x))z is not close to
zero. If (s ) is near zero, G will have huge statistical er-
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rors. In this paper we consider the case where (s ) is nei-

ther unity nor close to zero.
To test simulation techniques in as simple a model as

possible with the same features as (3}, we chose the
single-variable effective action defined by

P(x)=e—" (1—3xi+x } . (6)

Figure 1 shows P(x) and S,s(x)=x —ln
I

1 —3x +x
Logarithmic singularities in S,s correspond to nodes in

P(x). We chose e " because Sa(x) is usually a quadra-
tic form; we chose 1 —3x +x as a simple polynomial
which has positive and negative regions, but is mostly
positive. For this model, (s)=0.3329 (doing the in-
tegrals analytically), which is close enough to zero to
make simulation of the model significantly more difficult
than the positive definite case.

To model a case where the determinants in {1)have the
same sign, we set

P' '(x)=e "(1-3x +x ) (7)

In this case we have S',s'(X)=x —2ln
I

1 —3x +x
which only differs from S,s(x) by a factor of 2 in front of
the logarithm. Since the Langevin and molecular-
dynamics equations of motion (see below) depend only on
S,~(x), not P(x) directly, one might expect the qualita-
tive behavior of the two models to be identical. There
turn out to be important differences in their behavior in
the Langevin equation, however, as we discuss in the next
section.

dX

dt +ri(t),

for a particle subject to the drift term —dS,s/dx and a
white noise ri(t) satisfying

For well behaved S,N and for large t the probability of
x(i) taking on the particular value x is proportional to
P(x ); hence, expectation values can be calculated using

(10)

The noise term in (8) serves to drive the system
throughout phase space„while the drift term —dS,s/dx
makes the system spend most of the time where S,)r is
smaBest. Note that —dS,s/dx =(1/P)(dP/dx ) is in-
dependent of the sign of P(x); hence, one does not need
to know sgnP{x) to calculate the drift term. The drift
term always drives the system in the direction of increas-
ing IP(x) I. In cases where P(x) changes sign, one
might hope that averages of the form (10) could be used
to compute averages of the form ( )&. As we shaB see
below, there are two problems with this.

To simulate the Langevin equation, we must discretize
the time in the continuous equation (8). A simple discret-
ization is'

In the Langevin method, s's one solves a first-order
equation of motion

1.0 (12)~~+Sf =&r—

where ri, is a random number obeying a Gaussian distri-
bution with (t},ri, .)=25«.. The errors introduced by
discretization in (11) are'0 O(b, t). A discretization accu-
rate to O(b t2) is given by'0

b t dS,s dSes
ht t}, ,

0.5
where X is a tentative step using the first-order discretiza-
tion (and the same random number g, )

0.0

—0.5

(13)

The test results we present here are based on the second-
order discretization, but we have found the first-order
equation to give the same qualitative behavior.

A. Node crossing

0 I

0 ) 2

X

FIG. 1. Probability function P(x) and elective action S,N for
the simple test model. The model is defjIned by (6). The upper
Sgure shovels I'(x); the lower shows the elective action corre-
sp»d&ng «

I P(x}
I Ser(x}=—»

I P(x) I. Logarithmic singu-
larities in S,s correspond to nodes in P(x }at x =+ z'( v 5+1).

It is useful to discuss the Langevin dynamics in terms
of a particle undergoing Brownian motion in the poten-
tial S,N. In that language, we ask the following question:
Can the particle cross the infinite singularities in S,N cor-
responding to the nodes of P(x)'? The (perhaps) surpris-
ing answer is yes, it readily does so. Figure 2 sho~s a
typical trajectory. %hile the particle avoids the regions
near the nodes, it does cross them occasionally. The
discrete Langevin equation (11) shows how this can hap-
pen: when observed on a small enough time scale, the
noise term always dominates any fimte drift force. The
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noise term can cause the particle to hop over the singu-

larity.
Are the crossings simply the result of too large a time

step? To test whether reducing the time step eliminated

crossings, we performed a series of runs with decreasing
b, t. In Fig. 3 we compare the average number of times
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FIG. 2. Typical trajectory in a Langevin simulation for the
test model. The dashed lines show the location of the nodes of
P(x). The "particle" avoids the nodes, but occasionally crosses
them. The crossings take place regardless of the time step,
vrhich in this case is 10 '.

nodes are crossed per unit of Langevin time for difFerent

ht. As ht is decreased, initially we see a reduction in the
number of crossings, but the crossing rate (the average
number of crossings per unit Langevin time} appears to
approach a finite limit. The Sgure shows time steps vary-
ing by a factor of 32, which, if S,N were smooth, would
imply a reduction in the error by a factor of 32 . In cal-
culations with the initial value of x close to one of the
nodes (so the computations could be carried out in a
reasonable amount of time) we have observed crossings
with ar =10

%e can understand the constant rate of crossing as
Et ~0 as follows: assume that the probability of the par-
ticle being at x is proportional to

i
P(x)

i
. For simplicity

we will consider the first-order discretization (11). In
considering a single step, to first order the drift term,
which varies as bt, is negligible compared to the noise
term, which varies as v'ht. Given that there is a node at
x, if at a particular Langevin step the particle is at
x =x+5x (assume 5x &0) then the probability that the
particle will cross X is the probability that g, &b,t—is
greater than 5x. With rt, obeying a Gaussian distribution
of width ~2, this probabihty is roughly proportional to
exp[ —(5x ) l(4ht )]. Hence, the total probability of
crossing at that Langevin time step is proportional to the
integral over all x greater than x of the product of the
probability of being at x and the probability that

rl, +—b, t is greater than x —x:

i
P( )

i

—(x —7) /(4ht) (14)
x

In the vicinity of the node
i
P(x)

i
~ 5x, thus (14) is pro-

portional to ht. Since the number of time steps per unit
Langevin time is 1/(b, t ), the crossing rate tends to a con-
stant as ht ~0.

What happens when the probability function is P' '(x},
which has second-order zeroes in the place of nodes? In
that case, for small 5x, P' '(x) ~ (5x ), making (14) pro-
portional to (ht )i~, and the rate of crossing proportional
to (ht )'~ . Figure 4 shows the crossing rate as a function
of (b,t)'~ for P' '(x). We see that the crossing rate
roughly behaves as expected.

II
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FIG. 3. Rate of nodal crossings for various time steps for the
model P(x). The solid circles are for the unmodified Langevin
algorithm, which occasionally undergoes "jumps" caused by the
singularities in S~(x) (see Fig. 4). The solid squares are for a
modified algorithm which limits the size of the jumps. The rate
of crossings appears to tend to a Snite constant as h, t~0 for
both algorithms. The calculations used the second-order
discretization of the Langevin equation (12). The algorithm was
unstable for ht =4X10 ~, a factor of 2 larger than the largest
ht shown. The errors (thrice the standard deviation is shown)
were estimated using the square root of the number of crossings
observed.

8. Large disylacements

Figure 5 shows a severe difBculty with the Langevin
calculations. Occasionally as the particle is crossing a
node, the particle will land almost exactly on the singu-
larity. The particle then experiences a very large drift
force, driving it in a single time step far from the origin
(e.g., at r —1.3, x ——0.6). In a calculation similar to the
one shown in Fig. 5, we observed a single jurnp of length
x,+&, —x, = 1500. Jumps of more moderate size, such as
the ones shown in Fig. 5, were fairly common. The pres-
ence of these jumps makes this version of the Langevin
method unusable for practical calculations, since the
probability distribution of x (t) is no longer

i
P(x)

i
. For

example, the probability of the particle being at x =1500
—)coo' —&o'is roughly e ' —10

To obtain more accurate data on the frequency of
crossings as dt varies, we modi6ed the discrete Langevin
equation to put an arbitrary limit on how far the particle
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I"IG. 4. Rate of nodal crossings for the model P"'(x} as a
function of the square root of the time step h, t. The rate is ex-
pected to vary as (hf }0~ for small ht. The discretixation and er-
ror estimates mere the same as in Fig. 3.

could move in one step. Since for small ht the noise term
in (12) should be larger than the drift term, we imposed a
limit of 10&25t, i.e., 19 times the average noise term, on
the magnitude of the drift term. In other words, if the
drift term was larger than this limit it was replaced by
the limit. This choice of the hmit restricts only large
jumps; it serves to prevent the particle from being driven
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FIG. 5. Langevin trajectory showing a typical large "jump"
caused by the singularities in S~. The individual dots show the
position of the particle" at each time step. The jumps occur as
the particle, ~bile crossing a singularity, lands almost exactly
on it. In the next time step (or half-time step in the second-
order discretization shovrn here) the particle travels a large dis-
tance because of the divergence of the force at the singularity.
The jumps can be quite large and are a severe diffjIculty of the
Langevin method. The time step was 2 X 10

away from the region near the origin. Figure 3 shows the
rate of crossings for the modified algorithm as well as the
unmodified. The modified algorithm, while decreasing
the rate slightly, also appears to yield a Snite rate of
crossings as h, t ~0.

The Langevin method in real fermion simulations has
an additional dif6culty: it cannot readily tell when a node
is crossed. One needs to know when nodes have been
crossed because sgnP(x) is needed at all times in order to
calculate observables using (10}and (5). Of course, in our
one-dimensional model, where the location of the nodes is
known, it is easy to tell when the particle has crossed; in
addition, one could always evaluate P(x) at each step to
find its sign. In real fermion simulations, however, one
does not know the location of the nodes of P(x), and ex-
plicit evaluation of the determinants in (1) is extremely
time consuming (more so than evaluating the drift term,
which can be put in an easily evaluated form}. ' ' Until
a fast way of determining sgnP(x} is found, use of the
Langevin equation method for systems with negative
weights is probably feasible only for small systems.

1V. THE MOLECULAR-DYNAMICS ME-x HOB

In the molecular-dynamics method, one solves the clas-
sical equation of motion

(15)

for a particle in the potential S,s. The mass m is set to
unity, since a change of mass simply renormalizes t The.
many-variable version of (15) can be used to calculate

pSeffaverages weighted by e '~ under certain conditions: (1)
the system is in the thermodynamic limit (i.e., an infinite
number of variables x), so that the microcanonical ensem-
ble corresponds to the canonical ensemble; and (2) the
system is ergodic. The effective temperature P depends
on the initial conditions. Therefore, for properly chosen
initial conditions, and if conditions (1) and (2) are both
satisfied, then a solution x (t) of (15) can be used to calcu-
late averages via (10), just as can be done with Langevin
trajectories. Of course, the simple model (6) is nowhere
near the thermodynamic limit. However, experience has
shown that, even in simulations with large numbers of
fermions, lack of ergodicity remains.

A simple way to (a) make molecular dynamics ergodic
for positiue P (x) and (b) remove the necessity for being in
the thermodynamic limit is to randomize the velocity at
random times, taking the new velocity from a Boltzmann
distribution (at temperature P= 1, so that the distribution
is e ). This simple idea, long used' in molecular-
dynamics simulations of chemical systems, has recently
been applied to fermion simulations in the form of hybrid
I angevin —molecular-dynamics algorithms.

A particle obeying the classical equations of motion
(15) should not be able to cross the singularities in S,it,
even with velocity randomization. In a discretized form,
however, the particle might cross because of too large a
step size. Although this might prevent the particle from
being trapped in a Snite interval, it would also subject the
system to the same spurious jumps seen in the I,angevin
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system. Unfortunately, since the logarithmic singulari-
ties in S,z are very sharp, a very small time step is neces-

sary to integrate (15) correctly near them. Since the par-
ticle will sometimes come quite close to the singularities,
a constant time step is not practical: a step size suitable
for the rare cases when the particle approaches the singu-
larity would be much too small for the majority of the
time when the particle was in the smooth regions. We
have found that to integrate (15) accurately in a reason-
able amount of time, a variable tine-step integrator is
needed.

Figure 6 shows a typical molecular-dynamics trajecto-
ry (with velocity randomization) using a Bulirsch-Stoer
variable time-step integrator. The discontinuities in the
slope of the trajectory correspond to velocity randomiza-
tions, which occur at random intervals. In a few in-
stances (e.g., at t = 12, x = —0.6) the particle comes quite
close to a node and the change in direction is so sharp as
to resemble a velocity randomization, but this is actually
the particle bouncing off the "wall" of the singularity. It
is in these instances that the variable-step integrator is
crucial.

This procedure, while fairly practical for sampling one
of the nodally-bounded regions, provides no way to sam-
ple other regions. In the next section we discuss a pro-
cedure for adding discrete Monte Carlo steps to correct
this deficiency.

V. HYBRID MOLECULAR-DVNAMICS-
MQNTK CARLO METHOD

0.5

—05—

I l I i i I i i i I ) i I I I i0
0 5 1510 20

FIG. 6. Typical molecular dynamics with velocity randorni-
zation trajectory. The particle is trapped within a single region
bounded by the nodes of P(x) (the dashed lines). Because of the
sharpness of the singularities in S,&, a variable time-step in-
tegrator is used to accurately solve the equations of motion.
The run shown consists of 1000 steps, each consisting of an in-
tegration of the equations of motions for a length of time
a=0.02. After each step the there was a probability p =0.05 of
the velocity being randomized.

For a fermion simulation algorithm to be successful in
problems with negative weights, it must have (at least)

0 ) ) & i
I

i (»
I

( i i i
~

i i i r

three characteristics: (1) It must be able to avoid numeri-
cal difficulties at the nodes of P(x) such as the "jumps"
seen in the Langevin simulations. (2) In order to explore
all of phase space, it must be able to cross the nodes. (3)
The method should either (a) keep track of each node
crossing so sgnP (x } is known at all times, or (b) provide a
method for efficiently calculating sgnP(x}. Monte Carlo
algorithms have the features (1), (2), and (3a), but have
the disadvantage of calculation times which rise rapidly
with the number of sites X. In this section we propose an
algorithm which combines molecular dynamics and
Monte Carlo in a way that satisfies the above criteria [(1),
(2), and (3a)] for a successful algorithm.

The idea is simple: most of the time is spent solving
the molecular-dynamics equations of motion, but every
once in a while (at random times) a Monte Carlo step is
attempted. After the Monte Carlo step, the velocity is
randomized and molecular dynamics resumes. A vari-
able time-step integrator is used to avoid numerical
difficulties at the nodes. A Monte Carlo step explicitly
calculates P(x+Sx)/P(x), enabling the algorithm to
keep track of sgnP(x).

The specific details of the algorithm are as follows: a
random velocity U is chosen from the distribution—{1/2)Ue " '", and the equations of motion are integrated
[with the integrator used in the previous section, and
from a position x with known sgnP(x)] for a fixed length
of time e. At the end of that time, a Monte Carlo step is
taken with probability p, and the integration is continued
with probability 1 —p. To do the Monte Carlo step, a
step 5x is chosen from a Gaussian distribution (with
width iv). The Metropolis algorithm is used to accept or
reject the step: if the ratio

~
P(x+5x)/P(x)

~
is greater

than a random number betw'een 0 and 1, the step is ac-
cepted. Regardless of whether the step is accepted or re-
jected, a new velocity is chosen at random, and the pro-
cedure starts over. The sign of P(x) is recorded and used
for the calculation of observables. Input parameters are
the molecular dynamics run time e, the probability of a
Monte Carlo step p, and the average Monte Carlo step
size m.

Figure 7 shows a typical trajectory. Many of the
features shown are similar to the features of the
molecular-dynamics trajectory shown in Fig. 6. The
discontinuities in the trajectory are the discrete Monte
Carlo steps, which allow the system to cross the nodes.
After each Monte Carlo step the slope is difFerent because
a velocity randomization has taken place. The discon-
tinuities in the slope when there is no Monte Carlo step
visible indicate that the Monte Carlo step was rejected.
Note that, on average, the time between node crossings is
considerably larger than the typical time to move from
one side of a region to the other.

For fermion systems, e%cient procedures for solving
the molecular-dynamics equations are known, but the
standard method for taking Monte Carlo steps is unsuit-
able in the context of a hybrid algorithm. The standard
procedure requires knowledge of a certain matrix which
changes each time a variable x is changed. The matrix
must be calculated initially at considerable expanse, but
thereafter can be updated in considerably less time each
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FIG. 7. Typical hybrid molecular-dynamics-Monte Carlo
trajectory. The hybrid algorithm inc1udes discrete Monte Carlo
steps which allow the particle to hop over the nodes in P(x), al-

lowing the system to sample all of phase space. The parameters
for this run (see text) were a=0.02, p =0.02, and w =0.2.

time an x is changed. In a hybrid algorithm, where most
of the steps are not Monte Carlo, the matrix would have
to be calculated from scratch before each Monte Carlo
step. In the Appendix we give a more efficient way of
taking Monte Carlo steps in the context of the hybrid al-
gorithm.

Some features of our model relating to the hybrid algo-
rithm are not representative of typical fermion systems.
The many-dimensional nature of the fermion systems is
the main difFerence. Since Monte Carlo methods typical-
ly vary only one of the variables at a time, it is impossible
to move a very large "distance" in phase space (in terms
of correlation time to reach an independent con6gura-
tion) in one Monte Carlo step. Molecular-dynamics steps
in fermion systems change all the variables at once, and
thus are able to move a larger "distance. " In contrast,
we are free to choose w as large as we wish, much larger
than the typical distance traveled in a molecular-
dynamics step. To make our tests more realistic, we
should probably make w smail, but the diff'erence in
dimensionahty and the unknown nature of the nodal sur-
faces in the fermion systems make any quantitative com-
parisons difficult.

Unfortunately, using a small m in our model makes the
average time between node crossings very large. %e can
estimate how the rate of crossing varies with m and p for
small m as we estimated its dependence on ht in Sec. III
for the Langevin method. For the model P(x), we find
that the probability of crossing at a particular Monte
Carlo step is roughly proportional to ~ . The average
number of Monte Carlo steps is strictly proportional to p,
and we expect the average number of crossings per hy-
brid step to be strictly proportional to P (even when w is
not small}. Hence, for small w we expect the average
number of crossing per hybrid step {i.e., per molecular-
dynamics step plus possible Monte Carlo step) to be pro-

portional to pm . The rate of crossing for the model
P' '(x) is similarly expected to be proportional to Pw .
The rate of crossing is independent of the molecular-
dynamics integration time e because molecular dynamics
cannot cross the nodes, and on average the probability of
being an any point at the start of a Monte Carlo step is

~
P(x) ~, independent of the parameters e, w, or P.
The molecular-dynamics steps do affect correlation

times because they allow the system to move quickly
within the nodally-bounded regions. The relative impor-
tance of molecular dynamics versus the Monte Carlo
steps in a fermion system depends on the relative impor-
tance of moving within regions compared to crossing
nodes for that system. For large systems where most of
the important areas of phase space are contained within
one nodally-bounded region, the eScient movement
within the region possible with molecular dynamics will
probably favor the hybrid algorithm over pure Monte
Carlo.

Table I shows the results of calculations using the hy-
grig algorithm. The first group shows the variation of
the crossing rate with w. For very large w the crossing
rate is reduced because most attempted jumps take the
system away from the region near the origin. For sma11 m

the crossing rate is roughly proportional to m . The
second group shows the proportionality of the rate of
crossing with p. The last group is for the model P' '(x),
where the crossing rate for small w is roughly proportion-
al to m . In all cases the crossing rate determines the sta-
tistical accuracy {for a given number of steps). Accurate
results require the number of crossings to be very high,
since in order to properly weigh the probability of being
in each of the nodally-bounded regions, the nodes must
be crossed many times. Thus obtaining a small statistical
error with small w and P requires very long running
times. In this model efficient movement through phase
space within each of the nodally-bounded regions is less
important that movement across the nodes.

VI. CONCLUSIONS

It is difficult to use any simulation technique when the
probability function is not positive definite (as is frequent-
ly the case in fermion systems} because of the increased
statistical fiuctuations in observables calculated using (5).
In the Langevin and molecular-dynamics techniques ad-
ditional difficulties arise due to singularities in the
eff'ective action corresponding to nodes in the probability
function. These difficulties persist even when the proba-
bility function is proportional to the square of the fer-
mion determinant (as in the half-filled Hubbard model),
since the same sign changes in the fermion determinant
produce second-order "nodes" in the probability function
and hence singularities in the e8'ective action.

In Sec. II we discussed the typical form of a fermion
effective action and devised a simple one-dimensional
model P(x) for testing simulation methods, as well as a
model P' '(x) for the case where the probability function
is proportional to square of a determinant. In Sec. III we
showed that in the Langevin method, the system always
crosses the nodes (for time steps as small as 10 ' ). We
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TABLE I. Hybrid molecular-dynamics-Monte Carlo calculations for the simple model. In each
step, the molecular-dynamics equations are integrated with a variable time-step integrator for a total
time of e, after which there is a probability p that a Monte Carlo move {ofaverage distance m) will be
attempted. In the runs sho~n, e=5g 10 ', and a total of 106 steps were taken. After each Monte Car-
lo attempt {whether it is accepted or rejected) a new velocity is chosen from a Boltzmann distribution.
The last Sve runs are for the model P' '{x),the rest are for P(x}. For low p and m the nodes are crossed
infrequently, and the simulation cannot accurately weigh the probability of being in the dilerent re-
gions. The exact results for P(x) are (s) =0.3329, (x )=0, and (x2) =0.5; for P'2'(x} the exact re-
sults are (s )=1, (x )=0, and (x2) =217/50=4. 34. The numbers in parentheses are the statistical
uncertainty in the last diy't (one standard deviation), estimated by dividing the run into 10 parts, treat-
ing the averages of the parts as independent, and calculating their variance. (This procedure will un-
derestimate the error if there is correlation between the parts. )

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.2
0.05
0.01

3.0
2.0
1.5
1.0
0.7
0.5
0.3
0.2
0.1

1.0
1.0
1.0

Crossings/step

0.13
0.17
0.19
0,21
0.19
0.15
0.071
0.034
0.0090

0.042
0.011
0.0021

(sgnP(x))z

0.332(8)
0.331(8)
0.336(2)
0.333(2)
0.332(2)
0.339(2}
0.333(2)
0.339{4)
0.337{7)

0.333(4)
0.332(13)
0.356(19)

0.005(6)
0.006{6)
0.005(S)
0.004(6)

—0.003(7)
0.007(9)

—0.014(13)
0.051(30)
0.023(39)

0.003(22}
—0.026(32)

0.065(40)

0.482(14)
0.500(8)
0.490(6)
0.501(11)'
0.524(16)
0.513(11)
0.503(32}
0.553(57)
0,668(102)

0.508(22)
0.493(80)
0.511(166)

1.0
1.0
1.0
1.0
1.0

1.0
0.5
0.3
0.2
0.1

0.13
0.063
0.020
0.0065
0.00082

1.000{0)
1.000(0)
1.000(0)
1.00+0)
1.000(0)

—0.002{12)
—0.011(27)
—0.004(67)

0.081(131)
0.233(270)

4.353(13)
4.334(20)
4.258(52)
4.395(84)
4.710(158)

'Additional runs with p = 1, m = 1, and e ranging from 10 to 0.2 showed no change (within statistical
errors, which were also unchanged) of any of the results as e was varied.

found that the rate of crossing tends to a constant as the
time step b r ~0 for P(x}, and varies as &b,r for P' '(x).
We also found that the system could be driven completely
out of equilibrium when, on a particular time step, the
system landed almost exactly on a node. In addition, we
pointed out that the I.angevin method does not indicate
when a node has been crossed, which makes keeping
track of the sign of the probability function, needed for
calculating observables, very diScult. In Sec. IV we
showed that in the molecular-dynamics method, the sys-
tem is trapped in one region bounded by nodes and can-
not explore all of phase space. In addition, a variable
time-step integrator is needed to avoid numerical prob-
lems in integrating the equations near the nodes.

In Sec. V, we proposed a hybrid molecular-
dynamics-Monte Carlo algorithin which we used to
correctly simulate our simple model. In the model the
key to simulations with low statistical error was to make
the system cross the nodes very frequently, so that the
proper probability weight could be assigned to each of
the nodally-bounded regions. In this regard the Monte
Carlo part of the algorithm was much more useful than
the molecular-dynamics part, and the algorithm per-
formed best in the pure Monte Carlo hmit. In real fer-
mion systems, however, molecular dynamics can be done

more quickly than Monte Carlo, with the
dii'erence increasing with the size of the system. Thus, in
the case of very large fermion systems, the hybrid method
may be faster.
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%'e present a fermion Monte Carlo method suitable for
use in the hybrid algorithm. In particular, we consider
the evaluation of P(x') !P(x)when the effective action is
of the form (1}. The most time-consuming part of the cal-
culation of this ratio is evaluation of the determinants; so
for the discussion we can set P(x) =detM(x).

In a fermion system with N sites and the inverse tem-
perature P divided into L time slices, M(x) can be written
as the 2I. X21. matrix with N &N elements '
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0
M(x) =

0 0 0—V(1}
1 0 0

—V(2) 0
1
0

0 00 0

0
0

0

(Al)

d tM
=det[1+(1—6 )(5—1)],derM(x)

where

6 —[1+TV(1) TV(L)]-'

(A3)

(A4)

One finds that 5—1 has only a few nonzero entries, so
this ratio can be evaluated very quickly if one knows 6.
Computation of 6 from scratch requires O(N ) opera-
tions, but this need only be done once: after a single x„I
is changed, it is possible to update 6 with only N opera-
tions. Since there are NL variables x„i, a sweep through

The NXN matrices T are independent of x, while
V{1),. . . , V(L), depend on x. ' We have assumed M(x)
comes from a Trotter approximation which breaks the
Hamiltonian into kinetic (T) and potential V(l) pieces,
followed by a Hubbard-Stratonovich transformation.
The form for M(x) in (16) is large but sparse; alternative-
ly, we can write the determinant in terms of a smaller
(N XN), dense matrix

detM(x) =det[1+ TV(1} TV(L)] .

We first discuss the usual Monte Carlo procedure, fol-
lowing the discussion of Scalettar. We assume there are
NL variables x„t, one for each site and time slice. Con-
sider changing one of the x„L for time slice L. The only
change in M(x) will occur in V(L}, which we can write
as V(L)~ V(L)4, where 4 is also an N XN matrix.
Then we can write

the entire lattice requires O(N L) operations. Unfor-
tunately, if only a single Monte Carlo step of a single
variable x„t is required {as in the hybrid algorithm), 6
must be calculated from scratch, and the cost is N (or
N L for the entire lattice).

%e now propose an alternative procedure more suit-
able for use in the hybrid algorithm. We note that it is
possible to arrange the Trotter breakup so that V(l) is di-
agonal, '6 with diagonal element [V(l)]«depending only
on x„t. In that case, a change in x„t only afFects a single
element of (16); i.e., M(x') =M(x)+4, where 4 has only
one nonzero element. The ratio of determinants in this
case can be written as

d"M( ) =det[1+M-14]
detM(x)

(A5)

Since 4 has only one nonzero element, say 4,J, the ex-
pression for the determinant ratio is drastically simplified
to

detM(x')
detM(x}

(A6)

where there is no sum on i or j. Only a single element of
M ' is needed.

A single rom m of M ' can be obtained by solving the
system of equations Mm =e, where e is a unit vector.
The salution of systems of equations of this form is re-
quired for eScient fermion molecular dynamics and
Langevin calculations, and recently considerable progress
has been made using preconditioned conjugate-gradient
techniques. '3 The calculation time for solving this system
is roughly proportional to the dimension of the matrix, in
this case 2NL. Hence, the calculation time for a single
Monte Carlo step is reduced from O(N } to O(NL). [If
this procedure is used in a pure Monte Carlo algorithm
the calculation time for a sweep is O(NzL ) instead of
O(NiL ). This may result in a savings in same cases.]
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